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ABSTRACT Regression techniques are generally used to predict a response variable using one or more
predictor variables. In many fields of study, the regressors can be highly intercorrelated, which leads to
the problem of multicollinearity. Consequently, the ordinary least squares estimates become inconsistent
and lead to wrong inferences. To handle the problem, machine learning techniques particularly, the ridge
regression approach, are commonly used. In this paper, we revisit the problem of estimating the ridge
parameter ‘‘k’’ by proposing some new estimators using the Jackknife method and compare them with some
existing estimators. The performance of the proposed estimators compared to the existing ones is evaluated
using extensiveMonte Carlo simulations as well as two real data sets. The results suggested that the proposed
estimators outperform the existing estimators.

INDEX TERMS Ridge regression,multicollinearity,Monte Carlo simulations,mean squared error, Jackknife
technique, machine learning.

I. INTRODUCTION
The primary goal of the regression analysis is to predict
the response variable with the help of one or more pre-
dictor variables. In many fields of study, including medi-
cal sciences, engineering, economics, and social sciences,
the predictor variables are highly intercorrelated and in such
situations, the ordinary least squares (OLS) estimators are
inconsistent. Consequently, the OLS estimators have very
large standard errors and thus, lead to wrong inferences.
To cope with this problem, machine learning techniques
are widely used. Within these techniques, ridge regression
is a well-known regression method that can handle multi-
collinearity and issues due to the high dimensionality of the
data [1]. In ridge regression, the main idea is to introduce
biased estimators in order to decrease the overall variance.
The ridge parameter ‘‘k’’, also called the tuning parameter,
is used to control the trade-off between bias and variance.
To define ridge regression, consider the following multiple
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linear regression model.

Y = Xβ + ε (1)

where Y = (y1, y2, . . . , yn)′ is an n × 1 vector of response

variable, X =


x11 x12 . . . x1p
x21 x22 . . . x2p
...

...
...

xn1 xn2 . . . xnp

 is an n × p matrix of

the observed regressors, β = (β1, β2, . . . , βp)′ is an
p × 1 vector of unknown regression parameters, and ε =
(ε1, ε2, . . . , εn)′ is an n × 1 vector of random errors which
are normally distributed with mean vector 0 and covariance
matrix σ 2In with In is an identity matrix of order n, where
n is the number of rows and p is the number of columns
of the design matrix. The OLS estimator of the regression
coefficients β is obtained as

β̂ = (X ′X )−1XY

and

Cov(β̂) = σ 2(X ′X )−1
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Note that the OLS estimator and its covariance matrix heavily
depend on the characteristics of the matrix X ′X . Since the
OLS estimators are the best linear unbiased estimator, that is,
have the smallest mean squared error among the set of unbi-
ased estimators, these are generally preferred. However, if the
matrix X ′X is ill-conditioned, it indicates that there exists a
multicollinearity problem. In such cases, the OLS estimators
are inconsistent and have large variances. In addition, some
of the regression coefficientsmay be statistically insignificant
or have the wrong sign and thus can be misleading [2].

To overcome the problem of multicollinearity, different
researchers suggested different methods, and one of the most
useful methods is the ridge regression method. The literature
indicates that an abundance of works has been done in this
direction [3]. Ridge regression was first proposed by Hoerl
and Kennard [1] to solve the multicollinearity problem. The
main idea was to add a small positive number to the diagonal
elements of the X ′X matrix. The resulting estimator of β is
obtained as

β̂ = (X ′X + kIp)−1X ′Y , k ≥ 0 (2)

where Ip represents an identity matrix of order p, and k is
the ridge parameter. The above estimator is known as a ridge
regression estimator where k plays an important role in the
tradeoff between the consistency and bias of the estimator.
When k → ∞, β̂ → 0, i.e., we obtain a stable but
biased estimator of β. On the other hand, when k → 0,
β̂ → OLS and we obtain an unbiased but unstable estimator
of β. Furthermore, for a positive value of k , this estimator
provides a smallermean squared error (MSE) compared to the
OLS [2]. As the ridge estimator is heavily dependent on the
unknown value of k , the optimum value for k that can produce
the best results to some extent is still an open problem in the
literature. The estimator β̂k is a complicated function of k and
several authors presented their proposals for the estimation
of k [3]–[25].

