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ABSTRACT The control problem in wave energy continues to remain an open question. This is mainly
attributed to the difficulties associated with developing effective, yet economically viable, wave energy-
harnessing control strategies, such as resource irregularity, the multidisciplinary nature of the system, and
dynamic model uncertainties and ambiguities. Herein, a maximum energy-capturing approach for heaving
wave energy converters (WECs) using an estimator-based finite control set model predictive control (FCS-
MPC) is proposed. The proposed control strategy utilizes an elaborate nonlinear wave-to-wire model of
a heaving WEC. The FCS-MPC is formulated such that a control command trajectory is not required;
instead, it searches for the optimum control law—in the form of switching functions—that maximizes
the WEC converted electrical energy while imposing soft constraints on the states of the power take-off
(PTO) mechanism. Current transducers are deployed to measure the PTO three-phase currents and both
mechanical and electrical variables required by the FCS-MPC strategy are estimated using an electrical-based
extended Kalman filter (E-EKF). Simulations were performed to assess the effectiveness of the proposed
control strategy. Results presented herein clearly show that the proposed referenceless FCS-MPC managed
to produce 10%–23% more energy compared with benchmark resistive loading-based techniques with both
fixed and variable wave frequency capabilities while utilizing 18%–45% less PTO resources.

INDEX TERMS Wave energy converter, model predictive control, finite control set, extended Kalman filter,
permanent magnet linear generator, point absorber, damping control, wave-to-wire model.
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I. INTRODUCTION
In comparison to solar, wind and hydropower energy sources,
marine energy is still largely an untapped source of renew-
able energy, albeit having a theoretical energy capacity of
approximately 77 TW [1]. The main categories of marine
energy are wave energy, tidal energy, thermal energy, and
osmosis energy [2], [3]. Wave energy—particularly—has
continually received increasing worldwide attention for the
past two decades. This is mainly attributed to the great
potential of this energy resource, which is estimated to be
approximately 3.7 TW [4]. Despite its potential, only a frac-
tion of wave energy is believed to be exploitable owing to
current technological and economic challenges that hinder
the wide-scale development of this promising energy source.
The techno-economic viability in wave energy converters
(WECs) are mainly influenced by the available wave resource
potential, adopted topology of the WEC, effectiveness of
the power take-off (PTO) mechanism, and governing control
strategy [5]. The WEC control problem is a highly complex
problem because WEC comprises multiple interacting sys-
tems wherein each system has its own principle of opera-
tion and physical limitations. Furthermore, the irregular and
intermittent nature of the sea wave resource makes the con-
trol problem even harder. Generally, a WEC control strategy
should maximize the amount of energy captured from the
traveling sea waves, ensuring that different subsystems in the
WEC are operating within their physical limitations, and be
implementable from the hardware point of view.

Over the years, several classes of control strategies have
been proposed in the literature. The basic concept of most
of these proposed control strategies is the principle of max-
imum power transfer or impedance matching. Examples of
impedance matching-based control strategies are resistive
loading (RL) and approximate complex conjugate (ACC).
Despite being easy to implement, these strategies are open-
loop, suboptimal, and heavily model-based. Moreover, ACCs
often result in unrealistic dynamics (i.e., extreme excursions
and control efforts) [6], [7]. Another class of control strategies
include servo-tracking based strategies, such as approximate
optimal velocity tracking (AVT) with constant excitation
force-to-velocity function [8]. Robust variants of the AVT
were also reported in [9], [10]. Model predictive control
(MPC) strategies also have their own challenges regarding the
WEC control problem. Traditional constrained MPC strate-
gies for controlling mechanical dynamics of WECs were
proposed in [8], [11]. Parametrized MPC strategies using
basis functions were investigated in [12], [13]. Furthermore,
heuristic control techniques were deployed to control WECs
mainly owing to their lower dependency on the system
model, such as fuzzy control [14] and neural networks [15].
Impedance matching control using search algorithms have
been proposed in several studies [16], [17].

Herein, a novel referenceless (RL) finite control set MPC
(FCS-MPC) strategy for controlling the operation of a heav-
ing WEC is proposed. The control strategy—as the name

implies—does not require online determination of a refer-
ence trajectory. Therefore, it is not classified as a servo-
control strategy. Instead, it is based on an online constrained
optimization problem that needs to be maximized using a
search algorithm. The optimization problem cost function
calculates the amount of converted electrical energy mea-
sured at the terminals of a permanent magnet linear gener-
ator (PMLG). FCS-MPC is utilized to obtain an optimum
set of switching states—from the possible eight switching
states—used to control current flowing in the stator circuit of
the machine-side converter (MSC). FCS-MPC is nonlinear;
therefore, a nonlinear dynamic model of a WEC can be
readily deployed. Both mechanical and electrical models can
be combined to form a single predictive control architecture.
Furthermore, the FCS-MPC technique is computationally
cost-effective, wherein the system states are predicted one
sample ahead of the future. Another merit of the proposed
control strategy is the use of an electrical-based extended
Kalman filter (E-EKF) to estimateWEC states, which include
buoy heave displacement, velocity, andwave excitation force.
The E-EKF only requires real-time measurement of the
PMLG three-phase stator circuitry currents using current
transducers. No mechanical sensors are required here, thus
enhancing the implementation and reliability of the control
strategy. As the adopted predictive control has a one-sample-
long prediction horizon, no excitation force forecasting tech-
niques are required. An additional advantage that the FCS-
MPC technique contributes is the fact that it does not require
any modulation technique because the converter switching
states are determined through the online optimization prob-
lem prior to applying them directly to the converter switches.
The proposed FCS-MPC control strategy produces a uni-
directional power flow with relatively low peak-to-average
power ratios, therefore PTO systems with low power ratings
can be deployed resulting in reducing the development costs
of WECs. This paper is organized as follows: Section II dis-
cusses the WEC wave-to-wire dynamic model. The proposed
control strategies are appropriately derived in Section III. The
developed control strategies are analyzed and evaluated via
computer simulations in Section IV. Finally, conclusions are
drawn in Section V.

