IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 22, 2021, accepted April 18, 2021, date of publication May 4, 2021, date of current version May 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3077521

Automated Planning With Invalid
States Prediction

CAIO GUSTAVO RODRIGUES DA CRUZ “'!, RODRIGO ROCHA SILVA*“23,
MAURICIO GONCALVES VIEIRA FERREIRA!, AND JORGE BERNARDINO 34, (Miember, IEEE)

INational Institute for Space Research (INPE), Sdo Jose dos Campos 12227-010, Brazil

2FATEC Mogi das Cruzes, Sdo Paulo Technological College, Mogi das Cruzes 08773-600, Brazil
3Centre for Informatics and Systems of the University of Coimbra (CISUC), 3030-290 Coimbra, Portugal
“#Polytechnic of Coimbra, Coimbra Institute of Engineering (ISEC), 3030-199 Coimbra, Portugal

Corresponding author: Caio Gustavo Rodrigues Da Cruz (caio.cruz2 @fatec.sp.gov.br)

ABSTRACT The increase of automated systems in space missions raises concerns about safety and reliability
in operations carried out by satellites due to performance degradation. There have been several studies about
the automatic planning process, but many approaches are generated with invalid states. The invalid state can
be understood as a prohibited, degraded or risky scenario for the domain. This paper proposes an automated
planning process with restrictions that enables automatic planners to not generate plans with invalid states.
We implement a validator method for the planner software which proves that plan generation matches the
restrictions imposed on the domain. In the experiments, we test an automatic planning process that is specific
to the aerospace area, where a knowledge base with invalid states is available in the context of the operation
of a satellite. Our proposal to carry out the verification of invalid states in automatic planning, can contribute
to plans being generated with higher quality, ensuring that the goal of a plan is only achieved through valid
intermediate states. It is also expected that the generated plans will be executed with better performance and

will require less computational resources, since the search space is reduced.

INDEX TERMS Automated planning, domain rule learning, machine learning, PDDL.

I. INTRODUCTION

Plan validation is necessary when automated planning is used
to solve complex problems, such as the control of satel-
lites in planning operations that involve aerospace area [1].
Generating plans that are consistent with the current domain
situation, has encouraged the development of applications
to be responsible for diagnosing and validating automati-
cally generated plans. In addition to safety and reliability,
satellite operation requirements have been intensified due to
the growing number of automated systems in this domain
area [2].

In the validation planning stage, all states through which
the domain must go through to reach the objective of the
problem are verified in the plan. If there are one or more
invalid states that compromise the domain and that cannot
be executed, the plan gets considered as rejected [1]. The
planning of flight operations for satellites is too complex to be
solved solely by classical planning techniques because invalid

The associate editor coordinating the review of this manuscript and

approving it for publication was Szidénia Lefkovits

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

state restrictions are not considered during the plan’s state
transition [3].

Several planning domains encounter problems of having a
large set of solutions or having a set of goals that cannot be
completely achieved. There are still scenarios where plans of
expected solutions can be generated to contain invalid states
given the characteristics of the domain. In such cases, the way
in which the goal is achieved may be more important than
actually reaching the goal itself. For this reason, when it is
possible, it is important to generate valid plans that reach all
the goals of the problem [4].

The objective of this work is to propose an architecture
for the automatic generation of plans with the validation of
invalid states being done through a process of learning and
configuring restrictions on the domain. In the approach, a fil-
ter is created for the states that are not included in the planned
solution. In this case, valid plans are generated respecting the
changes that occur in the domain’s operating state. In order
to validate the application of the architecture, a case study in
the aerospace area was used in the experiments. The group of
invalid states classified in the learning process were config-
ured with the respective invalid states and the results of the

68289

https://orcid.org/0000-0001-6143-3908
https://orcid.org/0000-0002-5741-6897
https://orcid.org/0000-0002-6229-9453
https://orcid.org/0000-0001-9660-2011
https://orcid.org/0000-0002-7903-1111

IEEE Access

C. G.R. D. Cruz et al.: Automated Planning With Invalid States Prediction

planning stage were compared starting from each configured
group. The validation was carried out by comparing the result
of the planning stage with each configured group.

This study contributes a new way to validate the invalid
states contained within planning domains. Allowing this
approach to be applied to validate emerging restrictions not
only in the domain of satellite planning, but also in planning
domains where states are often modified and new restrictions
may arise.

The rest of this study is structured as follows: Section II
introduces the concepts and theoretical fundamentals, such as
the relevant concepts of planning, planning with preferences
and the inclusion of new techniques in planning with the pre-
sentation of related works. Section III describes the proposal
for an automated planning architecture that performs the pre-
diction of invalid states. Section IV presents the experiment
implemented in the space area. Finally, section V presents the
conclusion and future work.

Il. BACKGROUND AND RELATED WORK

This section provides context on planning and related work.
There are several automated planning methods that exist.
In [4]-[8], the authors include preferences in planning. Other
authors like [9]-[12], use learning techniques. However, they
do not implement an invalid state prediction solution.

