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ABSTRACT Binary sequences are widely used in many practical fields, such as radar applications, telecom-
munications and cryptography. Finding low autocorrelation binary sequences with good peak side-lobe
level (PSL) values is a difficult optimization problem. In this paper we present an improved heuristic
algorithm for searching low autocorrelation PSL sequences. A heuristic algorithm can find a sequence with
a PSL value, which is not necessarily optimal, but is usually near optimal, and the algorithm finds it in a
reasonable amount of time. In the experimental work we applied our algorithm to find binary sequences
with low PSL values, and made a comparison with the state-of-the-art algorithms from literature. With our
algorithm many sequences with the currently best-known PSL values have been improved. We found new

sequences with better, i.e., lower, PSL values.

INDEX TERMS Binary code, aperiodic autocorrelation, peak sidelobe level.

I. INTRODUCTION

Low autocorrelation binary sequences (LABS) play impor-
tant roles in many areas, such as communication engineer-
ing, synchronization, active sensing systems, cryptography
and radar applications [1]-[5]. Searching for LABS with the
lowest-achievable PSL values is a challenging optimization
problem.

Generally, we have to distinguish between aperiodic and
periodic sequences (codes). In this paper, aperiodic binary
sequences are considered.

A binary sequence S = s1 52 ... sz has all entries either +1
or —1. Here, L denotes the sequence length. The aperiodic
autocorrelation function (AACF) of binary sequence S at
shift k is defined as:

L—k
Ce(S) = sisipk, fork =0,%1,..., &L —1). (1)

i=1

Note that the AACF is an even function, since
Ci(S) = C(—1(S), and therefore, it is enough to consider it
for the interval k = 0, 1, ..., (L — 1) only. The Peak Sidelobe
Level (PSL) is the measure of smallness of the aperiodic
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autocorrelations and the PSL value is defined as:
PSL(S) = max |Cy(S)|. 2)
l<k<L

The Cy(S) is called the mainlobe level, and this term is not
included in Eq. (2). The rest, Cx(S),k =1,2,...,L — 1, are
called sidelobe levels. The PSL value represented in decibels
is given as:

NPSL(S) [dB] = 20 logl()(PSL(S )).

3)

The LABS problem involves assigning values to the s; that
minimize PSL(S) values for all possible binary sequences of
length L.

The search space of the LABS problem is of size 2.
To locate good (optimal) solutions, two approaches exist:
Complete and incomplete search. The complete, or exact
search, is able to find the optimal sequence, but it is
unlikely to scale up to large sequences. The incomplete,
or stochastic search, can obtain a result that may be opti-
mal or close to the optimal, i.e., it does not guarantee
optimality.

Many authors have put considerable computational effort
into finding binary sequences with small peak sidelobe
level [6], [7], showing that:

e PSL(L) <2forL <21,

o PSL(L) <3 for L <48,
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e PSL(L) <4 forL <82,

e« PSL(L) <5 for L < 105.

Currently the best results for PSL values are known for
85 < L < 105, and are reported in [6]. The optimal PSL
sequences with PSL = 1 for L = 2,3,4,5,7,11, and
13 are known as Barker sequences. The optimal binary PSL
sequences up to L = 74 are also collected in [8].

Another important measure of smallness of AACF is the
merit factor [9], given by:

Co(S)
23741 1CKS)I2

The merit factor is defined as the ratio of the energy of the
mainlobe level to the energy of sidelobe levels.

Roughly speaking, there are two versions of LABS
searches in the literature: One targets minimizing the
PSL [1], [10]-[12] and the other maximizing the merit factor
[13]-[16]. A sequence with the optimal PSL usually has a
merit factor which is much lower than the optimal merit
factor, and vice versa. Owing to the practical importance
and widespread applications of sequences with good auto-
correlation properties, in particular with low PSL values or
high merit factor values, a lot of effort has been devoted to
identifying these sequences via either analytical construction
methods or computational approaches [17]. In this paper, our
goal is to search for long binary sequences with low PSL
values via a computational approach.

Nowadays, a parallel computation can be applied to tackle
hard optimization problems. The power of several computers
that are not necessarily placed in the same location, but
can also be spread overseas, is joined together in solving
real-world problems. The grid computing was used to per-
form computations for finding (binary) sequences in reason-
able amount of time [13], [15], [18], [19].

In this paper, we used a stochastic algorithm for searching
binary sequences with low PSL values. The main contribu-
tions in this paper can be summarized as follows:

e A new stochastic algorithm for searching binary

sequences with low PSL values is proposed.

« A fitness function that can guide a search process toward

global optima.

o The new best-known PSL values are obtained by pro-

posed algorithm.

The rest of our paper is organized as follows. The back-
ground is given in Section II, where related work is also
presented. Our proposed algorithm is presented in Section III.
In Section IV experimental results are conducted and a brief
discussion is given. Finally, the paper ends with a conclusion
and future work in Section VI.

ME(S) = “

Il. BACKGROUND

One of the main challenges when solving the LABS problem
using an incomplete search is how to implement the calcula-
tion of AACF (Eq. 1) efficiently. Some researchers developed
an efficient implementation of the AACF calculation [1], [2],
[10], [14], [15], [21].
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Algorithm 1 Algorithm for One Bit Flip of a Binary
Sequence [20]
1: procedure Flip(f, S, Qg, L)
Smin < min(L —f — 1, f)
Smax < max(L —f, f)
if f < £5! then
for g € [0, Simax — Smin — 1] do
Qsl8min +q] —= 2S[FISIL — g — 1]
end for
else
for q € [07 8max - (Smin] do
Qs[8min + g1 —= 2S[f1S[q]
end for
- end if
Ciff < % then
for g € [0, L — §,qx] do
Qs[8max + g — 11 —= 2S[FIS[2f — q] + SlgD
end for
. else
for g € [0, L — 8,0 — 1] do
Qslmax + a1 — = 2SI 1SBmax — Sin + q1 +
S[L—q —1])
20:  end for
21: end if
22: S[f] = —=SIf]

23: end procedure

R A A A S o

Y
R R A A ol e =

The time complexity of the trivial AACF calculation is
O(L?), and the Fast Fourier Transformation (FFT) approach
has the time complexity O(L log(L)).

Recently, Dimitrov et al., in [20], applied an effi-
cient mechanism for single bit flipping calculation which
is presented in Algorithm 1. The mechanism uses two
one-dimensional arrays, S and Qg, to store a binary sequence
and its sidelobes, respectively. Algorithm 1 performs an
in-place memory update of 25, when a single bit on position
f is flipped.

The genetic algorithm is presented in [22]. It generates
some offspring by the mutation operation (one-point or
two-point mutation) and others by the one-point crossover
operator. The fitness function is used as:

o

fi(§) = PSL(S) + B - ME(S). )
where o and B are empirical weight coefficients, which
determine the importance of PSL and MF in the process of
optimization.

A memetic algorithm was used for the LABS problem
in [23]. Only a mutation operator was applied, and the
k-opt local search was implemented by flipping each bit of
the sequence. The fitness function is selected as:

ME(S)
PSL(S)

The results were presented for L = 71 to 100.