II. MODELING OF THE WAVE ENERGY CONVERTER
The WEC under investigation herein is a point absorber
with a semispherical buoy that oscillates against a stationary
platform, as shown in Fig. 1. The buoy heave motion directly
drives a PTO system. In this section, a detailed wave-to-
wire nonlinear dynamic model describing the performance
of the WEC topology studied herein is derived. The WEC
system can be divided into two interacting subsystems. The
first subsystem is the PTO subsystem, which converts the
mechanical power captured by the WEC buoy into electrical
power. Furthermore, the PTO system serves as an actuator
in the control system through altering the motion of the
WEC buoy in real time. The second subsystem entails the
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FIGURE 1. Drawing of the heaving WEC system investigated herein.

interaction between the incoming sea waves and the WEC
buoy.

A. WEC PTO MODEL
TheWECPTO system comprises a three-phase PMLGand an
accompanying three-phase voltage source converter (VSC).
The d–q synchronous reference frame model of the PMLG
can be expressed as follows [18]:

disd (t)
dt
= −

Vsd (t)
Ls
−
Rs
Ls
isd (t)+

π

γ
v(t))isq(t), (1)

disq(t)
dt
= −

Vsq(t)
Ls
−
Rs
Ls
isq(t)−

π

γ
v(t)isd (t)−

πψPM

γ
v(t),

(2)

where isd (t), isq(t), Vsd (t), and Vsq(t) are the PMLG direct
and quadrature stator currents and direct and quadrature stator
voltages, respectively. The parameters Rs, Ls, γ , andψPM are
the stator resistance, stator inductance, armature pole pitch,
and flux linkage due to the permanent magnets, respectively.
v(t) is the heave velocity of the PMLG translator.

A three-phase two-leg voltage source converter (2L-VSC)
is deployed as a MSC to control the PMLG, which con-
sequently controls the motion of the WEC buoy, as shown
in Fig. 2. The MSC three-phase voltage vector V s(t) can be
synthesized as function of the three-phase switching function
vector S(t) and DC-link voltage Vdc [19],Vsa(t)Vsb(t)

Vsc(t)


︸ ︷︷ ︸

V s(t)

=
Vdc
3

 2 −1 −1
−1 2 −1
−1 −1 2


︸ ︷︷ ︸

K s

Sa(t)Sb(t)
Sc(t)


︸ ︷︷ ︸

S(t)

, (3)

FIGURE 2. Schematic of the MSC and the proposed FCS-MPC strategy.

where

Sa(t) =

{
1 if S1 is on and S4 is off
0 if S1 is off and S4 is on,

Sb(t) =

{
1 if S2 is on and S5 is off
0 if S2 is off and S5 is on,

Sc(t) =

{
1 if S3 is on and S6 is off
0 if S3 is off and S6 is on,

Using the Park and Clarke transformation to transform the
three-phase stator voltage vector V s(t) into its corresponding
counterpart in the d–q reference frame,[

Vsd (t)
Vsq(t)

]
= Kdq

,Vsa(t)Vsb(t)
Vsc(t)

 (4)

where

Kdq =

√
2
3

 cos(π
γ
z(t)) − sin(π

γ
z(t))

cos(π
γ
z(t)− 2π

3 ) − sin(π
γ
z(t)− 2π

3 )
cos(π

γ
z(t)+ 2π

3 ) − sin(π
γ
z(t)+ 2π

3 )


>

,

where z(t) is the heave displacement of the oscillating body.
By substituting (3) into (4), we obtain[

Vsd (t)
Vsq(t)

]
=
Vdc(t)
3

KdqK sS(t). (5)

B. WEC MECHANICAL SYSTEM MODEL
The forces acting on the WEC buoy oscillating in heave
can be expressed using Newton’s second law of motion
as follows [20]

fex(t)− fr (t)− fb(t)− frs(t)− fd (t)

− ff (t)− fem(t) = mba(t), (6)
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where fex(t), fr (t), fb(t), frs(t), fd (t), ff (t), and fem(t) are the
wave excitation, wave radiation, buoyancy, restoring, viscous
drag, friction, and controlled electromagnetic forces, respec-
tively. mb and a(t) are the mass of the oscillating body and
the heave acceleration of the buoy, respectively. The heave
acceleration of the WEC buoy can be represented as follows:

a(t) =
1

mb + m∞

[
fex(t)− Crq(t)− Srsz(t)︸ ︷︷ ︸

frs(t)

(7)

− πρgR2b
(
1−
|z(t)|z(t)

3R2b

)
z(t)︸ ︷︷ ︸

fb(t)

− 0.5ρAwCd |v(t)− vf (t)|
(
v(t)− vf (t)

)︸ ︷︷ ︸
fd (t)

− Fn
(µv|v(t)|

Fn
+µd+(µs−µd )e

−( |v(t)|vs
)2
)
sgn

(
v(t)

)
︸ ︷︷ ︸

ff (t)

+
3πψPM
2γ

isq(t)︸ ︷︷ ︸
fem(t)

]
.