A. CLASSICAL PLANNING

Automated planning is a branch of Artificial Intelligence that
focuses on problem solving and organizes actions through
a system in order to achieve the goal of the problem [13].
A planning domain is defined as a finite set of possible
states S = {so, 51...5%}, and a finite set of actions A =
{a1, ay...ax}, applicable to the domain states [13]. A plan-
ning problem can be represented as follows: P = (X, s;, Sg),
where X is the state transition system, s; is the initial state and
S, is a set of goal states. In the concept of classical planning,
a plan is not deterministic and there may be different ways of
finding the sequence of actions that transform the initial state
s; into the objective state Sg.

s1 = y(s0,a1), s2=y(s1,a2), ..., sk
= (Sk—1, ax)and sy € Sg

The state transition system represented above describes the
function y (s, @) which applies an action to a state, resulting in
a state transition system. For each generated state, an action
is applied until the generated state corresponds to the goal.
A problem can be solved in a number of ways. In other words,
a set of different stages can transform the initial state into the
goal state [13].

In classical planning, STRIPS (Stanford Research Institute
Problem Solver) is a technique used to find solutions from a
domain and a problem [14]. STRIPS aims to improve effi-
ciency by reducing the size of the search space going through
all possible states after applying the domain actions until it
finds the goal state [14]. However, when classical techniques

68290

are used to solve more complex problems they can create
invalid plans, because the generation phase does not consider
existing restrictions in the domain [15].

Automated planning is performed using a specific planning
software. The planner must find a sequence of actions that
transform the initial state into the goal state using only the
actions contained in the domain [16]. The result is a plan
containing the sequence of actions required to find the goal
of the problem. The most common language in automated
planning is PDDL (Planning Domain Definition Language)
introduced in 1998 by [16].

PDDL was established as the standard language com-
monly used in automated planning. PDDL paves the way
for stronger collaboration, providing a platform for bench-
marking approaches, exchanging different tools, as well as
techniques and problems, thanks to a series of interna-
tional planning competitions that have been associated and
extended, into several stages to capture more expressive
variants [17].

Recent research includes a demonstration that temporal
characteristics can be compiled in polynomial work and be
subject to certain restrictions that can appear in the prob-
lem [8], while other research examined the compilability of
conditional effects [5].

Over time planning approaches have evolved to solve more
complex problems with new techniques such as the inclusion
of preferences, pre-processing using macros and the appli-
cation of learning using data mining in different planning
contexts.

B. PLANNING WITH PREFERENCES

As seen in literature, there are different studies on Al plan-
ning that propose to solve more complex planning problems.
Some of the approaching issues are the following: gener-
ating quality plans; planning complex problems; planning
with uncertainty; user preferences and preferences learning.
Most of these works are related to the use of preferences,
an interdisciplinary topic that has been extensively studied
in recent years and has advanced different techniques and
planning forms [18].

In order to improve the quantity of expressed criterion
in complex plans, the PDDL language was extended to a
PBP (Preference-based Planning). PDDL3 uses HTN (Hier-
archical Task Network) to increase the expressive power over
the plan’s quality specification [19]. Two new features have
been added that allow the user to express strong and soft
constraints about the structure of the desired plans, as well
as strong and soft problem goals. The first feature is the
ability to express goals that apply not only to the final state
of the trajectory of states visited by a plan, but also to
intermediate states. The second extension is the ability to
express soft constraints or mild preferences. Furthermore,
the authors make it clear that the extensions are useful for
expressing restrictions that manage the plan quality, instead
of controlling the knowledge itself [7], [20].

VOLUME 9, 2021

C. G.R. D. Cruz et al.: Automated Planning With Invalid States Prediction

IEEE Access

The PBP aims to find the most preferred plans in a planning
instance using some criteria to determine when a plan is more
suitable than another. The search for the development of ideal
plans is a theme addressed in [21], which examines various
types of representations to solve planning problems. The the-
oretical decision planning uses the MDP (Markov Decision
Process) to explore the assembly of optimal policies in order
to indicate planning problems. The MDP associates a reward
function with each state transition, to define the users’ pref-
erences. All the possible states are classified quantitatively
where the chosen optimal policy returns an action considering
the history of actions performed by the agent [21]. In this
approach, obstacles can be found when combining methods
that explore different structures at the same time, making it a
challenge to integrate or develop additional tools [21].

Another approach based on heuristic techniques was cre-
ated, named PSP (Partial Satisfaction Planning), which offers
resources to partially solve problems, and can meet a col-
lection of objectives [6]. In this approach, the time needed
to find the best solutions can take very long, as the search
for better plans ends up generating a much larger number
of research nodes. Another limiting factor is the use of the
evaluation function used to trim non-promising states, which
can inevitably lose an optimal plan while removing a state
from a research space [6].

There are works that compile the planning instance cre-
ating a method of controle procedure based on PDDL. [4]
allowed the representation of the planning domain as a finite
state automaton, adding a predicate for modifying effects and
predefined conditions of actions, allowing the procedure to be
fulfilled, in a process called PCK (Procedural Control Knowl-
edge) [4]. Although, it is a general approach, the biggest
advantage of this technique is the possibility to deal with a
variety of domain control specification languages [4].

C. DOMAIN REMODELLING AND LEARNING

IN PLANNING

In order to improve the efficiency of planners and making
them solve a greater number of problems, modular modules
were proposed. The use of reformulation and configuration
techniques have contributed to the improvement of domains,
such as the domain remodeling to identify irrelevant actions
and operators that can be removed or replaced by other
actions in the plan. [22] proposed a pre-processing step to
remove actions that are generated by a sequence of other
actions that do not contain it. This process reduces the number
of explored states and improves the search time. Another
technique applied to domain remodeling planning is the use
of macro operators, which act as shortcuts to deeper states in
the branches of the planning search space. For example, [23]
adds macro operators in the domain, increasing it to solve
problem instances like a new normal operator.