H(8) = (6
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Algorithm 2 Algorithm for Binary Sequences PSL Opti-
mization [20]

1: BestCost, Cost < F(Qg), 0

2: isGImpr, isLImpr < true, false

3: while true do

4:  if isGImpr then

5 r <R(n)

6 for i < 0; i <L; i++)do

7: Flip((r + %L, S, Q2s, L)

8: Cost < F(Qy)

9: if BestCost > Cost) then

10: BestCost, isLIimpr «<— Cost, true
11: break

12: else

13: Flip((r + %L, S, Qs, L)
14: end if

15: end for

16: if isLImpr then

17: isGImpr, isLImpr < true, false
18: continue

19: else
20: isGImpr < false
21: end if
22:  else
23: r < 14+R(4)
24: QI +r,S, Q)
25: isGImpr, isLImpr < true, false
26:  end if

27: end while

In [2], an evolutionary algorithm was applied to search
for long binary sequences with low PSL values. Since
the classic genetic algorithm is inefficient for the LABS
problem, the algorithm adopted some features: Crossover
operation was not applied, two-point mutation was used,
the bit-climber was applied as a local search, and partial
restart was implemented. The evaluation of the fitness func-
tion takes O(L?) operations for calculating Ci(S). For each
bit flip at s;, Cx(S) can be calculated from its previous
value in O(L).

Mow et al. [2] performed an experiment for finding which
fitness function was most suitable for searching long LABS
with low PSL. Four different fitness functions were used in
their evolutionary algorithm: PSL, MF,f> (Eq. 6), and f3,
where the last one is defined as follows:

(S = yefl,2,.. .} @)

SRS

In [2], y = 4 was used, and the experimental results
showed interestingly that /> was an even more effective fit-
ness function than PSL, even if PSL was the objective to
be minimized. The experimental results for L = 106 up
to 300 are reported, and for some chosen lengths between
L = 303 and 4096.
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In [10], an evolutionary algorithm is proposed to find
binary codes (sequences) with peak sidelobe levels lower
than the best known PSL values for selected lengths between
106 and 3000. Three enhancements were introduced that
impacted the specific case of optimizing PSL significantly.
One enhancement added multiple, weighted components of
the score function, which combined PSL with two ‘““softer”
measures of sidelobe performance — average sidelobe ampli-
tude and average sidelobe power. These components of the
score were weighted so that PSL was the most important,
but integrated sidelobe levels can continue with improvement
for a given step in PSL. The second and third improve-
ments were a fast-autocorrelation calculation and a local
search which flipped every possible combination of up to
3 bits in the best sequence so far. The algorithm was run
on a supercomputer asset, allowing multiple threads to run
concurrently.

Lin et al. [1] recently published the IbCAN and 1bPeCAN
algorithms, where 1bCAN is used for aperiodic binary
sequences design, while 1bPeCAN is used for periodic binary
sequences design. The proposed algorithms are FFT based
and, hence, can be used to design long sequences with
lengths (up to L ~ 10° or even longer) on an ordinary
laptop.

Yet another evolutionary algorithm, called SHC, is pre-
sented in [11]. The results are presented for sequences with
lengths for L = 106 up to 300, and several best-known PSL
values are reported. In very recently published paper [24] the
author presents the PSL values for m-sequences for m equal
to 18, 19, and 20.

lIl. OUR PROPOSED ALGORITHM

In this Section we present a new algorithm which
is the improved version of the algorithm proposed
by Dimitrov et al. [20].

An algorithm for solving long LABS problems to find
low PSL values needs to be equipped with some important
features:

o It requires an implementation of the efficient AACF

calculation.

« It also needs a fitness function that can guide a search
process toward global optima, which is not an easy task,
since the search landscape of an LABS problem is very
rugged, i.e., with many local optima.

o In the case of an evolutionary algorithm, a diversity
mechanism is welcome, and/or a restart mechanism
that can prevent the stagnation of an algorithm in local
optima.

The fitness function in Eq. (2) considers the value of the
maximum peak sidelobe. Many Ci(S) may have the same
maximum value in the LABS problem. On the other hand,
fitness function f3 (Eq. 7) considers all sidelobes Ci(S),
k=1,2,...,L—1,butgives priority to the largest sidelobes.
In the case when y = 2, f3(S) is equivalent to the merit
factor MF. In the case when y > 3, f3(5) has a similar effect
as 1/PSL(S).
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There are two observations in the literature when searching
for low PSL sequences:

« In general, a different tradeoff between the PSL and the
merit factor can be achieved by choosing a different
value of y [2].

o Several authors selected y = 4 [2], [11], [20] associated
with the fitness function f3(S).

Our motivation in this paper is to combine both obser-
vations into a single feature in our algorithm, i.e., to use
fitness function f3(S) with different values of y during the
optimization process. Questions may arise when to perform
changes of y and which values can usefully be applied for y?

Our algorithm is based on the algorithm proposed in [20],
which is shown in Algorithm 2. All the changes made on the
algorithm proposed in [20] are presented in blue.

Both algorithms use the efficient one bit flip calculation
that is presented in Algorithm 1.

In our algorithm we introduce a new fitness function with
6 choices as follows:

L—-1
D ICs)P, for a = 0,
k=1
L—1
D UGS +1CS)P).  fora=1,
k=1
L-1
d1c®)*, fora = 2,
IAOER it ®)
S+ ICSP),  fora=3,
k=1
L—1
D ICS)P. for a = 4,
k=1
L—1
S 1C®P + G, fora=S5.
k=1

A choice in the proposed fitness function F,(S) is selected
according to parameter a € {0, 1, ..., 5}.

A fitness function F(€2g) is incorporated in the original
Algorithm 2 in Steps 1 and 8, while, in our algorithm, we use
F4(S) (Eq. 8). At the beginning of the optimization process of
our algorithms, in Step 1 of Algorithm 2, we initialize param-
eter a to 3, which means that we start our algorithm using the
fitness function Fy(S) = L= (ICk(S)I* + |CL(S)).

Actually, instead of calling the Flip function (Algorithm 1)
in Step 1 more times in order to initialize g, for longer
sequences we advise to use the trivial calculation of the
AACEF, and then initialize 25 which is faster than calling the
Flip function more times.

The next change in Algorithm 2 is made in Step 8, which
is needed since the fitness function is applied in this step too.
Function Q(x, S, Q5) in Step 24 makes x flips at random bit
positions in S. This function is applied to escape from the
local minimum, when an algorithm is stuck in it.

The last change is also performed in Step 23, where we
use r < 2 + R4) instead of r <« 1 + R(4), where
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R(n) is a function that generates a pseudo-random integer
number € [0, n). Note that in the paper [20], the authors used
r < R(4), which is a small inconsistency with the source
code, where r <— 1 + R(4) is used.

Changes between our algorithm and the algorithm pro-
posed in [20] are in four Steps. In the next Section, we will
present the obtained results in our experimental work, to see
how these changes can influence the performance of our
algorithm.

The complexity of Algorithm 2 depends mainly on the
complexity of Algorithm 1 (bit flip operation with fitness
function evaluation). In [20] it has been shown that the time
complexity of Algorithm 2 is O(L), where L is the length
of a binary sequence. The main loop (it starts in Step 3)
of Algorithm 2 also requires Z repetitions. The changes in
our algorithm, that have been incorporated into Algorithm 2,
do not increase the complexity, and, therefore, we can
infer that our algorithm also has time complexity of O(L),
and in the case when Z > L, our algorithm has time
complexity (L - Z).