Due to the importance of the problem, this article aims
to revisit the estimation problem of ridge parameter k and
to propose some new and efficient estimators. The proposed
methods will be compared with the existing methods using a
Monte Carlo simulation study and real data sets. The remain-
ing article unfolds as follows. Section 2 contains the review
of some well known existing ridge estimators as well as
our proposed estimators for estimating the ridge parameter k .
A Monte Carlo simulation study is given in Section 3.
Section 4 provides real data applications to assess the pro-
posals’ performance, whereas some concluding remarks are
discussed in Section 5.

II. SOME EXISTING AND NEW ESTIMATORS
This section reviews some existing ridge estimators and
proposes some new estimators. To understand how the pre-
vious estimators are build, suppose that there exists an
orthogonal matrix 9 such that 9 ′�9 = 2, where 2 =
diag(λ1, λ2, . . . , λp) contain the eigenvalues of the matrix
� = X ′X . Consequently, the modified form of equation 1

can be written as

Y = X∗α C ε (3)

where

X∗ = X9 and α = 9 ′β

In the case of strong multicollinearity, some of the eigenval-
ues of the matrix � tend to zero. To overcome this issue,
a small quantity is added to the diagonal of the matrix X ′X ,
i.e., X ′X + kIp (k > 0), which is the same as replacing the λi
by λi+ k , and it accommodates the estimator for the strength
of the linear multicollinearity. Consequently, the generalized
ridge regression estimator can be written as

α̂(k) = (X∗X + KIp)−1X∗Y = (Ip + K (X∗X ))−1α̂ (4)

where K = diag(k1, k2, . . . , kp) ki ≥ 0, and α̂ = �−1X∗Y
is the OLS estimator of α. [1] stated the value of ki that
minimizes the mean squared error (MSE) can be obtained by

ki =
σ 2

αi
(5)

where σ 2 denotes the variance of the regression residuals
and αi represents the ith element of the vector α. Different
authors suggested different estimation techniques to estimate
the optimal value of k̂i and some of the widely used estimators
are described below.

A. HOERL AND KENNARD ESTIMATOR
The pioneering work of Hoerl and Kennard [1] suggested to
replace the variance σ 2 of the OLS estimator and regression
coefficients α2i by their corresponding unbiased estimators σ̂ 2

and α̂2i , respectively, i.e.,

k̂i =
σ̂ 2

α̂2i

where the residual mean square error σ̂ 2
=

∑
ε̂2i

n−p =

(y−y2)′(y−y2)
n−p is an unbiased estimator of σ 2, and k is defined

as

kHK = k̂HK =
σ̂ 2

α̂2max

where α̂max denotes the maximum element of the vector α̂.
Note that when σ 2 and α are known, k̂HK results in a smaller
MSE than the OLS.

B. KIBRIA ESTIMATOR
By generalizing the idea of Hoerl and Kennard [1], Kibria [9]
proposed some new estimators based on the geometric mean,
arithmetic mean and median of k̂i. The resulted estimators are

kK1 = k̂GM =
σ̂ 2

(
∏p

i=1 α̂
2
i )

1/p

kK2 = k̂AM =
1
p

p∑
i=1

σ̂ 2

α̂2i
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kK3 = kMED = Median

[
σ̂ 2

α̂2i

]
, i = 1, 2, . . . , p, for p ≥ 3

C. SHUKUR ESTIMATOR
Realizing the importance of thematrix X′X, Shukur et al. [12]
proposed a new method for estimating the ridge parameter k .
The suggested estimator is given by

kS = k̂KS =
tmax σ̂ 2

(n− p)σ̂ 2 + tmax α̂2max
where tmax is the maximum eigenvalue of X′X matrix.