Machine learning has been used in different contexts in
order to improve the planning process. [9] proposed the
Marvin planner, which evolved the FF (Fast Forward) plan-
ner by applying macro learning. During the plan searching

VOLUME 9, 2021

process, [10] creates a predictor to choose the best heuris-
tic. [11] proved that specific remodeling of the planning
instance using machine learning may improve the perfor-
mance of plan generation. There is also the implementation of
a division process such as automatic actions, which decom-
pose the most complex operators into simpler ones using the
type domain-specific learning proposed in [12].

Although macros act as shortcuts in the search space, they
increase the branching factor and potentially make some
operators redundant [11]. Removing redundant or irrelevant
operators, on the other hand, decreases the branching factor.
But it is difficult to find operators that are safe to remove
for all instances in a domain. Therefore, according to a study
in [11] the combination of a macro addition and an operator
removal is a promising path that can achieve a significant
acceleration during planning.

In approaches using macros, machine learning is applied
to learn domain rules. In automated planning, domain models
can change over time, with the emergence of new rules or cer-
tain situations that may not be available sometimes, resulting
in a major problem that generates invalid plans.

An opportunity to also apply data mining is to produce
rules or rule mappings for quality measures in the plan.
In the work presented by [24], on the use of learning in
planning, the planning problems found in space agencies
were observed because they require the validation of plans
before they are proposed. According to [24] since planning
languages are unable to capture the full description of the
domain, he suggests that automated planning can incorporate
a simulation made in the plan validation process that can
be used during plan generation. He also concludes that data
mining can be used to improve the quality of planning in
several ways. First, the validator can be seen as a function
that can be an approximation in order to speed up the planner.
In this case, data mining from the validator can produce an
efficient and approximate function that can serve as a quick
first cut once the automated planning is completed. An even
better approach would be one that can be used much earlier
in the planning process in a similar way to useless learning as
proposed by [24].

D. ANALYSIS AND COMPARISON
In recent studies and research we can find many different
planning approaches, which have all been proposed to solve
different problems. The difference between one approach and
another is the use of different techniques, such as, the inclu-
sion of preferences, remodeling of domains, use of macros,
use of machine learning, among other resources that have
been incorporated in planning. TABLE 1 shows a comparison
of the differences between the planning approaches presented
and considers the main resources used by them. It is under-
stood that each approach includes different resources for
planning and for solving specific problems.

In this work, similarly to the previously mentioned plan-
ning approaches, we propose the inclusion of a new resource
for plan validation in automated planning through the

68291

IEEE Access

C. G.R. D. Cruz et al.: Automated Planning With Invalid States Prediction

TABLE 1. Comparative table of planning approaches.

Approach Differential

HTN - Trajectory restrictions
MDP - Reward function

PSP - Heuristics

PCK - Automata

Macro Operators

Marvin Planner

Violated preferences metric
Classification of actions taken
Planning with objectives subset
Additional action predicate
Shortcuts to deeper states
Macro learning application

verification of invalid states, which is different from the
rest of the other works found and which contributes to the
generation higher quality plans.

Ill. PROPOSED ARCHITECTURE

In order to create an application that allows a better repre-
sentation of the domain, whilst considering its changes over
time, an architecture was designed using a planner with state
validation. In addition to the validation being done during
planning time, it significantly reduces the total execution time
and the application of a learning process that classifies the
domain’s current states contributing for plans with higher
quality, since invalid states are excluded from the solution.

A. INVALID STATE DEFINITION

An invalid state is formed by current situations that under-
mine a domain scenario. In order to illustrate the understand-
ing of the invalid states formulation, FIGURE 1 shows an
example of the planning problem in the world of blocks.
Where three different moments (Instant I, IT, III) are presented
using the same domain scenario, with three stacked blocks
on a table. In this example it is noted that with the variation
of time, the domain states planning has changed, as certain
circumstances have arisen over time.

Instant I

. tl 2)

Instant IT Instant IIT

on(cb)

D on(cb)

a

Cu e)

on(atl)
2 |

oo

FIGURE 1. lllustration of invalid states.

The first instant represents the scenario where there is
no invalid situation. In the second instant, a given situation
becomes invalid, assuming that block b is affected by an
anomaly that prevents it from sustaining block c. In this
case, we say that the situation on (¢ b) has become invalid.
In the third instant, another invalid state is formed by two
invalid situations, assuming that the element block a cannot
be stacked on the table table t1, the situation on (a tI) also
becomes invalid.

In the scenario presented in Instant III, the two invalid
situations — one object stacked on top of another — are similar,
but they connect elements with different types. In the on (¢ b)

68292

situation, there is a relationship between two elements of
the block type, yet in the situation on (a t1) one element
is of the block type and the other element is of the table
type. However, to identify which domain action generates the
invalid situation, it is necessary to observe which elements
are related to the action’s effect. For example, in this domain,
the action to stack two blocks, has an effect with the definition
on (blockl block2) indicating that the effect of applying the
action sfack generates the situation on (¢ b). The invalid
situation on (a tI) was generated by the action mover that
has the definition on (table block) in its effect. To summarize,
the effect of each action defined in the planning domain is
composed by a set of situations. The parameters of each
situation assume the values of the objects described in the
definition of the planning problem, this way we can formulate
the invalid states.