The effect of the wave radiation force is represented as
a linear time-invariant model of the form q̇(t) = Arq(t) +
Brv(t), wherein q(t) represents the radiation auxiliary state
vector and an output equation ofCrq(t). The matricesAr ,Br ,
and Cr are the radiation state matrices. The parameters m∞,
Srs, and Rb are the added mass, restoring spring coefficient,
and the buoy radius, respectively. The friction force between
the moving parts of the WEC is represented as a Coulomb
friction-force model exhibiting viscous and Stribeck effects;
µv, µd , and µs are the viscous, dynamic, and static friction
coefficients, respectively. Fn is the normal force, and vs(t)
is the Stribeck velocity. The viscous drag force is repre-
sented as a quadratic function of the difference in the heave
velocity between the buoy and the surrounding water surface,
wherein ρ, Aw, Cd , and vf (t) are the sea water density, buoy
submerged surface area, viscous drag coefficient, and water
surface heave velocity, respectively [21].

C. WAVE-TO-WIRE WEC MODEL
The overall wave-to-wire nonlinear model of the WEC sys-
tem can be concisely expressed in the continuous state space
form as follows:

ẋ1(t) = x2(t), (8)

ẋ2(t) =
1

mb + m∞

[
fex(t)− Crx3(t)− Srsx1(t)

−πρgR2b
(
1−
|x1(t)|x1(t)

3R2b

)
x1(t)

− 0.5ρAwCd |x2(t)− vf (t)|
(
x2(t)− vf (t)

)
−µv|x2(t)| sgn

(
x2(t)

)
− Fnµd sgn

(
x2(t)

)
−Fn(µs − µd )e

−( |x2(t)|vs
)2 sgn

(
x2(t)

)
+

3πψPM
2γ

x5(t)
]
, (9)

ẋ3(t) = Arx3(t)+ Brx2(t), (10)

ẋ4(t) = −
u1(t)
Ls
−
Rs
Ls
x4(t)+

π

γ
x2(t)x5(t), (11)

ẋ5(t) = −
u2(t)
Ls
−
Rs
Ls
x5(t)−

π

γ
x2(t)x4(t)−

πψPM

γ
x2(t),

(12)
y(t) = x(t), (13)

where the state vector is x(t) = [x1(t), x2(t), x3(t), x4(t),
x5(t)] = [z(t), v(t), q(t), isd (t), isq(t)], the model input vec-
tors are u1(t) = Vsd (t) and u2(t) = Vsq(t), and the output
vector is y(t) = [x1(t), x2(t), x3(t), x4(t), x5(t)]. The wave
radiation effect is represented using a fourth-order linear
time-invariant model q(t) ∈ R4×1. The corresponding state
and output vectors are x(t), y(t) ∈ R8×1.

III. WEC CONTROL STRATEGY
In this section, an estimator-based FCS-MPC strategy is
developed for controlling the operation of the WEC. The
control strategy aims to maximize the WEC-captured energy
while limiting the PMLG stator current, consequently soft-
constraining the physical limitations of the system.

A. MODEL DISCRETIZATION
Prior to discretizing the WEC model described in (8)-(13),
the discontinuous friction model is replaced with a con-
tinuous and differentiable approximation of the following
form [22]:

ff (t) ≈ −Fnµd tanh
(
αv(t)

)
− µvv(t)

−Fn(µs − µd )e
−( |v(t)|vs

)2 tanh
(
αv(t)

)
. (14)

The rate of change of the friction force is governed by
the parameter α. The forward Euler method is implemented
to transform the WEC nonlinear continuous-time model
described in (8)–(13) into its discrete-time counterpart. This
discrete-time model of the system can be conveniently rep-
resented in the compact state-space matrix form, wherein Ts
would be the sampling time,

X(k + 1) = Ts
[
AX(k)+ BU(k)+ 0(k)

]
, (15)

Y (k) = CX(k), (16)

where

X(k + 1) =


x1(k + 1)
x2(k + 1)

...

x5(k + 1)

 , X(k) =


x1(k)
x2(k)
...

x5(k)

 ,

A =


0 1 01×4 0 0
−Srs

mb+m∞
0 −Cr

mb+m∞
0 −3πψPM

2γ (mb+m∞)
04×1 Br Ar 04×1 04×1
0 0 01×4

−Rs
Ls

0

0 −πψPM
γ

01×4 0 −Rs
Ls

 ,

B =

[
0 0 01×4 −

1
Ls

0
0 0 01×4 0 −

1
Ls

]>
,
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TABLE 1. All possible combinations of switching states and their
corresponding voltage vectors.