IV. RESULTS

In this Section we present our experimental results. We used
our improved version of the algorithm and the obtained
results were compared with the best-known results of the
state-of-the-art algorithms. The parameter a takes value from
0 up to 5 in this study it was set based on some additionally
runs of our algorithm. We did not perform a fine tuning
upper limit of this parameter. A description of the obtained
experimental results is divided into the following parts, based
on the sequence lengths:

« all binary sequences with 106 < L < 300,

« selected binary sequences with length from 324 to 1936,

« selected binary sequences with length from 2000 to
4096,

« m-sequences with length up to 2!7, and

« sequence of L = 10°.

A. BINARY SEQUENCES WITH LENGTH FROM 106 TO 300
There are some papers recently published that have reported
results of the PSL wvalues for 106 < L < 300:
(1) Mow et al. [2], (2) Dimitrov et al. [11] with the SHC algo-
rithm, and (3) Coxson et al. [10]. In work [11], the authors
have made a comparison of the best-known results against the
results in [2] and also several other papers, and they reported
the currently best-known PSL values for all lengths from
106 to 300. In [10], the authors gave some results for PSL
with lengths in that interval. If we combine all reported results
in all three mentioned works, we can see that the currently
best-known PSL results for 106 < L < 300 are shown
in [11].

We run our algorithm for searching PSL sequences with
lengths from 106 to 300, and our algorithm was able to
find some new best PSL values. These new best-known
PSL values are shown in Table 1, labeled as ‘New’, and
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TABLE 1. New best-known PSL values (New), compared to the current
best-known PSL values (Old).

L Old  New L Old New
115 7 6 203 10 9
116 7 6 204 10 9
117 7 6 205 10 9
118 7 6 206 10 9
119 7 6 207 10 9
120 7 6 208 10 9
121 7 6 209 10 9
125 7 6 210 10 9
134 8 7 212 10 9
135 8 7 213 10 9
136 8 7 229 11 10
137 8 7 230 11 10
138 8 7 231 11 10
139 8 7 232 11 10
140 8 7 233 11 10
141 8 7 234 11 10
142 8 7 235 11 10
143 8 7 236 11 10
144 8 7 237 11 10
145 8 7 238 11 10
146 8 7 239 11 10
147 8 7 240 11 10
148 8 7 241 11 10
149 8 7 242 11 10
150 8 7 243 11 10
155 8 7 244 11 10
169 9 8 245 11 10
170 9 8 246 11 10
171 9 8 247 11 10
172 9 8 248 11 10
173 9 8 273 12 11
174 9 8 274 12 11
175 9 8 275 12 11
176 9 8 276 12 11
177 9 8 271 12 11
178 9 8 278 12 11
180 9 8 279 12 11
182 9 8 280 12 11
184 9 8 281 12 11
196 10 9 282 12 11
197 10 9 283 12 11
198 10 9 284 12 11
199 10 9 285 12 11
200 10 9 286 12 11
201 10 9 296 12 11
202 10 9

they are compared to the current best-known PSL values
(labeled as ‘Ol1d’).

In Appendix in Tables 5 and 6 we present the merit factor
(MF), normalized PSL in dB, and the binary sequence. For
each length L, a sequence is presented using a hexadecimal
notation. We decode each hexadecimal digit in binary form
(0 — 0000, 1 — 0001, 2 — 0010, ..., F+— 1111), and,
if necessary, remove the initial 0 symbols to obtain a binary
string of the appropriate length. Then we convert each 0 to
+1, and each 1 to —1 to obtain the binary sequence.

The results in Table 1 show that we have found 91 new
sequences with the best-known PSL values within the interval
from 106 to 300.

B. BINARY SEQUENCES WITH LENGTH

FROM 324 TO 1936

We present the results of our algorithm for binary sequences
with lengths L = x2 forx € {18, 19, ..., 44}, compared

VOLUME 9, 2021
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FIGURE 1. Comparison with other state-of-the-art algorithms known in

literature. “Collection A” and Dimitrov et al. are results taken from [20].
Lower values are better.

TABLE 2. New best-known PSL values found for some L e {182, 192,
..., 442}, compared to the current best-known PSL values (0ld).

L Old New L Old New
324 13 12 1225 26 25
361 14 13 1296 27 26
484 16 15 1368 28 27
529 17 16 1443 29 28
676 19 18 1520 30 28
729 20 19 1599 30 29
900 22 21 1680 32 30
1024 24 23 1763 33 31
1089 25 24 1848 33 32
1156 25 24 1935 34 32

to the algorithm proposed by Dimitrov et al. [20], and the
collection (of the results) of the state-of-the-art algorithms,
also presented in [20]. This collection is called “Collec-
tion A”. The obtained results are shown in Figure 1 and
in Table 2.

Figure 1 depicts PSL values obtained by the collection
of the state-of-the-art algorithms, the algorithm in [20], and
our algorithm. One can see that our algorithm found binary
sequences with lengths L = x2 for x € {18,19,...,44}
with the PSL values that are equal (in 7 cases) or lower
(in 20 cases), and never worse in comparison to algorithm
in [20]. On the other hand, both algorithms obtained better
results than the state-of-the-art algorithms in ““Collection A”.
The new best-known PSL values and their sequences, MF,
and NPSL are presented in Appendix in Tables 7 and 8.

C. BINARY SEQUENCES WITH LENGTH
FROM 2000 TO 4096
In literature [10] and [2] there are results of some larger
sequences. We performed an experiment for searching a low
PSL value on these lengths of binary sequences, and the
obtained results are collected in Table 3, where PSL, NPSL,
and MF are presented for our algorithm, compared with the
current best-known PSL values.

For all lengths in Table 3 our algorithm obtained the best
results, compared to the other algorithms, and it was able to
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FIGURE 2. Comparison of the growth rate PSL with /L: We present
PSL//(2M — 1) vs m, and L = 2™ — 1. The results for Dimitrov et al. are
taken from [20], and M(Y) are from [25].

TABLE 3. New best-known PSL values, compared to the current
best-known PSL values.

L New Best PSL (NPSL) MF
2000 33 (-36.65 dB) 4.3026

Current Best PSL (NPSL)
38 (-34.42dB) [10]

2048 34 (-35.60 dB) 4.2731 38 (-34.63 dB) [10]
2197 35 (-35.96 dB) 4.3928 45 (-33.77dB) [2]
2250 35 (-36.16 dB) 4.4790 41 (-34.78 dB) [10]
2500 37 (-36.59 dB) 4.5598 44 (-35.09 dB) [10]
3000 41 (-37.29 dB) 4.4947 51 (-35.39.dB) [10]

4096 48 (-38.62dB) 4.6129 61 (-36.54dB) [2]

improve the current best-known PSL values too. One can see
that new best-known PSL values have been improved from 4
(for L = 2048) up to 13 in the case of L = 4096, where the
current best-known PSL value was improved from 61 to 48.
The new obtained sequences are shown in Table 9.

D. M-SEQUENCES

In [20] it is outlined that the reason for the lack of publishing
results for binary sequences of length greater than 2!2 is
due to the quadratic computing complexity of some state-of-
the-art algorithms.