B. ARCHITECTURE OVERVIEW

In this section, we present in FIGURE 2 the architecture
that consists of grouping the main components that involve
the domain state classification and automated planning pro-
cesses. The components were grouped into three main layers:
the state classification layer, configuration, and planning. The
proposed architecture aims to generate plans according to
the current changes and situations of the current domain,
allowing the prediction of invalid states. Starting with the
configuration of preferences included in the configuration
layer by a domain expert, it is possible to predict invalid
states in the automated planning process. In the next sections,
we explain each one of the three layers.

C. CLASSIFICATION LAYER

The classification layer encapsulates the learning process of
planning domain. The input data at this layer is obtained
through routine operation and the knowledge of experts in the
field. The classification criteria is the information that defines
all possible classes, in which the domain can be classified.
The formulation of these criteria depends exclusively on the
domain, as it is the set of characteristics that configure each
classification. The state classifier component represents the
learning model, which uses the criteria for training the clas-
sification algorithms, storing classified data in its history,
which provides a prediction for the configuration layer.

D. CONFIGURATION LAYER

The configuration layer is the main component of the archi-
tecture and has the objective of integrating the two funda-
mental processes for generating valid plans: planning and
classification. For a plan to be generated while respecting
the invalid situations from the domain state at the time of
planning, it is necessary that the appropriate changes to the
domain are very well represented in the planning process.
The prediction of invalid states in the generation of the plan
is made from the configuration of a set of invalid situations,
corresponding to each of the classes that the domain can

VOLUME 9, 2021

IEEE Access

C. G.R. D. Cruz et al.: Automated Planning With Invalid States Prediction

Expert Satellite operation
C Preference 1 [Tﬂl_mﬁe_u{ Dataset '
| v | I |
| L * .. |
| E I Traming |
| . - Status |
R 4_& sis	Classification Sta?e
	it Classifier
i	: y
:	
.	: Classification Layer !
: Configuration	i __ I
e	
l T Objects l :	:
I	I Planner I
File	:
Language ve States nes > I	
' e : : g States	
Converter L ‘	
' [IFile Ve
—	:
: Meta data [« (. +	
KPlanOO l :F'l F-" :	
I ——	
: 1 Plan :	
: Converter I : Problem I	
[
. : ! Repository :	
Configuration Layer	
FIGURE 2. Architecture overview.
assume over time. These rules are stored in the configuration 144 Converter - o x
database that has been named as preferences. e P
In order to ensure that the knowledge the planning domain G B R @
representation is correctly mapped between the layers of the [s 7 | Cenrmens st
. . 7 Jh move (action invalidStateontke
approach, we use KPlanOO - An object-oriented Meta-model - ::§£§Zﬁ7§n(?:5:“§?gnckm, .
to describe planning domains [25]. The ontology applied in g“';“:‘“) e lon BB
. . . 7y -table (action invalidStateonbka
the KPlanOO domain representation allows the creation of - - o | e e
configurations and integrations of the processes in a flexible v B s | e enaen iz
and standardized way. In addition to being a generic model, T &;MW)
it enables the solution to be reused without depending on the @ 7-viock B
planning language that was used in the process. L ;&fk; |

The following is a brief description of some object types
defined in the KPlanOO representation structure, that are
used in the architecture of this work, according to [25]:

o Domain: represents the planning domain description,
composed of a list of actions, that have a list of probable
states for problem objects with defined types.

o Problem: its purpose is to represent the problem
description for a given domain. It is composed of an
instance of the Init class, an instance of the Goal class
and also a list of elements that will represent the objects
to be used by the planner.

o Action: it is a domain’s actions abstraction, which con-
templates the specification of “‘Super Action”, through
a self-relationship. Each action has an effect and a pre-
condition, which are objects of the scenario type.

« Scenario: entity that represents a scenario composed of
the object’s states defined in the problem in question.
These being of types declared in the domain.

o Situation: entity that represents the object’s situ-
ations that will be manipulated in the planning.

VOLUME 9, 2021

[E Domain M Action [Element

Problem & Situation

Domain path: C:\Users\caioc_000\Documents\13 - REPOSITORIC

Problem path: C:\Userslcaioc_000\Documents\13 - REPOSITORIC

FIGURE 3. Graphical interface of the state converter.

These situations are the set formed by the objects state
and the conditions linked to this state.

« Element: abstracts the objects that will be part of
the problem. Element has a type and can have values
(Value).

« Type: is the abstraction of the types that can be created
in a domain. For example: satellite, subsystem, orbit, etc

The language converter reads the domain and planning
problem files. Using the domain representation KPlanOO
structure, it loads the domain objects in a graphical interface,
as shown in FIGURE 3. In the tree view that presents the
planning items, the situations defined in each domain action

68293

IEEE Access

C. G.R. D. Cruz et al.: Automated Planning With Invalid States Prediction

<<interface=>
IConverter

+ convertModelTolnvalidState(actions : List<Action=) : String
+ convertDomainToModel(domain : String) : Domain
+ convertProblemToModel(proble : String) : List<Element=

7AY

ConverterPdd|

<<interface=>
IBuilder

+ getDomain(domain : String) : Domain

ZAN

DomainBuilderAbstract

- domain Domain

- preConditions : List<SituationObject=
- effects - List<SituationObject
- elements : List<Element>

+ addAction(name - String) : void
+ addSituation(situationhName : String, condition - boolean, scenario : Scenario) : void

|

DomainFromPddIBuilder

FIGURE 4. Static Structure of classes.

is displayed and listed according to their type: action; situa-
tion or element.