C =
[
01×6 1 0
01×6 0 1

]
,

0(k) =
[
01(k) 02(k) 03(k) 04(k) 05(k)

]>
,

01(k) = 0, 02(k) = −
1

mb + m∞

[
− fex(k)

+πρgR2b
(
1−
|x1(k)|x1(k)

3R2b

)
x1(k)−

3πψPM
2γ

x5(k)

+ 0.5ρAwCd |x2(k)− vf (k)|
(
x2(k)− vf (k)

)
+Fnµd tanh

(
αx2(k)

)
+ µvx2(k)

+Fn(µs − µd )e
−( |x2(k)|vs

)2 tanh
(
αx2(k)

)]
,

03(k) = 04×1, 04(k) =
π

γ
x2(k)x5(k),

05(k) = −
π

γ
x2(k)x4(k), U(k) =

Vdc(k)
3

KdqK sS(k).

B. PROPOSED REFERENCELESS FCS-MPC CONTROLLER
The proposed FCS-MPC approach does not require any
desired reference signal. Instead, it is based on maximizing
a cost function through an online search technique wherein
the optimum switching state of the MSC is determined in
real time. This is performed by predictingWEC system states
one-sample ahead into the future. All possible eight switching
combinations of 2L-VSC—shown in Table 1—are explored
at every time instant k , and the switching state that maxi-
mizes a cost function is used to fire the 2L-VSC switches.
One-sample-ahead prediction of the WEC system states is
performed using the discrete model described in (15)-(16)
and is expressed as follows:

X̃(k + 1|k) = Ts
[
AX̃(k)+ BU(k)+ 0̃(k)

]
, (17)

Ỹ (k + 1|k) = CX̃(k + 1|k), (18)

where the vectors X̃(k + 1|k) and Ỹ (k + 1|k) represent
the system state and output vectors predicted one sample
ahead at k + 1, X̃(k) is the estimated system state vector at
time instant k , and U(k) is the computed control vector at
sampling instant k . The cost function, which is intended to
be maximized, is the predicted WEC-converted (electrical)

energy J (k + 1|k) at the terminals of the PMLG, that is

max
U(k)

J (k + 1|k) = J (k)+
[3Ts

2
Ỹ (k + 1|k)U(k)

]
2(k), (19)

where J (k) is the converted energy at time instant k . The
function 2(k) is used to soft limit the quadrature component
of the PMLG stator current x̃5(k + 1|k) and is expressed as
follows [23]

2(k) =

{
1 if −I∗s ≤ x̃5(k + 1|k) ≤ I∗s
1× 10−6 otherwise

(20)

where I∗s is the PMLG stator current constraint. I∗s is calcu-
lated using the optimal flux weakening technique, wherein
the PMLG electromagnetic force is maximized while restrict-
ing the machine stator current to its limit, which is calculated
in real time as follows [24]:

I∗s =
γ

πLsx̃2(k + 1|k)

√
V ∗2s −

(π x̃2(k + 1|k)ψPM
γ

)2
, (21)

where V ∗s is the maximum phase voltage determined using
the DC-link voltage Vdc and the deployed switching algo-
rithm [24]. Herein, because the FCS-MPC technique is used,
V ∗s = 2Vdc/3. To derive (21), the machine is assumed to
be of a surface-mounted PMLG type, the machine stator
currents are believed to have slow steady-state variations, and
the direct-axis component of the stator current is believed to
be significantly lower than the quadrature component [24].
Figure 3 depicts how I∗s varies as function of the buoy heave
velocity. Intuitively, as the buoy heave velocity increases,
the PMLG stator current is further restricted. I∗s primarily
comprises the q-axis component of the stator current because
isq(k)� isd (k).

FIGURE 3. The maximum stator current limit I∗s as a function of the WEC
heave velocity v (k).

The proposed referenceless FCS-MPC (RL-FCS-MPC)
strategy is concisely described in the flowchart shown
in Fig. 4. Only three-phase PMLG stator current measure-
ments are required at every time instant k using current
transducers, whereas no mechanical sensors (e.g., position
and force sensors) are required.
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FIGURE 4. Flowchart of the proposed RL-FCS-MPC control strategy.

C. E-EKF ESTIMATOR
Similar to what was developed in [21], an electrical-based
extended Kalman filter (E-EKF) is deployed to determine the
system state vector X(k) in (17). Furthermore, an E-EKF is
used to estimate the wave excitation force fex(k), which is
represented as a random walk process, as follows:

fex(k) = fex(k − 1)+ Tsε(k − 1), (22)

where ε(k − 1) is a random drift at time k − 1 represented
as white noise with zero mean and finite variance. Both esti-
mated states are combined to form a new state vector ζ (k) =[
X̃(k) f̃ex(k)

]> and the WEC system model is represented in
the following discrete nonlinear state-space model:

ζ (k) = f
(
ζ (k − 1),u(k − 1),w(k − 1)

)
, (23)

ỹ(k) = g
(
ζ (k), σ (k)

)
, (24)

where f (·) and g(·) are the state and output (measurement)
functions. The vector variables ζ (k−1), u(k−1), andw(k−1)
are the estimated state, input, and process noise vectors, all
evaluated at time instant k−1, respectively. Themeasurement
function g(·) arguments are the estimated state vector, ζ (k),
and the measurement noise vector, σ (k), whereas ỹ(k) is the
estimated output vector. The state and measurement noise
variables are represented as a white noise random variable
with zero mean and known covariance matrices of Q(k) and
R(k), respectively.

