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ABSTRACT Binary sequences are widely used in many practical fields, such as radar applications, telecom-
munications and cryptography. Finding low autocorrelation binary sequences with good peak side-lobe
level (PSL) values is a difficult optimization problem. In this paper we present an improved heuristic
algorithm for searching low autocorrelation PSL sequences. A heuristic algorithm can find a sequence with
a PSL value, which is not necessarily optimal, but is usually near optimal, and the algorithm finds it in a
reasonable amount of time. In the experimental work we applied our algorithm to find binary sequences
with low PSL values, and made a comparison with the state-of-the-art algorithms from literature. With our
algorithm many sequences with the currently best-known PSL values have been improved. We found new
sequences with better, i.e., lower, PSL values.

INDEX TERMS Binary code, aperiodic autocorrelation, peak sidelobe level.

I. INTRODUCTION
Low autocorrelation binary sequences (LABS) play impor-
tant roles in many areas, such as communication engineer-
ing, synchronization, active sensing systems, cryptography
and radar applications [1]–[5]. Searching for LABS with the
lowest-achievable PSL values is a challenging optimization
problem.

Generally, we have to distinguish between aperiodic and
periodic sequences (codes). In this paper, aperiodic binary
sequences are considered.

A binary sequence S = s1 s2 . . . sL has all entries either+1
or −1. Here, L denotes the sequence length. The aperiodic
autocorrelation function (AACF) of binary sequence S at
shift k is defined as:

Ck (S) =
L−k∑
i=1

sisi+k , for k = 0,±1, . . . ,±(L − 1). (1)

Note that the AACF is an even function, since
Ck (S) = C(−k)(S), and therefore, it is enough to consider it
for the interval k = 0, 1, . . . , (L−1) only. The Peak Sidelobe
Level (PSL) is the measure of smallness of the aperiodic
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autocorrelations and the PSL value is defined as:

PSL(S) = max
1<k<L

|Ck (S)|. (2)

The C0(S) is called the mainlobe level, and this term is not
included in Eq. (2). The rest, Ck (S), k = 1, 2, . . . ,L − 1, are
called sidelobe levels. The PSL value represented in decibels
is given as:

NPSL(S) [dB] = 20 log10
(PSL(S)

L

)
. (3)

The LABS problem involves assigning values to the si that
minimize PSL(S) values for all possible binary sequences of
length L.
The search space of the LABS problem is of size 2L .

To locate good (optimal) solutions, two approaches exist:
Complete and incomplete search. The complete, or exact
search, is able to find the optimal sequence, but it is
unlikely to scale up to large sequences. The incomplete,
or stochastic search, can obtain a result that may be opti-
mal or close to the optimal, i.e., it does not guarantee
optimality.

Many authors have put considerable computational effort
into finding binary sequences with small peak sidelobe
level [6], [7], showing that:
• PSL(L) ≤ 2 for L ≤ 21,
• PSL(L) ≤ 3 for L ≤ 48,
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• PSL(L) ≤ 4 for L ≤ 82,
• PSL(L) ≤ 5 for L ≤ 105.
Currently the best results for PSL values are known for

85 ≤ L ≤ 105, and are reported in [6]. The optimal PSL
sequences with PSL = 1 for L = 2, 3, 4, 5, 7, 11, and
13 are known as Barker sequences. The optimal binary PSL
sequences up to L = 74 are also collected in [8].
Another important measure of smallness of AACF is the

merit factor [9], given by:

MF(S) =
C0(S)

2
∑L−1

k=1 |Ck (S)|
2
. (4)

The merit factor is defined as the ratio of the energy of the
mainlobe level to the energy of sidelobe levels.

Roughly speaking, there are two versions of LABS
searches in the literature: One targets minimizing the
PSL [1], [10]–[12] and the other maximizing the merit factor
[13]–[16]. A sequence with the optimal PSL usually has a
merit factor which is much lower than the optimal merit
factor, and vice versa. Owing to the practical importance
and widespread applications of sequences with good auto-
correlation properties, in particular with low PSL values or
high merit factor values, a lot of effort has been devoted to
identifying these sequences via either analytical construction
methods or computational approaches [17]. In this paper, our
goal is to search for long binary sequences with low PSL
values via a computational approach.