For the generation of the invalid states file, it is neces-
sary to first select a situation and then associate it with the
elements defined in the problem. In order to assemble the
file definition, an expert visualizes the loaded objects and
chooses within an action which situation will be invalidated.
As described in the section III-A, after choosing a situation
for each element, an object defined in the problem must be
chosen. Finally, the chosen situation’s set will be converted
into the language used in the planner code.

FIGURE 4 shows, through the class diagram, the structure
of the state converter component. The KPlanOO representa-
tion classes are used in the interface. The IConverter interface
was created to define the following conversion methods:

o ConvertModelTolnvalidState: is responsible for build-
ing the file of invalid states in a planning language. The
received parameter depends on a list of objects of type
Action, which are used to construct the invalid states and
return to the definition in an object of type String.

o ConvertDomainToModel: is responsible for loading
the planning domain file from an object of type String.
The file data is read, instantiated, and returned in an
object of type Domain.

« ConvertProblemToModel: is responsible for loading
the planning problem file from an object of type String.
A list of objects of type Element is returned.

68294

The classes highlighted in the diagram represent the spe-
cific implementations necessary for the conversion of the
planning language. The converter can be implemented using
other languages, granted that new classes implement these
interfaces and convert the domain to the respective language
used. The class that implements the IConverter interface
is related to a domain object constructor class. Based on
the inheritance of the DomainBuilderAbstract class, which
encapsulates the construction of the domain through a meth-
ods group responsible for facilitating the conversion of each
object into language code. Using the methods addAction and
addSituation it is possible to create the files with the planning
language.

Finally, the expert will associate an invalid state file to
each class defined in the classification layer according to
the domain’s need. Thus, being able to configure groups
of invalid situations, as in the example presented in the
section III-A, each instant can be considered a domain class,
whereas a different situation’s group is invalid in each class.

E. AUTOMATED PLANNING LAYER

The automated planning layer represents the planning process
with a predicion of invalid states. The planner component
was altered with the inclusion of a state validator, which is
responsible for permitting invalid states to be validated during
the planning time. In addition to receiving the domain and
problem files, the planner also receives the file of invalid

VOLUME 9, 2021

C. G.R. D. Cruz et al.: Automated Planning With Invalid States Prediction

IEEE Access

1 (define (domain invalid —state —settings)
2 (:requirements :strips)

3 (:action invalidState

4 :parameters (?c ?b)

5 :precondition (and (block ?c¢)

6 (block ?b))

7 :effect (and (on ?c¢ ?b))

8)

9)

Listing 1. Setting invalid states.

states which contains the definition of states that cannot make
up the plans [15].

In [15] is proposes the creation of an additional function
within the planner. Which uses the same planning language
that was used by the planner to describe invalid states and
represent them in memory. The state is configured as a
common action using the same notations as a domain file.
Listing 1 presents the example of the definition of invalid
states illustrated in Instance I1I of FIGURE 1. The state was
configured as a common action, using the same definitions
as the PDDL domain file. In this example, in the invalid-
State’s action (Listing 1, line 3), two variables are defined
as parameters (Listing 1, line 4), and in the preconditions,
the type is associated to each parameter, being two blocks.
The positioning and order of the stacked blocks is defined in
the effects, such as: (and (on ?c ?b) (Listing 1, line 7).

The approach uses the existing implementation in its own
planner to read the new file and load it into memory. The func-
tion that applies the actions generating new child states, has
been adapted to validate the states. In [15] was implemented
the States Validator function in the planner. Because during
the planning, after the generation of each new state, the func-
tion is called to validate if the generated state corresponds to
an invalid state.

1 function

2 StateValidator (newState ,
3 var equalState

4 for each invalidStates.defs do

invalidStates)

5 actions <— invalidStates.defs.effect
6 for each actions do

7 equalState <— false

8 for each newState.defs do

9 if newState.defs.operation!= not
10 and newState.defs.action ==

11 actions.action and

12 Equal(newState . defs . params ,

13 actions .params) then

14 equalState <— true

15 return equalState;

16 end

Listing 2. State validator function.

Listing 2 shows the definition of the State Validator algo-
rithm. The function receives the new generated state and

VOLUME 9, 2021

the list of invalid states as parameters. The comparison of
the states is based on three conditions (Listing 2, line 9):
if the operation is not negative; if the action of both parties is
the same; and if the parameters of the parts are the same. The
Equal function compares the state’s parameters, verifying if
the size and values are identical.

The validation is done by comparing all the definitions in
the invalidStates list (Listing 2, line 4). If any invalid state
has all of its parts in the new state, the function returns
true (Listing 2, line 14) and the generated state is discarded
from the planning. The planner continues to generate and
validate other states until it finds the objective state of the
problem [15].

Similarly to the approaches described in the related work
section, such as, in [19], where a proposition to create a PDDL
language extension, in [21], who developed a classification
process based on the history of execution; or in [4], which
included new definitions in the representation of planning.
In this architecture, the creation of the concept of invalid
states, which is considered a way of including preferences
within the planning process by modifying the automated
planning through the validation of plans, allows to generate
plans with higher quality in domains with restrictions on the
states.

This section described the architecture designed to improve
the automated planning process. The application of the data
classification process and configuration of invalid states are
presented through a case study in the experiment’s section.

IV. EXPERIMENTS

This section describes the application of automated plan-
ning architecture with the prediction of invalid states in an
aerospace area case study. The telemetry’s data from a space-
craft, obtained through simulation was used to develop a
classification model, configure invalid states and integrate a
planning process. The experiment was carried out to achieve
the following objectives:

« Create a case study to apply alearning process for invalid
states;

« Present the result of the integration of the learning and
planning processes through the automatically generated
plans;

« Validate the configured invalid states to make sure they
were considered when generating the plan, and corre-
sponding to the classification presented by the current
state of the domain.