Nevertheless, we performed the next experiment to com-
pare the results of our algorithm with m-sequences. Notice,
m-sequences exist only for lengths L = 2" — 1,m > 1,
n € N. The obtained results are presented in Figure 2,
compared with the results in the literature. Figure 2 shows
a comparison of the growth rate of PSL with /L for m-
sequences. The optimal PSL values are known for m < 6.
The values M(Y) are taken from the work of Dmitriev and
Jedwab [25] where the authors studied the growth rate of
PSL values. We added values taken from Dimitrov et al. [20],
and the results of our algorithm, so we have three lines
on the right side of the figure, where the PSL values of
longer sequences are depicted. If we look at the values for
m-sequences between 13 and 17, we can see that several
values are below 1 (only some values m = 16 and m = 17
are close to 1), and our algorithm had found all PSL values
that are below 0.9. We are aware that we can not make
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TABLE 4. PSL values compared to the known results for m-sequences.

m | L=2"—1 | M(Y)[25] | An [20] | this work (NPSL)
13 8191 85 77 70 (-41.36 dB)
14 16383 125 115 102 (-44.11 dB)
15 32767 175 171 149 (-46.85 dB)
16 65535 258 254 218 (-49.56 dB)
17 131071 363 360 323 (-52.16 dB)

Starting sequence
—— This work

-10

NAAF (dB)
50 -40 -30 -20

-60

-70

~1e+06 ~56+05 0e+00 56+05 16406
Shift (k)

FIGURE 3. The NAAF (in dB) of the sequence with length L = 106
obtained by our algorithm, PSL = 1125, NPSL = —58.98 dB.

any assumption about the growing rate of PSL for longer
sequences (m > 17).
The PSL values for 13 < m < 17 are collected in Table 4.

E. VERY LONG BINARY SEQUENCE

In the last part of the experimental works we made a compari-
son of our algorithm with the state-of-the-art algorithm called
1bCAN [1], which is FTT based, and, hence, can be used to
design long binary sequences. The comparison is performed
on a sequence with length L = 10°. The 1bCAN obtained an
NPSL value of —56.1 dB and it is about 9.5 dB lower than
that of the initial sequence.

Figure 3 depicts the NAAF indB, i.e., 20 log lolc’iﬂ of the
sequence obtained by our algorithm, where the NPSL of this
sequence is reduced to —58.98 dB (which is 2.88 dB better
than 1bCAN) and it is more than 12 dB lower than that of the
initial sequence.

To summarize the obtained results in each part in Sec-
tions IV-A to IV-D, one can see that we have found many
binary sequences with new best-known PSL values, while for
the sequence with L = 10° we got the better NPSL value
compared to the 1bCAN algorithm.

V. LIMITATIONS OF THE STUDY
In this study we used heuristic algorithm for finding binary
sequences with low PSL values. The obtained best-known
PSL values are not necessarily the optimal, and for
longer sequences the obtained PSL values are pretty surely
not optimal.

Our main objective used in the proposed algorithm was
to minimize the PSL value. Based on our best knowledge
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TABLE 5. New best-known binary sequences and their PSL values (New), compared to the current best-known PSL values (Old).