As shown in Fig. 2, the E-EKF estimator is fed the
measured three-phase PMLG stator current. A one-sample-
delayed estimate of the buoy displacement, z̃(k−1), is used to
transform themeasured three-phase stator current signals into
their corresponding d–q rotating reference frame equivalents.
The WEC system model described in (15) and (16) requires
knowledge of the water surface velocity vf (k), which approx-
imates the viscous drag force. The estimated wave excitation
force is delayed by one sample and the wave elevation at
k − 1 is approximated using a 10th-order discrete wave-
to-excitation force transfer function, Kex(z), that is conse-
quently produced by solving the wave excitation problem in
WAMIT [25]. The wave-to-excitation force discrete transfer
function for the buoy design under study is expressed as
follows:

Kex(z) =
a0 + a1z+ a2z2 + . . .+ a10z10

b0 + b1z+ b2z2 + . . .+ b10z10
, (25)

where the transfer function parameters are listed in
Appendix A. Algorithm 1 summarizes the state estimation
procedure at time instant k for the WEC system that uses an
extended Kalman filter. This procedure is repeated at every
sampling instant k .

Algorithm 1 Extended Kalman Filter
(1) Initiate the estimated posteriori state vector
ζ̃
+
(k − 1) = 0 ∈ R9×1 and the posteriori estimation

error covariance matrix P+(k − 1) = 0 ∈ R9×9.
(2) Calculate the Jacobian matrix evaluated at ζ̃

+
(k − 1):

F(k − 1) = ∂f (k−1)
∂ζ (k−1)

∣∣∣∣
ζ̃
+
(k−1)

∈ R9×9.

(3) The time update equations:
The priori estimation error covariance matrix,
P−(k) = F(k − 1)P+(k − 1)F(k − 1)>+

W (k − 1)Q(k − 1)W (k − 1)>

The estimated priori state vector,
ζ̃
−
(k) = f (ζ̃ (k − 1)+, u(k − 1),0),

The process noise Jacobian matrix,
W (k − 1) = ∂f (k−1)

∂w(k−1) = TsI9×9 ∈ R9×9.

(4) The measurement update equations:
The Kalman filter gain at k ,
K(k) = P−(k)H(k)>

(
H(k)P−(k)H(k)>

+D(k)R(k)D(k)>
)−1
∈ R9×9,

The estimated posteriori state vector at k ,
ζ̃
+
(k) = ζ̃

−
(k)+ K(k)

[
y(k)− g

(
ζ̃
−
(k),0

)]
,

The posteriori estimation error covariance matrix at k ,
P+(k) =

(
I − K(k)H(k)

)
P−(k),

The measurement equation Jacobian matrices,
H(k) = ∂g(k)

∂ζ (k) ∈ R2×9, D(k) = ∂g(k)
∂σ (k) ∈ R2×9.

D. REFERENCE-BASED FCS-MPC CONTROLLER
The proposed RL-FCS-MPC strategy is compared to the
benchmark resistive loading strategy. In the latter strategy,
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FIGURE 5. RB-FCS-MPC strategy with SOGI-FLL (a) general schematic
diagram and (b) SOGI-FLL block diagram.

the desired (command) PTO electromagnetic force, f ∗em(k),
using the magnitude of the WEC intrinsic impedance, Zi(ω),
is derived as follows:

f ∗em(k) = −|Zi(ω)|v(k), (26)

where

|Zi(ω)| =

√
Rr (ω)2 +

[
ω(mb +Mr (ω))−

(Sb + Srs)
ω

]2
,

where Rr (ω) andMr (ω) are theWEC buoy radiation damping
and radiation-added mass as a function of wave frequency
ω, respectively. The parameter Sb is the buoy hydrostatic
buoyancy stiffness coefficient [6]. The frequency-dependent
hydrodynamic functions Rr (ω) and Mr (ω) are computed
using hydrodynamic numerical tools, such as WAMIT. The
resistive loading strategy requires real-time knowledge of
the incident wave frequency, which is challenging to obtain
considering the irregular nature of energetic sea environ-
ments. One way to overcome this problem is to preset the
wave frequency at a fixed value representing the domi-
nant (peak) wave frequency ωp, resulting in a suboptimal
energy absorption—that is only confined to the selected ωp.
Another approach—which is used herein—is to estimate
the wave frequency in real time using the frequency esti-
mation technique. Here, as shown in Fig. 4, the incident
wave frequency is estimated using an adaptive bandpass filter
through a second-order generalized integrator frequency-
locked loop (SOGI-FLL). Recently, single phase FLL tech-
niques have been gaining momentum in, particularly in
power system applications, such as grid synchronization [26],
flux estimation in AC drives [27], and in estimating elec-
tromechanical oscillations in power systems [28]. Herein,
the SOGI-FLL estimates the instantaneous mechanical angu-
lar frequency, ω̃(k), utilizing the estimated excitation force
signal, f̃ex(k), normalized by the coefficient ε, as shown
in Fig. 5(a). As shown in Fig. 5(b), SOGI-FLL gains, namely,

FIGURE 6. Developed SOGI-FLL frequency estimator performance
(a) monochromatic sea states and (b) polychromatic sea states.