A. MATERIALS AND METHODS

In this experiment we used the Atom SysVAP [26] finite
automata validation system. The simulator allows the fol-
lowing: setting the values of environment variables and the
machine’s state, sending commands to change states and stor-
ing data generated by the simulation [26]. We simulated the
operation of a satellite to obtain telemetry data and defined a
case study to create a learning process for invalid states.

68295

IEEE Access

C. G.R. D. Cruz et al.: Automated Planning With Invalid States Prediction

The case study considered the analysis and creation of
invalid states related to the power supply subsystem of a
satellite. According to the study of [27], 27% of failures in
spacecrafts are due to the power supply subsystem. Data min-
ing techniques have been applied to detect these anomalies
in satellite telemetry [28]-[30]. The simulation consisted of
putting the satellite in a situation of extremely low battery,
through the operation with several subsystems connected at
the same time, causing greater battery consumption.

The chosen domain was the BR2 nano satellite that is
present in the example models of the Atom SysVAP sim-
ulator [26]. This domain is composed of five subsystems,
three of which are payload (SDATF, SLP, SMDH), the OBC -
on-board computer and the transmitter. This domain has the
following set of remote controls, which can be executed
in the simulator’s plan: get_tm - generates the telemetry
package of the subsystems; repair - repairs the alert state
of the onboard control subsystem status; com_t_on - turns
on the transmitter’s transmission mode; com_t_off - turns
off the transmitter’s transmission mode; sub_on - connects
a subsystem and sub_off - shuts down a subsystem [26].

TABLE 2. Telemetry data.

Name Type Values

Battery numeric 13% - 19%
Total drop numeric 0-1

Orbit categorical ~ Sun, Ecl

OBC categorical ~ Alert, On
Communication categorical — Re/Tr, Receiver
SDATF categorical ~ On, Off

SLP categorical ~ On, Off
SMDH categorical ~ On, Off
Time(s) numeric -

The TABLE 2 lists the characteristics of the data set sent
by the telemetry package. Battery telemetry is a numerical
value that indicates the battery level of the satellite (this level
varies between 13% and 19%). The fotal drop is an index
of the total energy discharge from the battery, calculated
using the sum of the energy consumption of each subsystem
by the time of operation (the value varies between 0 and 1).
Orbiting telemetry indicates the reading of the environment
value: Sun - when the satellite battery is being charged by the
sun, Ecl - when the satellite is in eclipse (without sunlight)
and the battery is not being charged. OBC telemetry indicates
whether the system is in a normal (On) or an alert state (Alert).
Telemetry communication indicates the operating mode of
the transmitter, Re / TR - indicating that the transmit and
receive mode is active or Receiver - only the active receiver
mode. The remaining telemetry data (SDATFE, SLP, SMDH)
corresponds to the payloads that indicate whether they are
on or off.

The data process analysis and the creation of the data
classification model was carried out using the Orange Data
Mining tool [31]. When performing the satellite operation

68296

battery

Oed

© sun
] 20000 40000 0000 B0000 100000

time(s)

FIGURE 5. Scatter plot of battery level time series.

simulation, the generated telemetry data was loaded and
analyzed to form the classification criteria and to train the
classification algorithm.

B. CASE STUDY

The telemetry data generated in the simulation with the bat-
tery experiment was exported to .csv format and loaded into
the Orange tool. FIGURE 5 shows the scatter plot of the
battery level variation during the simulation. It is observed
that at the instant 25,000s the battery level begins to grad-
ually decrease until it reaches 40,000s where even with the
presence of the sun (represented by the color red) the battery
level continues to discharge. The battery discharge scenario
occurs until 50,000s, when the OBC subsystem goes on
alert, shutting down the other satellite subsystems, to ensure
that the battery is not fully discharged. After this moment,
the battery level starts to charge again.

In the next subsections, we describe the execution of
the experiment in three stages. In the classification stage,
we analyzed the data, developed the classification criteria and
the choice of an algorithm to classify the data. During the
configuration we chose the groups of invalid states that were
configured. During the planning we showed the result of the
plans generated using the experiment setup.

1) CLASSIFICATION

One of the ways to automatically identify abnormalities in a
data set is through the use of outlier detection algorithms [32].
The Orange Outlier Detection widget [31] was used with the
covariance estimator method to visualize the abnormalities
present in the simulation data. FIGURE 6 shows the result of
the outliers identified in the time series.

Based on the analysis of the abnormal behavior identified
in the outliers and the study of classification of battery states
presented in [33], the criteria for classification of states pre-
sented in TABLE 3 was developed. Considering the battery
level, the orbit and the total discharge, three classes were cre-
ated: Forbidden, Alert, Safe. The Forbidden state represents
the situation where the battery is no longer charged when
illuminated by the sun. The Alert state represents the situation

VOLUME 9, 2021

C. G.R. D. Cruz et al.: Automated Planning With Invalid States Prediction

IEEE Access

battery

L L L L L
36000 40000 42000 44000 46000

timers)

FIGURE 6. Outlier analysis scatter plot.

TABLE 3. Classification criteria definition table.