L Old | New Hexadecimal form MF NPSL (dB)
115 7 6 718E250B1AF44181FSASEEC96DA9B | 5.3629 -25.6509
116 7 6 4E77C15A768EF42AE36F850482899 | 4.5034 -25.7261
117 7 6 1AEC5ADSF3C65E9ECDS8319498FF457 | 4.3931 -25.8007
118 7 6 345A27A75995D48F193A621A400B3F | 5.0050 -25.8746
119 7 6 30C8B8DB39902EFDD2FE2BE18B5AS5C | 5.0756 -25.9479
120 7 6 E6A898F37D681069410BCD94EC1F41 | 5.0139 -26.0206
121 7 6 13A2F87E39F577625B214D08DFEB149 | 5.2894 -26.0927
125 7 6 04B1CA736D584AAA342BFFOEDS8FCFECY | 5.5883 -26.3752
134 8 7 362C276FC7968C12B62A9DD167BC57C37D | 4.6398 -25.6401
135 8 7 19184COE9774FD6DAS33EEA61CE94FDOAF | 4.7486 -25.7047
136 8 7 FC4107F53343304B242D0B2F4CF5538A86 | 4.8368 -25.7688
137 8 7 142D3D0BCF6D38A44F93FF174CEEDC65547 | 4.7301 -25.8325
138 8 7 1CE9CC6D4B 14EC7F5DDBAB832C96FBO40EB | 4.5845 -25.8956
139 8 7 76BB52A425FA6E413BASA3ECE79F7CFE4F0 | 3.8565 -25.9583
140 8 7 4BD6BICTF977B394E4F7C3277418175FBAA | 4.0867 -26.0206
141 8 7 04410863ABADCB894DAECA959BFOE17FO6FC | 5.3966 -26.0824
142 8 7 37234BODD492EOF9D62554E7E410CF96EFFE | 4.8216 -26.1438
143 8 7 20DC956CDC8COFEBSB183EAE71CA09300165 | 4.1716 -26.2048
144 8 7 A296499A288EF9403E15E918903138AD6F2F | 5.1429 -26.2653
145 8 7 125DB784263CAF323A54E5C67E81506021361 | 4.4469 -26.3254
146 8 7 1A331AB138FA2A0857DE19F7E2DB0ODA46D92B | 4.5295 -26.3851
147 8 7 3399E74668514B98BESOD892AFCAO0IE16092 | 4.4118 -26.4444
148 8 7 1D37553C0A652AFC590CCE804053C62D6D19F | 4.9557 -26.5033
149 8 7 O0DAE2AA951EF1A6583FB408581203732F61389 | 4.8644 -26.5618
150 8 7 285E9B09F1926EF9D6BFBCCS804E3AE82D613D5 | 4.7690 -26.6199
155 8 7 12D4F30FE22ASAEC49F750C186DE4SC7EBF774B | 4.6759 -26.9047
169 9 8 1243329B5DC4BFBD48798D317478500F157B046822E | 4.2552 -26.4959
170 9 8 1E6F95CI9FC4AD69 1DFDBAOOEC24D1D3638A39F0AA98 | 3.8217 -26.5472
171 9 8 4F780C417D388D543859D38C4A9626E7E97TDF116CB2 | 4.8460 -26.5981
172 9 8 BOAOFA09DBA397644BAEFC09C67DSESEE7B79DAC948 | 4.3893 -26.6488
173 9 8 181044A8285F9B9A1F0C6177697D04335AE9D21976D1 | 4.4143 -26.6991
174 9 8 055B562DE7AAD61933D9B8180C37183EEODA 11929615 | 4.1829 -26.7492
175 9 8 771810888E2F5BC653CDBAS597BAS791D33F241F5879 | 4.7628 -26.799
176 9 8 F07C62623A097331EF2C67FFC9124ACD35FA1552C5A2 | 4.4251 -26.8485
177 9 8 16257F74B5D05SDAFCF99E73588E964580B83EE1468DD | 4.5378 -26.8977
178 9 8 0F74A2147F85E4145256952FF22DBE311C0OC1A2265C64 | 4.7023 -26.9466
180 9 8 9FCBFED27A1D61A66262E753AE189366AF0CC7B50147F | 4.5737 -27.0437
182 9 8 20CF6297023CEB5471BB6C5659D65E9F81A2D64B7F7727 | 4.7279 -27.1396
184 9 8 3693A99269D546EDOB96BOOEACB4F70AO0COFFEE79CCFCA | 4.6454 -27.2346
196 10 9 DFFASBE78D1557DE953E0ED323D22684C86DEE634F1 1EE722 | 4.6599 -26.7603
197 10 9 006C4B21337EEB69EE7583B287BB77833978EAF6854F845761 | 4.3294 -26.8045
198 10 9 01ADEES86D7EECBFED391945530EE17BC11C1A976CF19B11EES | 4.0914 -26.8485
199 10 9 557969CAS05CF6779B51D8307959B9A71BA7TFAOFA0449DD102 | 4.2793 -26.8922
200 10 9 B7BA746EC57FF88F60C2F39C6CC696872635937ED3C1574520 | 4.4763 -26.9357
201 10 9 1DEBDBS52CC908256E1C6CA4865EA8D9759147DOFCOC07311BAO | 4.6934 -26.9791
202 10 9 0B27982C9E75450BF3A438196A843A084FACCD89A803DOCED79 | 4.4928 -27.0222
203 10 9 5B3047F11C07415860CAOB9E49ECB 1D53AE4860B5FOD9ESD2A4 | 4.5575 -27.0651
204 10 9 05DA4A6B92E9AFESCSAFC7739528500F7DC789DC59B103ECDY95 | 4.3081 -27.1078
205 10 9 129126BB35FD904ES01AAB3B087CEFA98E1EOF41A830615A3160 | 4.5188 -27.1502
206 10 9 20279047EA010198957BD4E4CBCDA34178DD9254D7943A1AC396 | 4.8102 -27.1925
207 10 9 22FF08858C50880CACAA71BOBF34E4816C7932E8541BOE6ATD81 | 4.2926 -27.2346
208 10 9 754B660D31EOCDDO06D2ES55370C6E0839169243FA9FBFA8413DD6 | 4.4805 -27.2764
209 10 9 1454D1AD0858BAB378 A30CE8312030BEDS039ESEC7B4DEO42BAOF | 4.6272 -27.3181
210 10 9 350D53371277256D1E389B6E05S85F5A607A8B75828CF47FF7BBC4 | 4.7186 -27.3595
212 10 9 EAA19E5581A32142F278 A686689C202269EFEC2563B335C97F851 | 4.8038 -27.4419
213 10 9 ID16A857TE099ED161CE1A1899195D5964E7FDF10862D83BSEF4B21 | 4.8368 -27.4827
229 11 10 073722F28CEAC769E47775BE4F2FBF52987E8893200D4FDA2EF9414A0F | 4.1953 -27.1967
230 11 10 14252075A3A22505676A921A3E236CAOFD8C1E7BDD2E936221859862DC | 4.1542 -27.2346
231 11 10 7B357A90B17A80DDD566FBF3D81A4FA97C187186598C571993427034F6 | 4.2196 -27.2722
232 11 10 B2EF23105818A7FF316ABEABC8E9C2D700DA64B470963640CACS1AECSC | 4.4943 -27.3098
233 11 10 070D802703C330459C3E60C445DB1EFB15D52954D2E9BOSADGEAS2DFC42 | 4.1658 -27.3471
234 11 10 2962DESD9ED0484D9C8A207E2C06080A 1BES87B69CAA6CD31473819C656B | 4.3896 -27.3843
235 11 10 4C6EFED25DB58E900CD728FD8FCDD2B70E9EE7E1D34620DF2AAAODS82F3 | 5.0415 -27.4214
236 11 10 72477C8E7213B49D59953C7152237CFD20AAC3D2785F2E4A3F480124422 | 4.5047 -27.4582
237 11 10 192588150DE6AO0C255638E4AFCBCCS553D45485B4B972B30F6E103F80CE932 | 4.3167 -27.495
238 11 10 100650322CDCA39233DF71E8721 1DBCI89EDSA05B229A2D37A38F2C2BC04 | 4.4122 -27.5315

and experiences with optimizing the LABS problem we can
conclude that the sequence with good PSL value has not
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very high merit factor, and vice versa. Therefore, the reported
merit factors for sequences in this study are not the highest
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TABLE 6. New best-known binary sequences and their PSL values (New), compared to the current best-known PSL values (Old).

L Old | New Hexadecimal form MF NPSL (dB)
239 11 10 78E3DCFF91DABD71B48A43C9D1D7DABA1248DB345525EC565427F30DBF88 | 4.6192 -27.568
240 11 10 1317FDB0O7FD98131986E50640A343D68BC865C78938072C35AAA1EA69451 | 4.6124 -27.6042
241 11 10 1EC9181AFEC85566F28FA31935E54F15CE21778C9F8483396BDBFCBF378B3 | 4.1653 -27.6403
242 11 10 06C53375E39D2572BCB11D0OFBB686944BEB1FBADD711B43E6228F24017F85 | 4.3776 -27.6763
243 11 10 77A528BF79833A7A9749E9E99CF037CAA4DA40ES038A8B89DFF97540C1337 | 4.3057 -27.7121
244 11 10 430C78C752A279C5C1B911F87D5F5A016031E882894ED013F6CDA24A44259 | 4.3305 -27.7478
245 11 10 157714505FCED99BE76ES5 169FCF6ED68470788 AC7C54AEFD286D306B907B08 | 4.8737 -27.7833
246 11 10 3A9611DOBD460AA2A54878046F96124BB30B9E4CCF919FE71C08513C91FDBS5 | 4.4399 -27.8187
247 11 10 293D7BAED7C945A4409715972021E7C998 A7CE92617COBEA3BA466729760E2 | 4.0058 -27.8539
248 11 10 1843ACEA2A3B93E4E40D6C018B970138DOBD72EC9617763EB6D73A11622DBS5 | 4.2926 -27.889
273 12 11 124F184101FD613D8004513C2D0OC1F793B62EAEBD45EASE84689D0OECCDS6F66A6192E | 4.3412 -27.8954
274 12 11 20BF07E48B47408D6E1FDC80035DC8A8C731435C48C29D7879494744464D36A5F2E9B | 4.5069 -27.9272
275 12 11 3A32A2EFB411731A0DFCD52C6031CI1E4EF9CDE12CBC552805198F21409F24C690EDSD | 4.0724 -27.9588
276 12 11 8081B7B44DAC7DD7D6228596597C4743A02D12CA970A083C803E552B11AF33833BC66 | 4.1176 -27.9903
277 12 11 OFFB6E6FEDBSF002DF15F635146D5ESEE332271470F5E32296E546A3D9A4D97BOCESC3 | 4.0787 -28.0217
278 12 11 3755F1099BACFE40B0O60E829B81A7FFA99CDA9952BBDAD748E2B7CD8E78B6870973EC3 | 4.1148 -28.053
279 12 11 7803E40F1692BD75E0AD3DD24399620169660C6995FDEE711915DDD9ESFEACDOE970BE | 4.3020 -28.0842
280 12 11 6634B6COBDC9A4E26E99466AD980A8E84253CAA36A63062950751 DFEDF881E1IBEBA4C3 | 3.6981 -28.1153
281 12 11 1A969013E34B960EFDED879FDBABC814052ADDBIC86AA2E2B3C833337D0CC35922CFS1E | 4.0668 -28.1463
282 12 11 30304F9668D29DA239F 188 A90F58FC464551886048C47A993C145B5DB2FED95B4101ATE | 4.3084 -28.1771
283 12 11 26F5EE18B1055CC5D4ADS5SE84A2B05D080C94BC9820F15607FC66E3794C790A6D9613049 | 4.6385 -28.2079
284 12 11 1CD6BC96C339C1C3EBEOC116D54C0OA81E88B3024898F513A75ADS55DB481D4001E64E776 | 4.2729 -28.2385
285 12 11 1003FC61E3FDF3BEC34A6F59FB04CE6B7CE86B92964CB47C16472AA3A3176 AF2BE2EEAC4 | 4.3325 -28.269
286 12 11 2E2906C2D69E5691 EEEA0495F088D8A 17698 CF6E3ACF8C182078F43C8154066474235893 | 4.2803 -28.2995
296 12 11 2CF7F87379978 A1C6B05F279501F4908 A908AA9DOSEAABCI9CB58D323300EC63DBB244896BF | 4.3564 -28.598