β and λ, are tuned as a trade-off between the frequency
selectively and dynamic response of the SOGI-FLL [29].
Here, because the wave frequency range of interest is from
0.4 to 0.8 rad/s, the SOGI-FLL gains are set to β =

√
2

and λ = 0.05. The feedforward frequency, ωo, is set to
0.6 rad/s, which is the midpoint frequency of the anticipated
wave frequency range. The performance of the SOGI-FLL is
assessed under monochromatic and polychromatic sea states
with varying wave frequency, as shown in Fig. 6. For both
types of sea states, the SOGI-FLL appropriately estimates
the wave frequency with R2 scores of 98.18% and 95.86%
for monochromatic and polychromatic sea states, respec-
tively. Here, the resistive loading strategy is implemented in
a reference-based FCS-MPC (RB-FCS-MPC) framework in
which the cost function to be minimized in this case, E(k),
is the error between the reference output vector, Y∗(k), and
the predicted output vector, Ỹ (k + 1|k), according to the
following cost function:

min
U(k)

E(k) =

∥∥∥Y∗(k)− Ỹ (k + 1|k)
∥∥∥2

2(k)
, (27)

where

Y∗(k) =
[
x∗4 (k), x

∗

5 (k)
]>
,

Ỹ (k + 1|k) =
[
x̃4(k + 1|k), x̃5(k + 1|k)

]>
.

Similar to the algorithm presented in Fig. 4, at time instant
k all eight possible switching functions, S(k), are explored
and the function that minimizes the cost function in (27) is
implemented to fire the MSC switches. The function 2(k)
is deployed to limit the PMLG stator current. To mini-
mize machine copper losses, the direct-axis component of
the stator current command is set to zero, x∗4 (k) = 0.
The quadrature-axis stator current command is represented
as x∗5 (k) = 2γ f ∗em(k)/3πψPM , where f ∗em(k) is determined
using (26).

IV. RESULTS AND DISCUSSION
To assess the performance of the developed control strategies,
computer simulations are performed in MATLAB/Simulink.
The WEC plant is modeled using the nonlinear state-space
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FIGURE 7. The mechanical and electrical dynamics of the WEC under the
proposed RL-FCS-MPC strategy after the application of a 300 s long
irregular sea state.

model described in (8)-(13). Polychromatic sea states are
generated using the JONSWAP spectrum. The performance
of the proposed RL-FCS-MPC strategy is compared to that
of the RB-FCS-MPC strategy with SOGI-FLL. The param-
eters of the WEC model and control strategies are listed in
Appendix A.

First, a polychromatic sea state is applied and the WEC
mechanical and electrical performances under the RL-FCS-
MPC strategy are observed. The sea state is made of three
100 s long irregular waves concatenated into a single 300 s
long wave. The wave sequence characteristics are in the
following order: Hs = 2 m and Tp = 13 s, Hs = 4.75 m
and Tp = 10 s, and Hs = 2.5 m and Tp = 14 s.
The resultant buoy motion dynamics, namely the heave dis-
placement and velocity, are shown in Fig. 7 (a). The buoy
excursions of the WEC are as high as the wave elevation
for wave segments with large peak periods (i.e., Tp = 13 s
and Tp = 14 s), whereas the heave velocity is regu-
lated at 0.5 m/s. From Fig. 7 (b), the time-averaged PTO
electromagnetic force under RL-FCS-MPC is approximately
46 kN, while the peak-to-average ratio of the PTO force
is 7. The PMLG stator current d–q components are plot-
ted in Fig. 7 (c). The shape and magnitude of the stator
current q component is observed to be correlated with the

FIGURE 8. Resultant power and energy waveforms of the WEC under the
proposed RL-FCS-MPC strategy subsequent to the application of a 300 s
long irregular sea state.

FIGURE 9. Performance of the E-EKF estimator in estimating the wave
excitation force. (a) Actual and estimated excitation force waveforms and
(b) the corresponding estimation error.

PTO force waveform. The control effort, namely, the switch-
ing function S(k), is manifested in the d–q components
of the terminal stator voltage. The terminal stator voltage
appears to be highly discontinuous, as depicted in Fig. 7 (d).
Nevertheless, the stator voltage d–q components are curtailed
by the DC-link voltage Vdc, as V 2

sd + V 2
sq ≤ 2Vdc/3. The

instantaneous wave excitation power, which is the amount
of power captured by the WEC buoy and is computed as
Pex(k) = fex(k)v(k), is shown in Fig. 8 (a). The Pex(k) is bidi-
rectional, which indicates that the RL-FCS-MPC is a subop-
timal control strategy (i.e., fex(k) and v(k) are off-resonance).
Conversely, the PTO instantaneous absorbed power, Pabs(k),
and the instantaneous converted power, Pconv(k), are both
unidirectional (shown in Fig. 8 (a)), indicating the damping
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FIGURE 10. Performance comparison between the proposed RL-FCS-MPC
strategy and the RB-FCS-MPC strategy: (a) PTO force, (b) instantaneous
converted power, and (c) converted energy trajectories.