D. ALKHAMISI ESTIMATOR
In the context of generalized ridge regression approach
[10], Alkhamisi and Shukur [26] generalizes the idea of
Shukur et al. [12] by applying the geometric mean, median
and maximum value approaches to estimate the k using the
following equations.

kS2 = k̂KSgm = (
p∏
i=1

tiσ̂ 2

(n− p)σ̂ 2 + tiα̂2i
)1/p

kS3 = k̂KSmax = max(
tiσ̂ 2

(n− p)σ̂ 2 + tiα̂2i
)

kS4 = k̂KSmd = median(
tiσ̂ 2

(n− p)σ̂ 2 + tiα̂2i
)

E. MUNIZ AND KIBRIA ESTIMATOR

Defining mi =

√
σ̂ 2i
α̂2i
, [2] proposed the following estimators

based on the square root transformations.

KM2 = max(
1
mi

)

KM3 = max(mi)

KM4 = (
p∏
i=1

1
mi

)1/p

KM5 = (
p∏
i=1

mi)1/p

KM6 = median(
1
mi

)

KM7 = median(mi)

F. PROPOSED ESTIMATORS
Many researchers suggested principle component (PC)
regression technique to replace β̂ with α̂, which is a linear
combination of uncorrelated variables. However, this method
suffers from the fact that each PC is itself a linear combination
of all the original variables, and thus it is often difficult
to interpret the results. This article proposed an alternative
method for the estimation of ‘‘k’’ by modifying some existing
estimators by replacing β̂ and α̂ with jackknife estimators.
Jackknife is a useful method for estimating and compensating
an estimator’s bias and does not require knowledge of the
theoretical form of standard error [27].

G. JACKKNIFE ALGORITHM
Jackknife (JK) is a computer-based method for estimating
biases and standard errors [28]. Quenouille [29] proposed
the idea of Jackknife for bias estimation. Later, Tukey [30]
recognized the potential of jack-knife for estimating the stan-
dard errors. Further developments were presented by [17],
[31]–[38]. In the linear regression settings, Shao andWu [39]
and Shao [40] presented general theoretical results on the
deleted-d JK algorithm which is a commonly used method
nowadays.

To understand the basic idea of the deleted-d Jackknife
approach, suppose we have a vector Wi = (Yi,Zij)′ that
contains observed values wi for i = 1, 2, . . . , n. where
Yi = (y1, y2, · · · , yn)

′

contains the responses, and Zij =
(xj1, xj2, . . . , xjn) is a matrix of dimension n × k , where j =
1, 2, . . . , k , i = 1, 2, 3, · · · , n. Draw a random sample of size
n from the population and label the elements w1,w2, . . . ,wn.
To compute the deleted-d Jackknife estimator, we proceed as
follows.

Step 1: Divide the sample into ‘ s ’ independent group of
size d.

Step 2: Leave the first d observations from the sample at
a time and estimate the OLS coefficients ˆθ j1 using the n-d
observation.

Step 3: Delete the second d observation set from the
sample and compute again the OLS coefficients ˆθ j2 from the
remaining n-d observations.

Step 4: Repeating the above, delete each time d observa-
tions out of the n and estimate the OLS coefficients ˆθ jk , where
θ̂ jk denotes the kth JK regression coefficient after deleting of
kth d observation set from the sample. Thus, the total number
of delete-d JK sample are S =

(n
d

)
.

Step 5: Finally, calculate the JK regression estimator as
follows:

θ̂J =

∑s
k=1 θ̂ jk

S
.

That is, the JK regression estimator θ̂J is the mean of the
deleted d-JK estimates ˆθ j1 , θ̂ j2 , · · · , θ̂ js [41].