Battery Total Drop Orbit Operating State
> 17.5% < 0.000533 ECL SAFE

> 18% < 0.000533 SUN SAFE

< 17.5% < 0.000533 ECL ALERT

< 18% < 0.000533 SUN ALERT

< 16.65% > 0.000533 ECL/SUN FORBIDDEN

battery

o
X sun

© safe
Hert

@b

0 20000 0000 50000 0000 Ta0600
time(s)

FIGURE 7. Scatter plot data classified.

where the battery level is below 18% in the sun and 17.5% in
eclipse. The Safe state represents the common situation when
the battery level is higher than the values of 18% in sun and
17.5% in eclipse.

The Orange tool provides the Feature Constructor widget
used for creating new features in a data set. The classification
parameters defined in TABLE 3 were inserted in the widget
to create a new feature with the value of the class established
from the data characteristic. FIGURE 7 shows the result of
the classification through a scatter chart where the classes are
identified by colors.

With the classified data, a data prediction model was cre-
ated using the Predictions widget connected to the Orange
Naive Bayes classifier model [31]. We use Naive Bayesian
algorithm for fault detection in satellite batteries because it
presents good results as demonstrated in [29]. The classifier
Naive Bayesian presents a good result as a classifier for fault

VOLUME 9, 2021

detection in satellite batteries. The model uses the classified
data to make the predictions in the newly received telemetry
observations.

2) CONFIGURATION

The files with the domain definitions and planning problem
to be used in the validation of the automated planning layer
were created based on the commands present in the simula-
tion, as described in the section IV-A. The objective of the
planning problem is to send the telemetry data obtained in
the subsystems. However, the OBC subsystem must obtain
the telemetry data from the payload subsystems and generate
a packet to be sent by the transmitter.

In the domain actions, the following preconditions were
defined to achieve the objective of the problem: i) the trans-
mitter must be configured in Re/Tr mode to send the teleme-
try data; ii) the subsystem must be turned on for the OBC
to obtain the telemetry data; iii) and the package must be
generated with a pair of telemetry data corresponding to a
maximum of two payload subsystems. The initial state of the
planning problem was defined with all payload subsystems
turned off and the transmitter configured in Receiver mode.
The main objective of the problem is to send telemetry data
from the satellite.

TABLE 4. Invalid state configuration table.

Group Operating State Invalid Situations

Gl SAFE ON - SLP

G2 ALERT ON - SLP and SDATF

G3 FORBIDDEN ON - (SLP and SDATF and SMDH)

and (SLP or SDATF or SMDH)

In order to configure the invalid states in the auto-
mated planning process, for each operating state defined in
TABLE 3, a group of invalid states has been assigned as
shown in TABLE 4. In the first group it was defined that in the
SAFE operating state, the scenario where the SLP subsystem
is on represents an invalid situation. In the second group in
the ALERT operating state, the scenario where the SLP and
SMDH subsystems are on simultaneously is invalid. Lastly,
in the third group if both SLP, SMDH or SDATF subsystems
are on individually or simultaneously, it is invalid.

The invalid state file was generated using the correspond-
ing configuration layer interface, where the files generated in
each of the groups configured in this experiment are listed
below. Listing 3 shows the invalid state’s file configured
for the G1 group. The invalid situation is configured from
the definition of the action effect subsystemon, where the
expression (poweron ?slp) (Listing 3, line 6) represents the
situation where the SLP subsystem is on.

Listing 4 shows the definition of the G2 group invalid
state’s file. In order to represent the simultaneous turn on of
two subsystems, the effect was configured as shown in the

68297

IEEE Access

C. G.R. D. Cruz et al.: Automated Planning With Invalid States Prediction

1 (define (domain invalidstatesG1)
2 (:requirements :strips)

3 (:action invalidState

4 :parameters (?slp)

5 :precondition (and

6 (subsystem ?slp))

7 :effect (and (poweron ?slp))
8)

9)

Listing 3. Setting group G1 invalid states.

1 (define (domain invalidstatesG2)

2 (:requirements :strips)

3 (:action invalidState

4 :parameters (?slp ?sdatf)

5 :precondition (and (subsystem ?slp)
6 (subsystem ?sdatf))

7 :effect (and (poweron ?slp)

8 (poweron ?sdatf))

9)

10)

Listing 4. Setting group G2 invalid states.

expression (poweron ?slp) (poweron ?sdatf) combining the
SLP and SMDH subsystems being turned on simultaneously.

The configuration of the third invalid states group is shown
in Listing 5. Each subsystem is defined in a different action,
representing that the subsystems cannot be turned on individ-
ually or simultaneously.

In Listing 5 the action simultaneouslyStates (Listing 5,
line 3) defines an invalid state when all three subsystems
are linked together. The rest of the definitions invalidSip
(Listing 5, line 14), invalidSdatf (Listing 5, line 20) and
invalidSmdh (Listing 5, line 26) define that the subsystems
cannot be linked individually.

3) PLANNING

The classification model defined and the planning domain’s
invalid states are configured according to the architecture’s
definition in section III-B. The invalid state planner proposed
by [15] was used to execute the planning problem, operating
the same domain and problem with the different groups of
invalid states. Listing 6 shows the plan generated using the
G1 group of invalid state’s file.