nature of the RL-FCS-MPC. The peak-to-average ratio of the
WEC-converted power, P∗conv/P̄conv, is 8.9, which is close to
the values obtained when a resistive loading control strat-
egy is applied. The absorbed power peak-to-average ratio,
P∗abs/P̄abs, is approximately 11, which is consistent with
the ratio typically obtained using a resistive loading control
strategy. Corresponding excitation, absorbed, and converted
monotonic energy curves are depicted in Fig. 8 (b). The accu-
mulated converted energy subsequent to a 300 s run of the
system is approximately 4.35MJ, corresponding to an overall
mechanical-to-electrical conversion efficiency of 56 % and a
PTO system conversion efficiency of approximately 80 %.
The RL-FCS-MPC is fed with the estimated states using an
electrical-based extended Kalman filter (E-EKF) and Fig. 9
demonstrates the goodness of the E-EKF estimator for esti-
mating the wave excitation force, fex(k). The root mean
square error (RMSE) of the estimated fex(k) is 12.5 kN.
Furthermore, RMSE values for the estimated heave displace-
ment and velocity are 0.011 m and 0.0042 m/s, respectively.

The effectiveness of the RL-FCS-MPC strategy is
assessed against the RB-FCS-MPC strategy equipped with
SOGI-FLL. As shown in Fig. 10 (a), the two control strate-
gies used herein resulted in distinct PTO electromagnetic
force waveforms. The WEC under the RL-FCS-MPC needed
approximately 45% lower control effort compared with the
RB-FCS-MPC. As for the converted power, Fig. 10 (b)
suggests that Pconv(k) is bidirectional for RB-FCS-MPC.
In other words, the real power flows back and forth between
the PMLG and the DC-link capacitor, which is not the
case with RL-FCS-MPC. Figure 10 (c) shows the amount
of energy measured at the terminals of the PMLG and

FIGURE 11. Tracking performance of the RB-FCS-MPC strategy (a) d -axis
stator current component and (b) q-axis stator current component.

FIGURE 12. SOGI-FLL estimator performance: (a) estimation goodness
and (b) resultant converted energy trajectories for the RB-FCS-MPC
strategy with and without SOGI-FLL.

the RL-FCS-MPC clearly outperforms the RB-FCS-MPC
by approximately 14%. The tracking performance of the
RB-FCS-MPC is illustrated in Fig. 11. The measured
d–q axis components of the PMLG stator current adequately
follow the current reference trajectories with minimal steady-
state errors. However, some ripples are observed owing to
the deployment of the FCS-MPC. As discussed previously,
the wave peak frequency is estimated online using the SOGI-
FLL technique as part of the RB-FCS-MPC. As depicted
in Fig. 12 (a), the SOGI-FLL technique properly estimated
the wave peak frequency (or peak period) of the irregular
300 s long concatenated sea state. The instantaneous estimate
of the wave peak period oscillates over the wave peak periods,
which are known in advance (Tp = 13, 10, 14 s). This assess-
ment is further evidenced by examining the accumulated
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FIGURE 13. Comparison between RL-FCS-MPC, RB-FCS-MPC with SOGI-FLL, and RB-FCS-MPC with fixed frequency strategies under
eight different polychromatic sea-states.

converted energy produced by theWEC under RB-FCS-MPC
with SOGI-FLL and RB-FCS-MPC with manual modifica-
tion of the wave peak period. With SOGI-FLL, the converted
energy amounted to 3.747 MJ, whereas it was observed
to be 3.761 MJ with manual alteration of the wave peak
period. This clearly shows that the SOGI-FLL can properly
estimating the wave peak period for a gradually changing sea
environment.

Eight polychromatic sea states with varying peak peri-
ods, Tp, and significant height, Hs, are applied, and the
performance of the different control strategies investigated
herein is examined. Table 2 illustrates the characteristics
of the applied sea states. In addition to the RL-FCS-MPC
strategy and the RB-FCS-MPC strategy with SOGI-FLL,
a simplified version of the RB-FCS-MPC strategy, wherein
the wave frequency is kept unchanged and equal to the site
dominant wave frequency, is also examined. As the wave
peak periods of interest range from 8 s to 15 s, the RB-
FCS-MPC with fixed wave frequency is tuned at a peak
period of 12 s (wp = 0.52 rad/s). As shown in Fig. 13,
the three control strategies are compared with each other on

the basis of average mechanical absorbed power, P̄abs, aver-
age electrical converted power, P̄conv, average PTO electro-
magnetic force, f̄em, overall conversion efficiency, ηov, PTO
conversion efficiency, ηpto, and the peak-to-average ratio of
the converted power, P∗conv/P̄conv. The WEC under the RL-
FCS-MPC absorbed more mechanical power, P̄abs, in all sea
states than that absorbed in the other two strategies, as shown
in Fig. 13 (a). The percentage increase in P̄abs of the RB-
FCS-MPC compared with the SOGI-FLL and RB-FCS-MPC
tuned at a fixed frequency ranges from 1% to 36% and
1% to 45%, respectively. Both reference-based strategies
underperformed significantly for sea states with low peak
periods (i.e., < 10 s). As for the average converted power,
P̄conv, the RL-FCS-MPC produced 10% to 23% more power
compared with the RB-FCS-MPC with SOGI-FLL, as shown
in Fig. 13 (b). The RL-FCS-MPC required 18%–45% less
electromagnetic force from the PTO system compared with
the RB-FCS-MPC with SOGI-FLL and 15%–53% less PTO
force compared with the RB-FCS-MPC tuned at a fixed
frequency, as illustrated in Fig. 13 (c). The overall efficiency,
ηov, of the WEC under the RL-FCS-MPC varies between
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TABLE 2. Applied polychromatic sea states generated using the JONSWAP spectrum.