H. PROPOSED ESTIMATORS
Using the delete-d Jackknife estimator, the first proposed
estimator is given by

IFS1 =
σ̂ 2

min θ̂
2
i

The second proposed estimator is

IFS2 =
σ̂ 2

(
∏p

i=1 θ̂
2
i )1/p

The third proposed estimator is

IFS3 =
1
p

p∑
i=1

σ̂ 2

θ̂
2
i
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TABLE 1. Estimated MSE for p = 4 (superscript reports the MSE rank).

The fourth proposed estimator is

IFS4 = Median(
σ̂ 2

θ̂
2
i

)

III. SIMULATION STUDIES
For each simulation case, all covariates were standardized to
have mean 0 and standard deviation 1. Then, the predictors

are generated as follows:

Xij = (1− ρ2)
1
2 Zij + ρZi

where Zij are pseudo random numbers generated using the
standard normal distribution and ρ represents the strong cor-
relation existing between two explanatory variables. These
explanatory variables are standardized so that X ′X and X ′y
are strongly related.
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TABLE 2. Estimated MSE for p = 8 (superscript reports the MSE rank).
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TABLE 3. Estimated MSE for p = 16 (superscript reports the MSE rank).

The n observations on the dependent variable are computed
as

yi = β0 + βxi1 + βxi2 + · · · + βxip + εi

where εi are random errors that are normally distributed
with zero mean vector and covariance matrix σ 2 and β0 is

considered to be identically zero. To see the effect of high
multicollinearity in the model, we consider three different
values for ρ, i.e., ρ = 0.90, 0.95, 0.99. To assess the effect of
sample size, n = 25, 50, and 100 are considered. Moreover,
the number of regressor, p, is set to 4, 8, and 16 whereas
the error variance σ 2

= 1, 3, and 5 are used. Furthermore,
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TABLE 4. Descriptive statistics for the Cruise-ship-info data.

TABLE 5. Correlation matrix for the Cruise-ship-info data.

simulation studies are repeated 2,000 time and for each repli-
cation, the mean squared error (MSE) of the estimators is
computed.

A. SIMULATION RESULTS AND DISCUSSION
This section presents the performance of the existing as
well as the proposed estimators using the mean squared
error (MSE) as the assessment measure.

To evaluate the performance of the different estimators on
simulated data sets, different factors such as standard devi-
ation of the error term σ , correlation coefficient ρ, sample
size n, and the number of explanatory variables p are varied
and the results are listed in Tables 1, 2 and 3. These tables
report the MSEs and their ranking for different estimators
used in this study. From these tables, one can observe that
the correlation coefficient and the sample size significantly
affect the MSE of the estimators. The MSE increased for all
the estimators when we increase the degree of correlation.
In general, when the degree of correlation ρ is increased,
the performance of our proposed estimators, especially, IFS1
and IFS4 becomes more visible as compared to other esti-
mators. With the increase in sample size, the MSE generally
tends to decrease, which has been previously observed in the
literature [3]. Increasing the standard deviation σ of errors
also increases the MSEs of the estimators.

Considering the results for the number of explanatory
variables p separately, Table 1 reports the results for
p = 4 with the aforementioned specification of n, ρ, and σ .
From this table, note that the OLS estimator performs worst
for different specifications used. In the case of n = 25 and
ρ ∈ {0.90, 0.95}, our proposed estimators IFS3 and IFS4
outperform the competitors. However, with the increase in
the values of ρ and σ , IFS1 improves its ranking. For n= 50,

TABLE 6. Variance inflation factor.

the performance of our proposed estimator IFS1 is remarkable
as it produces lower MSEs compared to the rest. On the other
hand, for ρ = 0.9 and smaller σ values, KGM also performs
relatively better. In the case of n = 100, our proposed esti-
mator, especially IFS4, outperforms the rest in terms of the
lowestMSEs. It is worth mentioning that for any combination
of n, ρ and σ , one of our proposed estimators produces the
lowest MSE, ranked 1st , that shows the significance of our
proposed estimators.