Nowadays, a parallel computation can be applied to tackle
hard optimization problems. The power of several computers
that are not necessarily placed in the same location, but
can also be spread overseas, is joined together in solving
real-world problems. The grid computing was used to per-
form computations for finding (binary) sequences in reason-
able amount of time [13], [15], [18], [19].

In this paper, we used a stochastic algorithm for searching
binary sequences with low PSL values. The main contribu-
tions in this paper can be summarized as follows:
• A new stochastic algorithm for searching binary
sequences with low PSL values is proposed.

• Afitness function that can guide a search process toward
global optima.

• The new best-known PSL values are obtained by pro-
posed algorithm.

The rest of our paper is organized as follows. The back-
ground is given in Section II, where related work is also
presented. Our proposed algorithm is presented in Section III.
In Section IV experimental results are conducted and a brief
discussion is given. Finally, the paper ends with a conclusion
and future work in Section VI.

II. BACKGROUND
One of the main challenges when solving the LABS problem
using an incomplete search is how to implement the calcula-
tion of AACF (Eq. 1) efficiently. Some researchers developed
an efficient implementation of the AACF calculation [1], [2],
[10], [14], [15], [21].

Algorithm 1 Algorithm for One Bit Flip of a Binary
Sequence [20]
1: procedure Flip(f , S, �S , L)
2: δmin← min(L − f − 1, f )
3: δmax ← max(L − f , f )
4: if f ≤ L−1

2 then
5: for q ∈ [0, δmax − δmin − 1] do
6: �S [δmin + q] −= 2S[f ]S[L − q− 1]
7: end for
8: else
9: for q ∈ [0, δmax − δmin] do

10: �S [δmin + q] −= 2S[f ]S[q]
11: end for
12: end if
13: if f ≤ n−1

2 then
14: for q ∈ [0,L − δmax] do
15: �S [δmax + q− 1] −= 2S[f ](S[2f − q]+ S[q])
16: end for
17: else
18: for q ∈ [0,L − δmax − 1] do
19: �S [δmax + q] − = 2S[f ](S[δmax − δmin + q] +

S[L−q− 1])
20: end for
21: end if
22: S[f ] = −S[f ]
23: end procedure

The time complexity of the trivial AACF calculation is
O(L2), and the Fast Fourier Transformation (FFT) approach
has the time complexity O(L log(L)).

Recently, Dimitrov et al., in [20], applied an effi-
cient mechanism for single bit flipping calculation which
is presented in Algorithm 1. The mechanism uses two
one-dimensional arrays, S and�S , to store a binary sequence
and its sidelobes, respectively. Algorithm 1 performs an
in-place memory update of �S , when a single bit on position
f is flipped.

The genetic algorithm is presented in [22]. It generates
some offspring by the mutation operation (one-point or
two-point mutation) and others by the one-point crossover
operator. The fitness function is used as:

f1(S) =
α

PSL(S)
+ β ·MF(S). (5)

where α and β are empirical weight coefficients, which
determine the importance of PSL and MF in the process of
optimization.

A memetic algorithm was used for the LABS problem
in [23]. Only a mutation operator was applied, and the
k-opt local search was implemented by flipping each bit of
the sequence. The fitness function is selected as:

f2(S) =
MF(S)
PSL(S)

. (6)

The results were presented for L = 71 to 100.
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Algorithm 2 Algorithm for Binary Sequences PSL Opti-
mization [20]
1: BestCost, Cost← F(�S ), 0
2: isGImpr, isLImpr← true, false
3: while true do
4: if isGImpr then
5: r ←R(n)
6: for (i← 0; i < L; i++) do
7: Flip((r + i)%L, S, �S , L)
8: Cost← F(�S )
9: if BestCost > Cost) then
10: BestCost, isLIimpr← Cost, true
11: break
12: else
13: Flip((r + i)%L, S, �S , L)
14: end if
15: end for
16: if isLImpr then
17: isGImpr, isLImpr← true, false
18: continue
19: else
20: isGImpr← false
21: end if
22: else
23: r ← 1+R(4)
24: Q(1+ r, S, �S )
25: isGImpr, isLImpr← true, false
26: end if
27: end while