TABLE 7. New best-known binary sequences and their PSL values found for some L {182,192, ..., 442), compared to the current best-known PSL
values (Old).
L Old | New Hexadecimal form MF NPSL

324 13 12 E31F6A18336E70970153017449FD9294310FA409A7341556E0320C52F39B6CBS7E3EOEC42CB6 44915 | -28.6273

71191

361 14 13 1IED66BEDEB5D6AD81A3FDFAC259A73704CB80279728CFE701FD57655845855AE0B9669CC 4.0695 | -28.8713

4C4EE5E3EA175032486

484 16 15 6E86FDF133F3098D081EB35D2934A85428693D8D7B8SFB24BD3A0FSBB8SB2EA9CCEBO7DA 4.7702 | -30.1751
CAR80395D036B13E025DF779080A232E3031064C315449CE9C2
529 17 16 1E24FEBB9A846C5130801910A07075366612C86DBE95C4628354C5D47FD87C8C71AA44549D 4.3665 | -30.3867
BEF15E4CCOCA7EF106661B2F4B9C30B5ACB40DAB5D8769E5434F941 AF40
676 19 18 61C1B1CED155318A70770828C248 ADOBF4B46C4174E855F5ACOFDAG6F58338771A3F62127FF 4.7163 | -31.4935
ATDA02C01361533F189C6FB2E65F69BE6F2C2173C82282BF399583 A6E4D87EB3AEF43954E5
95AFA1624D7C3107977CA

729 20 19 0AAAB3C1C7CDB23BB82566F35FAB260F882CE90246EC7648BSFE375F32142B16522022536 4.8760 | -31.6795
D2F1CC3B01634EDBB04CCD483E61D68039E0BD3496849C48 AC37B9291BF4769487539FC63
5S8BE47ESDCF3871142AA7B862AE7881091C0OD

900 22 21 DB06DD572C928569B9CC4D263C64D5SF6B53C3CCB4697553762549AFCDS575A774D418F03F 4.6589 | -32.6405
F3A392B6C8CCCDCDOF2188AE7305ABF158FD528F55F85464B1EEBAC62C6A5B7004644E82
275E4CFF1EBE49EFFC9C97C059A70FF0930E74F5520E286B 159FE281841900790CF2198FB52
C03822

1024 24 23 340E83BEB9B177B3F79DDC9BB7206B450EAAA1B931E91FE2F51F92DF54A0B9CA06709DA 44501 | -32.9714
ABO0033D5F2471D348255B8C766727F7685CC6438B1A85DASACA284ED1359209B060829A75
E5601558DEB10AD4CBF6B1A61981EF2F5F226C067170E6159A79B934C079705434AE1EDBC
4799C4124D6D2777E704073D270D9250107B583

1089 25 24 1B45BD113782480BCC35D87F7FEDS55781E8B064DA02834327D6C323BED046A9A417093DC 4.2654 | -33.1363
279CB4588B80DF9783F81FB7E7C746DB94335D943307CCC342510238F2D122B1BA04866D26
669E267D458795C8013310ED4ECO0155AF0CE40B6F447D7996A9A470C7D5678E688EF63C544
2695F9C75A94E4AE262BBF5S5EF8A2CC126F4B5BES572A427B4AAF29

1156 25 24 FD25BEC197F61F680B8AS577DAB7DEOF2E91B26C9EAA1816C7D2A151286B6F2356776CAA6 4.6436 | -33.6549
8047656250D20EF9ACBDF408511841FB938656284591D9ED6710D0SFOEB IEA6CAFBBS5C18E0
63EE6B639D28EE7ED1E952CB079063524E04D342B11DBOEOSF1C601CD7730B7267COE960D0
905F462122F33709E3F548F97575DD0253DC750A47BE2222340FA1120D9519360D7E0

1225 26 25 15523967287E77F06B7TA9SEBED988000C84F3B5A703C132F6BC8150FAOCCE997006D1CD3BC 4.4757 | -33.8039
BADAFFADO512F2EFOADE43F01938E6EA2BBFFA 124942E51755B15D817D61EC66DAB0B590
4376D8DDSSEF1D266BOACD14D78C64DBFCDBD7B 14E0D9A45C27F3C5A47139EC33B23BB
FD543DF3C7C5D1CAB979660C7E53C0404F9A189BE177BD15972CA957B299BB21E91508FA
203970A381E3C5A855E

1296 27 26 11181A71960FE18597FA39D6C8A2FC355DCF8B79985883B258F6C76629BDA823DCFSE40EC 44701 | -33.9526
SE627757FA182FB54D424DAD418EA99E3AC01E542964142AEED6C47F8 A56B65ADC3892803
C21699AA5A19071EA026C1B5BC7A22F617874274CC39B04DF755C97765FEED7DD26FC0C2
19EDD92F4B5SDAE5SCOC647F58F941662136729759EC691C76FD470D0D9A2ES7AF23BFOESDF
47385DB8162A4DEF938A4028B7DFF1595
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TABLE 8. New best-known binary sequences and their PSL values (New) found for some L ¢ {182,192, ..., 442}, compared to the current best-known

PSL values (Old).