In Tables 2 and 3, we only change the number of variables,
that is, p= 8 and 16, respectively, and compute the MSEs for
different estimators using the aforementioned specifications
of n, ρ and σ . From these tables, one can observe that the
correlation between the explanatory variables, sample size,
and error standard deviation affect the MSE of the estimators.
From the results of Table 2 we can see that when ρ =
0.90 and σ = 1, IFS1 performs well, for σ = 3, 5, the per-
formance of IFS2 and IFS3 are better than the rest of the
estimators. Note that as the value of ρ increases, the MSEs
produced by our proposed estimators are much smaller than
the OLS and existing ridge regression estimators, indicating
that our proposed estimators are capable to handle strong
multicollinearity situation better than the rest.

The results in Table 3 for p = 16 show that for ρ = 0.90,
n = 25, σ = 1, KGM and KAM perform better than the rest.
However, as the value of σ increases, the proposed estimators
outperform the rest. For other specifications of ρ, n, and σ ,
our proposed estimators perform well than the existing esti-
mators. Among our proposed estimators, the performance of
IFS3 is evident as compared to the rest.
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TABLE 7. Mean square error for different estimators for the Cruise-ship-info data.

To conclude the simulation study results assuming
idifferent combinations of parameters, the proposed estima-
tors generally have the smallest MSEs than the ordinary least
squared and the existing ridge regression estimators, indi-
cating our proposed estimators’ significance and superiority
over the rest.

IV. REAL DATA APPLICATION
In the previous section, the Monte Carlo simulation study
compares the proposed estimators’ performance with the
existing ridge regression estimators. As in simulation studies,
some ideal conditions are considered. This section presents
two real-data examples to compare our proposed estimators’
performance in practical situations

A. CASE STUDY 1
To check the performance of the proposed estimators, we use
Cruise-ship-info data set. The data set is freely available on
University of Florida website.1 The data contain 6 predictors
namely, ship (name of the ship), age (age up to 2013), tonnage
(weight of the ship in tonnage), passengers (passengers on
board (in 100s)), length (length of the ship (in 100s of feet)),
cabins (number of cabins (in 100s)), pasgrden, (passenger
density) and an outcome variable crew (number of crew
(in 100s)). The descriptive statistics for the data are given
in Table 4. From the table, one can see that variables are
on different scales, therefore before computing the results
of different estimators, we standardized them. Table 5 shows
the correlation matrix of the data and it is evident that most
of the variables are highly correlated with each other. For
example, there is a strong positive linear relationship between
crew and cabins, length, passengers, and tonnage. The age
variable has a moderate-weak relationship to the crew, while
passenger density shows a weak relationship to the number of
crews on board. The correlation coefficient of 0.95 between
the number of cabins on the ship and the number of crews
indicates that these two variables are strongly and positively
related. Similarly, Tonnage and passengers has the correlation
value of 0.95, whereas cabins are strongly correlated with
passengers and length (ρ = 0.98) indicating that the data set
has a strong multicollinearity problem. To investigate further,
we calculated the variance inflation factors (VIF) that detect
multicollinearity in the data. The VIF estimates show how
much the variance of a regression coefficient is inflated due
to multicollinearity in the model. The VIFs are calculated
by taking a predictor and regressing it against every other
predictor in the model. This gives the R-squared values,
which can then be plugged into the VIF formula. Finally, VIF
can be calculated as

VIFi =
1

1− R2i
1http://users.stat.ufl.edu/~winner/datasets.html

TABLE 8. Descriptive statistics for motor trend car road tests data.

TABLE 9. Correlation matrix for motor trend car road tests data.