In [2], an evolutionary algorithm was applied to search
for long binary sequences with low PSL values. Since
the classic genetic algorithm is inefficient for the LABS
problem, the algorithm adopted some features: Crossover
operation was not applied, two-point mutation was used,
the bit-climber was applied as a local search, and partial
restart was implemented. The evaluation of the fitness func-
tion takes O(L2) operations for calculating Ck (S). For each
bit flip at si, Ck (S) can be calculated from its previous
value in O(L).

Mow et al. [2] performed an experiment for finding which
fitness function was most suitable for searching long LABS
with low PSL. Four different fitness functions were used in
their evolutionary algorithm: PSL,MF, f2 (Eq. 6), and f3,
where the last one is defined as follows:

f3(S) =
1∑L−1

k=1 |Ck (S)|
γ
, γ ∈ {1, 2, . . .}. (7)

In [2], γ = 4 was used, and the experimental results
showed interestingly that f2 was an even more effective fit-
ness function than PSL, even if PSL was the objective to
be minimized. The experimental results for L = 106 up
to 300 are reported, and for some chosen lengths between
L = 303 and 4096.

In [10], an evolutionary algorithm is proposed to find
binary codes (sequences) with peak sidelobe levels lower
than the best known PSL values for selected lengths between
106 and 3000. Three enhancements were introduced that
impacted the specific case of optimizing PSL significantly.
One enhancement added multiple, weighted components of
the score function, which combined PSL with two ‘‘softer’’
measures of sidelobe performance – average sidelobe ampli-
tude and average sidelobe power. These components of the
score were weighted so that PSL was the most important,
but integrated sidelobe levels can continue with improvement
for a given step in PSL. The second and third improve-
ments were a fast-autocorrelation calculation and a local
search which flipped every possible combination of up to
3 bits in the best sequence so far. The algorithm was run
on a supercomputer asset, allowing multiple threads to run
concurrently.

Lin et al. [1] recently published the 1bCAN and 1bPeCAN
algorithms, where 1bCAN is used for aperiodic binary
sequences design, while 1bPeCAN is used for periodic binary
sequences design. The proposed algorithms are FFT based
and, hence, can be used to design long sequences with
lengths (up to L ∼ 106 or even longer) on an ordinary
laptop.

Yet another evolutionary algorithm, called SHC, is pre-
sented in [11]. The results are presented for sequences with
lengths for L = 106 up to 300, and several best-known PSL
values are reported. In very recently published paper [24] the
author presents the PSL values for m-sequences for m equal
to 18, 19, and 20.

III. OUR PROPOSED ALGORITHM
In this Section we present a new algorithm which
is the improved version of the algorithm proposed
by Dimitrov et al. [20].

An algorithm for solving long LABS problems to find
low PSL values needs to be equipped with some important
features:
• It requires an implementation of the efficient AACF
calculation.

• It also needs a fitness function that can guide a search
process toward global optima, which is not an easy task,
since the search landscape of an LABS problem is very
rugged, i.e., with many local optima.

• In the case of an evolutionary algorithm, a diversity
mechanism is welcome, and/or a restart mechanism
that can prevent the stagnation of an algorithm in local
optima.

The fitness function in Eq. (2) considers the value of the
maximum peak sidelobe. Many Ck (S) may have the same
maximum value in the LABS problem. On the other hand,
fitness function f3 (Eq. 7) considers all sidelobes Ck (S),
k = 1, 2, . . . ,L−1, but gives priority to the largest sidelobes.
In the case when γ = 2, f3(S) is equivalent to the merit
factor MF. In the case when γ ≥ 3, f3(S) has a similar effect
as 1/PSL(S).
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There are two observations in the literature when searching
for low PSL sequences:
• In general, a different tradeoff between the PSL and the
merit factor can be achieved by choosing a different
value of γ [2].

• Several authors selected γ = 4 [2], [11], [20] associated
with the fitness function f3(S).