L

Old

New

Hexadecimal form

MF

NPSL

1369

28

27

1CDEB6ABD22C3A280856FD73771B9F10C315333CSFEEIDDEASSBB13130DC82BFAE40FBA
8CE3B5D82B83E18F2D6557DEEFCO9FE1B2F72AABSSCSEESF31FACEOGFDS851 A449AAC25A5
1ADB2B809495C9A8B9DE0B297199DADAYEES668F03308 ABB39C019F74BFO4BE2EAB36E0S
26A3D482C91FA48185A5A93B4CF4391E3D3E7A3FEF6FD848B56F656A1C2C7127A645D593B
75279949869857E698911276FB67C3C4BC203F7CF006411E2309ACIA

4.5383

-34.1008

1444

29

28

67766AC04F862ACA0051D9CO6AOF0CD426ES80EFC145EFSECA038807C31E81CBCB5397F810
16DF06325D6C2259C24F9192CB9B7E22A0BFC422F7C0B5074935249398DB4BFBFCBEADE4
46592BD8AC63F8C91397671788FD72518BCDBEA689986656E640E8D959BC669FE24894850F
2BE37B3B155C54D5C6EB6668DAOSE44DBAE3EC7A3CB35EBD14AAA2CD2522163B17FBEC
778D5B29475FADEDDOC7B4EFD4D2841A47D448940F44E0FOF56CF75073AB5B39C709665D7

4.6282

-34.2482

1521

30

28

1CB5AS58E1140FD01C6D32744132A64A3B7B9946C5BA569BD69BCD3DB62F4175B8D7C65B
B5C454809A478B739F2C547CCAFATBF33E1171A175F2D784FFD791E580D5763B6462EE65A
FF688697F72B65870900DA9A22B 1FDSE1770EBE35E3F78A1B323FCC3C9BA852E6C33DBB2
02A68FD5C76A6F8E446F8409414AF50A0707C142275C5BDA0149F65C06E8267F87401 ADD2

CAACCECEBB93DDF7F86E50511A792F4B6FC6F24CE23B58C658F367715D206658A533C837
06BFBD470A82A32141F2

4.5068

-34.6994

1600

29

009FF36C1AA6ACT72725977D59745D50ASFEFD51451BFAAE05SCOB43C885552A1BA70E16D5

B53AAB7FE09ACA104AD7C63721352483C495F4CA469589FABD7ADCAF0547B7AD4861C06
E7436D2D371E474617C4C1BD18E93D80A15C48A8775F6954C85A6B634E915D766696172619

0BBSCB29AFBFDF71D2630E491381879E6583D8BD1495B8B8C8C58A111830238CFA21C9889
3A9DB4D6305AD3EOB67A08D37A2673410AD9C3789B7084713A8A6137EO0E7DSFIC7COF759

3CEE609BC3FDCFAF31DE34CDF9A04FA19F4DF6

4.6603

-34.8344

1681

32

30

172343515707D2169214184D37DAB4F02042AE27178F43956012C12229EF4BE09292C6870D28
E806155E7DD582BCBCBF97ESF5BDB854EFA44ACTB1B8331E1584D31DEFAEASFESDAAF7
87D2499354E36 ADBEBC2BAA876428847B11B4CB39C8DC8834CBBFCBE46CFAE9D92D7EE
C2880C6F6D23B656AFB26CE45CE0107E1EB338DB42CCC89B6721FA21D5117AE835F7DD08
FFD4E9B7724480FEE2840CD9CF3EA8995A5FB4F09A 11CB1F64087C6548CF91AC66831F289
CEC66B3F383BE9F3FC94F20E38A46C1B46E9C6DD3988F77031973COEF340

4.5354

-34.9689

1764

33

0D484ACB31BCDECID7F2DD31E01F049FF17309FSE6ADCFD8380034D996F21B7F86AF0188
DC8C3DD1FCB69CFF3E4A6719AEFEDCC8AD13C3B6F48E3DD4F641798CE4A7AC80985896
7299D1628E13760D2F27459EDE3E7736308D519FE9DB969342FB6E85417B25E1D8F4E816A7
604B78B3B1D14185EAC223A923DCF182CD74912C27EA47CF8266B46E20ABASD25D7AESE
BE37E560D13DDE7120525E64BOFB6A2DS5FEB35D65E9851A15ADD52465DCOCFIEC6FD74
FB7E4505D481AAADC1947182A528A73CB933811A63F17A89F75D5255165BC74515684002D
C7873C50EC

4.3913

-35.1027

1849

33

32

OFBE7F16FD4DE6DFOB3E74A2D9D28ABB103D54D7961208 A1F6A2BC6B60791 ASF664F797F

2C8D098A139B66F388A886BSA7BTEB8SAS57C56A4251AF18380E020654B9C8296B03CBBFSE

17091E342CC746D01198639E8F4AFESEB66ABED92F523B84DF192543E87AB7617A9C2FDSC15
698596C69D2DD346E006F56EB74816C735714D19368390EEC55D848F5192BE76BE065364BF9

9C898F5CEEOEA27B3C6439B62A7CD70AE3E447FOD7E64DCB66B98D3D2C51ASFCB24C8EE
D5918CA99A5788A88C94656C8FF6DE96DEDC4825E01167FDBCSD7FE968D04207FB79853EB
CE3F711A2E74B7972E7D2E24F

4.6599

-35.2357

1936

32

A05503A93F027C13E43FA3C7C76B8EOECFEE2EA31B835CAE18727A6054D76CAS8EB62DAS83
CFDB5C26C971D47DAE4681 A3CDAAESE09027F9D6ESD6B91C998F178FB553A1E2685ABB6
4A8CABC29B1B744656F641B30A5ES80D7D64B14FB17C2E96B9F8853FFB464BBCF62034C171
A9DE7B75D0632EFEC09EE631769E35B5FAA452E70126631D257B7F39B65D43C399DB0O8C8F
39FEECS5BFB287FDCOE7EA9AFDED4B3B26E6FCE234B 13DB00644694C0820DEDS5D67821247
60104EB1675B23D033EEAD7A94E7C0143726A6144A095B54CF25B3D2BD661B8D0O5SE4762AA
E525B32A8DA26BFC7DF8B2A383001AC379EDSE306322DD2365

4.6211

-35.6351

(see [13]). Nevertheless, in literature, some works applied
both objectives (minimize PSL and maximize merit factor)
simultaneously in the optimization process, like using the
weighted sum of both objective.

VI. CONCLUSION

In this paper, we propose a new stochastic algorithm for
searching long binary sequences with low PSL values. Our
algorithm uses a set of different fitness functions and the
active one is selected during the restart part. The experi-
mental work included searching for binary sequences with
low PSL values of selected lengths from 106 to 4096, and
up to 131071 for m-sequences. The obtained results were
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compared with state-of-the-art algorithms and our algorithm
found many long binary sequences with new best-known PSL
values. In the comparison, performed on the long sequence
with length L = 10°, our algorithm obtained a slightly better
NPSL result than the IbCAN algorithm. As a future work one
can see (1) using graphical processing unit implementation,
and (2) searching of long binary sequences when MF is
considered as the main objective.

APPENDIX.

SEQUENCES WITH THE BEST KNOWN
PSL VALUES

See Tables 5-9.
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TABLE 9.

Sequences for the PSL in Table 3.