52% and 59%, which is close to that of an RB-FCS-MPC
with fixed frequency, i.e., 50%–56%, as shown in Fig. 13 (d).
This shows that the RL-FCS-MPC results in overall sta-
ble conversion efficiency values similar to those produced
by the RB-FCS-MPC with a fixed frequency. Greater effi-
ciency variations were recorded for the RB-FCS-MPC with
SOGI-FLL, which is mainly attributed to instantaneous
peak wave frequency alterations made by the SOGI-FLL.
As for the PTO conversion efficiency, ηpto, the RL-FCS-MPC
resulted in ηpto that ranges from 60% to 84% 13 (e).
Lower ηpto values were recorded for energetic sea states
(i.e., high Tp and Hs), which is intuitive considering that
larger fem is required, resulting in higher stator currents in
the PMLG and hence greater copper losses in the machine.
The opposite is true for less energetic sea states (i.e., low Tp
and Hs). Despite managing to generate more power across
all sea states compared to the other two control strategies, the
RL-FCS-MPC produced the lowest converted power peak-to-
average ratios, P∗conv/P̄conv, ranging from 4.1 to 6.4, as illus-
trated in Fig. 13 (f). This indicates that the RL-FCS-MPC
adequately utilizes PTO resources, facilitating the use of
PTO systems with considerably low power ratings. There-
fore, the initial capital investment required for the system is
reduced.

V. CONCLUSION
Herein, an estimator-based predictive control strategy for
controlling heaving WEC is proposed. The control strategy
is based on an online search technique, wherein the opti-
mum MSC switching functions are found at every time k .
Therefore, no pre-determined reference trajectory is required.
Due to the nonlinear nature of the FCS-MPC technique,
a combined mechanical and electrical nonlinear model of the
WEC is readily deployed, eliminating the need for splitting
the control problem into two tiers. The proposed RL-FCS-
MPC control strategy proved to be a practical damping con-
trol strategy, in which a noticeable increase in the converted
energy is observed while utilizing lower PTO resources
(i.e., lower P∗conv/P̄conv and lower f̄em). The efficient use of
PTO resources facilitates the use of PTO systems with low
power ratings and, hence, reduces system costs. Despite the
absence of an explicit hard-limiting mechanism to restrict the
WEC buoy motion, the proposed control strategy resulted
in modest buoy excursions that reduce the need for such
hard constraints. E-EKF is utilized to eliminate the need for
mechanical sensors and enhance the real-time implementa-
tion of the control strategy. The next step will be to address
the problem of control strategy robustness against model
uncertainties and un-modeled dynamics, which is a crucial

issue to wave energy. Moreover, experimental works are
underway to further validate the developed control strategies.

APPENDIX A
WEC DESIGN PARAMETERS
A. MECHANICAL PARAMETERS
Ts = 2 × 10−4 s, mb = 57962 kg, ρ = 1025 kg/m3, Aw =
28.274 m2, m∞ = 28989 kg, Rb = 3 m, Cd = 1.

Ar =


−2.7936 −5.9041 −4.8634 −2.8368

1 0 0 0
0 1 0 0
0 0 1 0

 ,
Br =

(
1 0 0 0

)>
, Cr =

(
43707 64301 57693 0

)
.

a0 = 4.337× 104, a1 = −4.338× 105, a2 = 1.952× 106,
a3 = −5.206 × 106, a4 = 9.11 × 106, a5 = −1.093 × 107,
a6 = 9.111 × 106, a7 = −5.206 × 106, a8 = 1.953 × 106,
a9 = −4.339× 105, a10 = 4.339× 104, b0 = 0.9998, b1 =
−9.998, b2 = 44.99, b3 = −120, b4 = 210, b5 = −252,
b6 = 210, b7 = −120, b8 = 45, b9 = −10, b10 = 1.
Srs = 40000 N/m, Fn = 12000 N, µd = 1, µv = 2,

µs = 2, vs = 1 m/s, α = 10, Vdc = 690.
Rr (ω) = 30376ω − 11248, Mr (ω) = −32801ω2

+

31430ω + 42349,

B. PTO SYSTEM PARAMETERS
Rs = 1.5 �, Ls = 35 mH, ψPM = 19.8 Wb, γ = 45 mm.

C. E-EKF DESIGN PARAMETERS

Q = q′ ∗ q,

q = [1× 10−10, 1× 10−10, 1× 10−10, 1× 10−10,

1× 10−10, 1× 10−10, 2× 104, 1× 10−2, 1× 10−2],

R = diag(r),

r = [1× 10−3, 1× 10−3, 1× 10−3, 1× 10−3, 1× 10−3,

1× 10−3, 1× 10−3, 1× 10−1, 1× 10−2].
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