Our motivation in this paper is to combine both obser-
vations into a single feature in our algorithm, i.e., to use
fitness function f3(S) with different values of γ during the
optimization process. Questions may arise when to perform
changes of γ and which values can usefully be applied for γ ?
Our algorithm is based on the algorithm proposed in [20],

which is shown in Algorithm 2. All the changes made on the
algorithm proposed in [20] are presented in blue.

Both algorithms use the efficient one bit flip calculation
that is presented in Algorithm 1.
In our algorithm we introduce a new fitness function with

6 choices as follows:

Fa(S) =



L−1∑
k=1

|Ck (S)|3, for a = 0,

L−1∑
k=1

(|Ck (S)|3 + |Ck (S)|2), for a = 1,

L−1∑
k=1

|Ck (S)|4, for a = 2,

L−1∑
k=1

(|Ck (S)|4 + |Ck (S)|3), for a = 3,

L−1∑
k=1

|Ck (S)|5, for a = 4,

L−1∑
k=1

(|Ck (S)|5 + |Ck (S)|4), for a = 5.

(8)

A choice in the proposed fitness function Fa(S) is selected
according to parameter a ∈ {0, 1, . . . , 5}.
A fitness function F(�S ) is incorporated in the original

Algorithm 2 in Steps 1 and 8, while, in our algorithm, we use
Fa(S) (Eq. 8). At the beginning of the optimization process of
our algorithms, in Step 1 of Algorithm 2, we initialize param-
eter a to 3, which means that we start our algorithm using the
fitness function Fa(S) =

∑L−1
k=1 (|Ck (S)|

4
+ |Ck (S)|3).

Actually, instead of calling the Flip function (Algorithm 1)
in Step 1 more times in order to initialize �S , for longer
sequences we advise to use the trivial calculation of the
AACF, and then initialize �S which is faster than calling the
Flip function more times.

The next change in Algorithm 2 is made in Step 8, which
is needed since the fitness function is applied in this step too.
Function Q(x, S, �S ) in Step 24 makes x flips at random bit
positions in S. This function is applied to escape from the
local minimum, when an algorithm is stuck in it.

The last change is also performed in Step 23, where we
use r ← 2 + R(4) instead of r ← 1 + R(4), where

R(n) is a function that generates a pseudo-random integer
number ∈ [0, n). Note that in the paper [20], the authors used
r ← R(4), which is a small inconsistency with the source
code, where r ← 1+ R(4) is used.

Changes between our algorithm and the algorithm pro-
posed in [20] are in four Steps. In the next Section, we will
present the obtained results in our experimental work, to see
how these changes can influence the performance of our
algorithm.

The complexity of Algorithm 2 depends mainly on the
complexity of Algorithm 1 (bit flip operation with fitness
function evaluation). In [20] it has been shown that the time
complexity of Algorithm 2 is O(L), where L is the length
of a binary sequence. The main loop (it starts in Step 3)
of Algorithm 2 also requires Z repetitions. The changes in
our algorithm, that have been incorporated into Algorithm 2,
do not increase the complexity, and, therefore, we can
infer that our algorithm also has time complexity of O(L),
and in the case when Z > L, our algorithm has time
complexity (L · Z ).

IV. RESULTS
In this Section we present our experimental results. We used
our improved version of the algorithm and the obtained
results were compared with the best-known results of the
state-of-the-art algorithms. The parameter a takes value from
0 up to 5 in this study it was set based on some additionally
runs of our algorithm. We did not perform a fine tuning
upper limit of this parameter. A description of the obtained
experimental results is divided into the following parts, based
on the sequence lengths:
• all binary sequences with 106 ≤ L ≤ 300,
• selected binary sequences with length from 324 to 1936,
• selected binary sequences with length from 2000 to
4096,

• m-sequences with length up to 217, and
• sequence of L = 106.

A. BINARY SEQUENCES WITH LENGTH FROM 106 TO 300
There are some papers recently published that have reported
results of the PSL values for 106 ≤ L ≤ 300:
(1) Mow et al. [2], (2) Dimitrov et al. [11] with the SHC algo-
rithm, and (3) Coxson et al. [10]. In work [11], the authors
have made a comparison of the best-known results against the
results in [2] and also several other papers, and they reported
the currently best-known PSL values for all lengths from
106 to 300. In [10], the authors gave some results for PSL
with lengths in that interval. If we combine all reported results
in all three mentioned works, we can see that the currently
best-known PSL results for 106 ≤ L ≤ 300 are shown
in [11].