L

Hexadecimal form

2000

3E377ES99EE4B5B8AB04D26BF7CD7CBASSB075AF6CC18A925DFDI7E077868C93652C68C8BBOEB 1A664F98AABO1B81D28CAF39

AAESC6EBC2E304F60A6F1A372COFBC3E398EC71F754654AF20530D7C30C86A15F2B443E6A544015A99AC1867593E6A0F687E048E
BDABS52C938A21BFD5273570E296713CF1C3CE24DE4A69E598623D8062FE9036EC2014C741A339A48DF11B36DD0D2E827D2F7FB7
E7DB02242BBD52A47636D011C30338BD3F8C2EBOB5A211BDED13996BFES51BCEB77F9B4171812D6E2600B2E3BCA7043C4FA6F42
8D67EEF064012001EE861636D2A1D51781E272F5712ED84B0OF0980EA42F8281D88C5564D5F2063BB49DA7F2F76

2048

D2048F5A5661E63D0CDB612305A2BASFDB3BAE9A0510EAB694FA2A612BA0OCCE3F6E8B2CEEDE3CF46825141DF175B212758A7A
33D493224F2231EE96A52E40E99CEF7E78967CB0D61283F23DB3A59721E8A7187D8ES53A896329FA0F9A9497E6292D5263301CEEOD
A15AF5B4A39BCDBFBFOC7A2DSE152FA710A3C12648BC91117F7353B41A8BOEC669EC3275EF3185B549FDF8CO5SDF97D0D46F42E
6292D81E10C4F850DBD78CEDEA3F36ECOE361EE567966EA163A15F5E8F88221D6B7C87A2477EE4897D8169AF357E2C4C9883F7B9
BCOBED578CDC777C019BBFAFIESF7DBF33E360A0B4845D5479BBABB8167A577500600C0852E7498B982349460943COEDD644

2197

0E844B52C3CD611460EDDA1F52CFACA33B51D4198352C2DB6ADS5SB3ABIEFECFDA189FF78875BA7616537B7636CC7253157A3D46
9AC59792F611ECF32E26E6D8526DB937FD4B5B8D3BFDFD36CFIB501103E5F1530683972B3A010F2E1121AAB549DA3C08F2332E1B
971FECB3813BE10178659388 E6F3E6A82EF2489986625FBDDOCIFSBDSEA3327573C698BDE6F2AF79251648124A A6A45E0FOFF409F
879DAED6ECIE04157191 AFABFAEF88218422FB695406D6AF9A47F23B4B7279DA7065EBC380D3F927553109AC3BB538418E8CBFB
E94B5ACB1177EAE516ED87BD84BASAG60A2EE4E4A6E2395A625CA1BFSDEBB41DE05672D11E8C03497FA2B40CE46176F95F719A6
D7258COE3D5F83711A6A8B879F0OCFEC2DD

2250

0C23529719DE19B030346E1EE991CCA9DDSE21E25FCA52C6AC4BES2B72D95COEABSDA2BCD6583C58 AF31B15E8B2DD5718D3D

DFFA21134395648A51CC937ATF2F54A61536C2EA9A37FE3570442F27C433B0BF3F2014D31B2A591F4EFA8717410AAD09B95776A8
A3042D16DB52541819D009BAACB658FD98FA07D387A7FDSE01 10AD67295F61E19953B62CC87711A52192A7BF84E84B7F537FFASA

0D79DC05916081C9D20B659B 160EE9F7175EF83BCF85D3FE76CD3B58160DBD6806BE121E4423FA58 A62EBOB84CDF30A3003CDD

1A603AC8ES9F1CB6771F819797946246FE26B4C3444BD03FC906885BA29F8AA6BBEY9249E1D70706132DCD4E75D3DBSCE2CEO08F
202BF82A2FBBOASCA1C009878109EC28B0222BEE3034330524

2500

FE4C337B1673FF68EE64C85CTE75B68C5C4F364DDABFE7BC5DCF365F76E22CA3C70DEEDSE7BFC975DESB681AAOE40CDEBOE1

C6466F397BA46D4CBA43BF2A47833E0A715033B3C76610843F22A6E41C15C19B8DS5SEE3773289FF882F2C1178F90C106F66F84CAS
2DD323F496B69416D63A4945D3E931015C351151A296F1558CFCD7C8D32C8F1F0A49E04AC8D43AC77A3AA47TDAOA45FB2654EED
EA847CD2BC1098C72100FFEECFEFCD82115A3B4B4B81A3842A2F28122D6E769D205A98376B95BDDSDA6328C4CC6BD7A6D5A9F
059BESCOF9CEBA453B43828C87690A7B09173FD210E4EBADOB406836AF7CE3364FASEE216DC27B81BA39E14342F182D9ED4DF62
BOF18E370C972DBFOAFB321888C1B4A490514F2CB6A457561335C5SEOFAADA2F1FS3EE6A9DSBEAEA05D157744CD1AD3CA01D6F
366E83BA250CA

3000

F750E5AS534E29B5F4F59517E39346A82BE9D19D7DFSESB72CEB6C58E48138D972D3DES43F638D2D64A931CF283EFOD2AFF39A39
TEC5C41D88A89DB3A74B17975CA0E464334BFA560B17BB4F4ABDE39A23164D086D997B5SDAB25D9F4616A465B978D5A64D24AD
BB5737159BA6F78997673A443EAAFBC3330876796B3A29243D8A5901B20C79AF5A29B65DF8910F3A853D887487BSDCY1B411B950
3F17B54C97F9ASEAC36778190DCO1FDD611D8621421203FCE76CD85C17C847AF17348682CA23FFBFAE0010814E79ABACD63DEF5
30332FF5763E01F08C6D5425B598415EECDDC1A3D68FDIAA42CA4D2F97BF48F5FA5SC309BE26874759C6B1122CDE077F4CAS5B63
E4BBD14204C57295170FC5889C4D47DOEASFS80FDA626EA06F3843ABF5C7558 AC46DC7E946BA68BE19DAABSOD9317A4E9BAT797
619F813F20F36FE90803BBA04136B020580C59AE6660A2FSEFA79DEOAF6B063281D4202325A1F507690C4C1E82C8FOAACE6125709
7DB1183BFFEBD3D37E89DC567EB85F4

4096

3F1A35559CE9C8ABS583A1281BE032FE062B43DB6860E047B72391444E64F1184424D449E2D318F60CAS5A4BSES9480A4E72D52A883
AF66D2CA315A6EF623FA58769D47BE594C882C66F8DC195422D2A95E5B42F74E2F1B70ECC1D3308C04B59327B49623680948 AOF4
6COBCABDB 140F843CE8C71201 1FB99FASF5907BCE81531FD06610FOCIEB39EOFE20851A5C21F7003B7AA22882BB32D45060CBB7
6C6F1FE752E90848ECS8E1CC72806357AA338C682269D8E17B745777BE0639ACADE450D4121398C650664443E1FOASBC1F8B73979B
B973C6457070F33D52B02BDF47FBE6A6D98B8F22D32E063147308FS89E3A7B7EAS56768FDDESAFCF4E71322BFS8AAB1806D11A2BB
AFB58244558DCF950853E68327CFFOE835BEE4F995F245C9A95407FAB4540DF3D7ACC9965D900C8EF3014CB70A14AAA778253519
019458B9B43DAAA2FDCA34DE28C6E8A7FFBOD5B 1 ADFA30E68E0D2287486C06C14AFC8147ADF92CEC991B601FB283C1FD37A9
A6CI9B45C90921E88BBDB6DBFACF462C3FF21A87AB9A2DB044C38CA34FFAF06E28F6AA08A4A224896D0OE739DB 1BB0512076D81
B5D39218A57588A0BDFD6795BF1AB44B269DE918DIAD196EE1AECIE6335C6A4B343D15D64A2D535B9EAF336CC363C093159F2
AFC8644940F793BF477CA55110B8267BD36DA77837148469E3770BF2497801535997ADBEYFS8C591EB2CD3D687E2B70D882E
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