In general, a VIF above 5 indicates a high correlation and an
indication of multicollinearity in the data. The VIF values for
Cruise-ship-info data are given in Table 6 where one can note
that the VIF values of the variables disp, hp, andwt are greater
than 5, and thus the data set has a multicollinearity problem.

In Table 7, for each estimator, the estimated MSEs with
their ranking are given. From this table, it is evident that ridge
estimators have smallerMSE as compare to OLS. In addition,
our proposed estimators IFS3, IFS4 and IFS2 are ranked 1, 2,
and 3, respectively. This suggests that the proposed estimators
outperform their competitors, suggesting the superiority of
these estimators over the rest.

B. CASE STUDY 2
We examine another dataset to check the performance of
existing and proposed estimators. The dataset is extracted
from the 1974 USMotor Trend magazine, and it contains fuel
consumption information and design features of a small (32)
set of cars. The data contain 11 predictors namely mpg
(Miles/(US) gallon), cyl (Number of cylinders), disp (dis-
placement (cu.in.)), hp (gross horsepower), drat (rear axle
ratio), wt (weight (in 1000 lbs)), qsec (1/4 mile time),
vs (Engine (0 = v-shaped, 1 = straight)), am (transmission
(0 = automatic, 1 = manual)), gear (Number of forward
gears), and carb (Number of carburetors). We selected only
five highly correlated predictors from this data: disp, hp, drat,
wt, and qsec. Data set is freely available in R from the dplyr
package.

The descriptive statistics of the data are given in Table 8
and one can see that variables are measured on different
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TABLE 10. Variance inflation factor.

TABLE 11. MSEs for the motor trend car road tests data.

scales, for example, the displacement variable ranges from
71 to 472 cm, while the gross horsepower variable ranges
from 52 to 335.

Pairwise correlation coefficients for different variables are
listed in Table 9 and one can see that most of the variables
are highly correlated with each other. For example, the corre-
lation between weight and miles/(US gallon) is -0.868, indi-
cating a high negative correlation. Similarly, the correlation
between displacement andweight shows a high linear positive
correlation of 0.888. The VIFs values for this data are listed
in Table 10. From this table, note that the VIF values for the
variables tonnage, passengers, length, and cabins are much
higher than the threshold value of 5, indicating a strong cor-
relation among predictors. Thus, there is a multicollinearity
problem in the data. The MSEs for different estimators along
with their ranking are listed in Table 11. From this table, one
can see that the existing as well as the proposed ridge regres-
sion estimators have the smallest MSEs compared to the OLS
estimator. Note that the MSEs for the proposed estimators are
much smaller than the rest estimators. Moreover, the results
indicate that the proposed estimators, IFS3, IFS4 and IFS1
outperform their competitors with IFS3 is the best in terms of
MSE compared to all other estimators.

V. CONCLUSION
It is well ’’documented in the literature that in the presence
of multicollinearity, the OLS estimators are inconsistent, has
large variances, and consequently, can lead to wrong infer-
ences. Ridge regression is a well known technique used in the
presence of multicollinearity in the data. However, this tech-
nique heavily depends on the estimation of ridge parameter k .
Thus, the main aim of this article is to introduce some new
estimators for estimating the ridge parameter. To this end,
we used the Jackknife approach and proposed new estimators
to estimate k . The performance of new estimators is evaluated
by extensive Monte Carlo simulations and two real data stud-
ies. The results show that as the number of variables, standard
deviation of the random error, and the correlation between
the independent variables increase, the MSEs also increase.
On the other hand, when the sample size increases, the MSEs
decreased. From the simulation studies and real data
examples, the results indicated that, in general, the proposed
estimators IFS3, IFS4, and IFS1 have the smallest MSEs than
the ordinary least squared estimators as well as existing ridge
regression estimators. Further, we conclude that the ridge
parameter estimates computed by the Jackknife technique are
better. As in this study, we consider onlyGaussian error, in the

future, the study can be extended by using errors from other
distributions.
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