We run our algorithm for searching PSL sequences with
lengths from 106 to 300, and our algorithm was able to
find some new best PSL values. These new best-known
PSL values are shown in Table 1, labeled as ‘New’, and
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TABLE 1. New best-known PSL values (New), compared to the current
best-known PSL values (Old).

they are compared to the current best-known PSL values
(labeled as ‘Old’).

In Appendix in Tables 5 and 6 we present the merit factor
(MF), normalized PSL in dB, and the binary sequence. For
each length L, a sequence is presented using a hexadecimal
notation. We decode each hexadecimal digit in binary form
(0 7→ 0000, 1 7→ 0001, 2 7→ 0010, . . . , F 7→ 1111), and,
if necessary, remove the initial 0 symbols to obtain a binary
string of the appropriate length. Then we convert each 0 to
+1, and each 1 to −1 to obtain the binary sequence.

The results in Table 1 show that we have found 91 new
sequences with the best-known PSL values within the interval
from 106 to 300.

B. BINARY SEQUENCES WITH LENGTH
FROM 324 TO 1936
We present the results of our algorithm for binary sequences
with lengths L = x2 for x ∈ {18, 19, . . . , 44}, compared

FIGURE 1. Comparison with other state-of-the-art algorithms known in
literature. ‘‘Collection A’’ and Dimitrov et al. are results taken from [20].
Lower values are better.

TABLE 2. New best-known PSL values found for some L ∈ {182, 192,

. . . , 442}, compared to the current best-known PSL values (Old).

to the algorithm proposed by Dimitrov et al. [20], and the
collection (of the results) of the state-of-the-art algorithms,
also presented in [20]. This collection is called ‘‘Collec-
tion A’’. The obtained results are shown in Figure 1 and
in Table 2.
Figure 1 depicts PSL values obtained by the collection

of the state-of-the-art algorithms, the algorithm in [20], and
our algorithm. One can see that our algorithm found binary
sequences with lengths L = x2 for x ∈ {18, 19, . . . , 44}
with the PSL values that are equal (in 7 cases) or lower
(in 20 cases), and never worse in comparison to algorithm
in [20]. On the other hand, both algorithms obtained better
results than the state-of-the-art algorithms in ‘‘Collection A’’.
The new best-known PSL values and their sequences, MF,
and NPSL are presented in Appendix in Tables 7 and 8.

C. BINARY SEQUENCES WITH LENGTH
FROM 2000 TO 4096
In literature [10] and [2] there are results of some larger
sequences. We performed an experiment for searching a low
PSL value on these lengths of binary sequences, and the
obtained results are collected in Table 3, where PSL, NPSL,
and MF are presented for our algorithm, compared with the
current best-known PSL values.

For all lengths in Table 3 our algorithm obtained the best
results, compared to the other algorithms, and it was able to
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FIGURE 2. Comparison of the growth rate PSL with
√

L: We present
PSL/

√
(2m − 1) vs m, and L = 2m − 1. The results for Dimitrov et al. are

taken from [20], and M(Y) are from [25].

TABLE 3. New best-known PSL values, compared to the current
best-known PSL values.

improve the current best-known PSL values too. One can see
that new best-known PSL values have been improved from 4
(for L = 2048) up to 13 in the case of L = 4096, where the
current best-known PSL value was improved from 61 to 48.
The new obtained sequences are shown in Table 9.

D. M-SEQUENCES
In [20] it is outlined that the reason for the lack of publishing
results for binary sequences of length greater than 212 is
due to the quadratic computing complexity of some state-of-
the-art algorithms.

Nevertheless, we performed the next experiment to com-
pare the results of our algorithm with m-sequences. Notice,
m-sequences exist only for lengths L = 2m − 1,m ≥ 1,
n ∈ N. The obtained results are presented in Figure 2,
compared with the results in the literature. Figure 2 shows
a comparison of the growth rate of PSL with

√
L for m-

sequences. The optimal PSL values are known for m ≤ 6.
The values M (Y ) are taken from the work of Dmitriev and
Jedwab [25] where the authors studied the growth rate of
PSL values. We added values taken from Dimitrov et al. [20],
and the results of our algorithm, so we have three lines
on the right side of the figure, where the PSL values of
longer sequences are depicted. If we look at the values for
m-sequences between 13 and 17, we can see that several
values are below 1 (only some values m = 16 and m = 17
are close to 1), and our algorithm had found all PSL values
that are below 0.9. We are aware that we can not make

TABLE 4. PSL values compared to the known results for m-sequences.

FIGURE 3. The NAAF (in dB) of the sequence with length L = 106

obtained by our algorithm, PSL = 1125, NPSL = −58.98 dB.

any assumption about the growing rate of PSL for longer
sequences (m > 17).

The PSL values for 13 ≤ m ≤ 17 are collected in Table 4.

E. VERY LONG BINARY SEQUENCE
In the last part of the experimental works we made a compari-
son of our algorithmwith the state-of-the-art algorithm called
1bCAN [1], which is FTT based, and, hence, can be used to
design long binary sequences. The comparison is performed
on a sequence with length L = 106. The 1bCAN obtained an
NPSL value of −56.1 dB and it is about 9.5 dB lower than
that of the initial sequence.

Figure 3 depicts the NAAF in dB, i.e., 20 log10
|Ck (S)|
L of the

sequence obtained by our algorithm, where the NPSL of this
sequence is reduced to −58.98 dB (which is 2.88 dB better
than 1bCAN) and it is more than 12 dB lower than that of the
initial sequence.

To summarize the obtained results in each part in Sec-
tions IV-A to IV-D, one can see that we have found many
binary sequences with new best-known PSL values, while for
the sequence with L = 106 we got the better NPSL value
compared to the 1bCAN algorithm.

V. LIMITATIONS OF THE STUDY
In this study we used heuristic algorithm for finding binary
sequences with low PSL values. The obtained best-known
PSL values are not necessarily the optimal, and for
longer sequences the obtained PSL values are pretty surely
not optimal.

Our main objective used in the proposed algorithm was
to minimize the PSL value. Based on our best knowledge
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TABLE 5. New best-known binary sequences and their PSL values (New), compared to the current best-known PSL values (Old).

and experiences with optimizing the LABS problem we can
conclude that the sequence with good PSL value has not

very high merit factor, and vice versa. Therefore, the reported
merit factors for sequences in this study are not the highest
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TABLE 6. New best-known binary sequences and their PSL values (New), compared to the current best-known PSL values (Old).

TABLE 7. New best-known binary sequences and their PSL values found for some L ∈ {182, 192, . . . , 442}, compared to the current best-known PSL
values (Old).
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TABLE 8. New best-known binary sequences and their PSL values (New) found for some L ∈ {182, 192, . . . , 442}, compared to the current best-known
PSL values (Old).

(see [13]). Nevertheless, in literature, some works applied
both objectives (minimize PSL and maximize merit factor)
simultaneously in the optimization process, like using the
weighted sum of both objective.

VI. CONCLUSION
In this paper, we propose a new stochastic algorithm for
searching long binary sequences with low PSL values. Our
algorithm uses a set of different fitness functions and the
active one is selected during the restart part. The experi-
mental work included searching for binary sequences with
low PSL values of selected lengths from 106 to 4096, and
up to 131071 for m-sequences. The obtained results were

compared with state-of-the-art algorithms and our algorithm
foundmany long binary sequences with new best-known PSL
values. In the comparison, performed on the long sequence
with length L = 106, our algorithm obtained a slightly better
NPSL result than the 1bCAN algorithm. As a future work one
can see (1) using graphical processing unit implementation,
and (2) searching of long binary sequences when MF is
considered as the main objective.

APPENDIX.
SEQUENCES WITH THE BEST KNOWN
PSL VALUES
See Tables 5–9.
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TABLE 9. Sequences for the PSL in Table 3.
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