As shown in Listing 6 in step 1 - the transmitter was
changed to Re/Tr mode; in step 2 - the SDATF subsystem
was turned on; In step 3 - the OBC obtained the telemetry
from the SDATF; In step 4 - the SMDH subsystem was
turned on; In step 5 - the OBC obtained SMDH telemetry;
In steps 6 and 7 - the subsystems were turned off; In step 8 -
the telemetry package was generated; and in step 9 - the
transmitter sends the telemetry package generated by the
OBC. Note that the SLP subsystem defined in group G1, was

68298

1(define (domain invalidstatesG3)
2 (:requirements :strips)

3 (:action simultaneouslyStates
4 :parameters (?slp ?sdatf ?smdh)
5 :precondition (and

6 (subsystem ?slp)

7 (subsystem ?sdatf)

8 (subsystem ?smdh))

9 effect (and

10 (poweron ?slp)

11 (poweron ?sdatf)

12 (poweron ?smdh))

13)

14 (:action invalidSlp

15 :parameters (?slp)

16 :precondition (and

17 (subsystem ?slp))
18 :effect (and (poweron ?slp))
19)

20 (:action invalidSdatf

21 :parameters (?sdatf)

22 :precondition (and

23 (subsystem ?sdatf))
24 :effect (and (poweron ?sdatf))
25)

26 (:action invalidSmdh

27 :parameters (?smdh)

28 :precondition (and

29 (subsystem ?smdh))
30 :effect (and (poweron ?smdh))
31)

32)

Listing 5. Setting group G3 invalid states.

changetransmitter transmissor rectr
subsystemon sdatf

gettm sat obc sdatf

subsystemon smdh

gettm sat obc smdh

subsystemoff sdatf

subsystemoff smdh

generatepkg obc sdatf smdh

sendtelemetry transmissor rectr obc

NeloBEN Be N R O N R

— Solution found in 9 steps!
Depth: 9, 134883 child states.
Runtime: 476579.710ms

Listing 6. Plan executed with G1 group.

not linked by the action subsystemon during the steps of the
generated plan.

Listing 7 shows the plan generated using the G2 group
invalid state’s file. The restriction imposed on the G2 group

VOLUME 9, 2021

C. G.R. D. Cruz et al.: Automated Planning With Invalid States Prediction

IEEE Access

changetransmitter transmissor rectr
subsystemon sdatf

gettm sat obc sdatf
subsystemoff sdatf
subsystemon slp

gettm sat obc slp
subsystemoff slp
generatepkg obc sdatf slp
sendtelemetry transmissor

O 01O\ N AW

rectr obc

Solution found in 9 steps!
Depth: 9, 2388 child states.
Runtime: 18887.102ms

Listing 7. Plan executed with G2 group.

defined that the SLP and SDATF subsystems were not turned
on simultaneously. Therefore after obtaining the telemetry of
the SDATF subsystem in step 3, the subsystem was turned
off in step 4 before the SLP subsystem was turned on, thus
respecting the restriction imposed on the invalid states. The
restrictions were followed by the planner in both groups,
where we can see that the subsystems were linked respecting
the configured rules.

In terms of the performance of plan generation, even
though the depth of the search tree is the same, we can observe
that with the increase of invalid situations in the G2 group,
the number of child states generated in the search space is
50 times less, as well as the execution time which is 25 times
shorter when compared to the G1 group plan. Due to the
fact that the planner ignores invalid states, it generated fewer
branches.

In the planning of the G3 group, a plan was not generated,
since the planner did not find a solution to send the telemetry
from the satellite because at least two payload subsystems
must be connected, as described in the section IV-B2. It is
concluded that the three groups of invalid states were met
in the executed plans and therefore the objectives of the
experiment that were defined at the beginning of this section
were achieved.

Finally, the case study allows the learning process to be
applied based on the classification of operating states. The
processes integration result was proven through the plans
generated in an automated way and through the different
verification steps generated in each of the plans, respect-
ing invalid states configured in each group. In the example,
the satellite situation battery was used to define when the sub-
systems can be turned on, thus preventing the satellite from
going on alert and its battery being completely discharged.

V. CONCLUSION

Plan validation is not a trivial task in the automated planning
of complex domains, since the generated plans can pose risks
to the domain security without a validation step. Based on

VOLUME 9, 2021

the creation of a new definition that models the invalid states
during the planning stage and allows the plans to be generated
following restrictions according to the current state of the
domain, the approach presented in this study guarantees the
planning of valid plans. With the state’s validation being done
during planning time, the need to execute a plan validation
stage after the planning process was eliminated, contributing
to the reduction of the total planning time and avoiding
replanning.

To the best of our knowledge, there is no other approach
that uses a planner modified to validate invalid states, includ-
ing planning restrictions obtained from domain learning,
it was possible through the use of an object-oriented planning
meta-model, to join the planning and learning processes in a
standard way. Our proposal enables the solution to be reused
and allows the configuration to be easily implemented with
other planning languages.

In summary, the architecture implementation allows to
generate the plans in an independent mode. Because the
changes in the domain’s behavior could be considered in the
automated planning, without having the domain definitions
being modified or a planning problem.

A. CONTRIBUTIONS

The main contribution of this study is the proposal to validate
plans during the planning time, presented as a new way to
validate invalid states within the planner itself. As with other
planning approaches, data mining is used to improve the
process as well as learning new rules. In this study, we also
contribute with the use of learning to configure groups of
invalid states and integrate a viable solution to the automated
planning process.

The architecture presented also helps to update the plan-
ning of changes that can occur in the domain, because identi-
fying the changes that occur in some domains can take a long
time. However, problems such as invalid plans being executed
can be eliminated with a process that identifies such changes
immediately.

B. LIMITATIONS

« Even though the language used in the planner is reused to
represent invalid states, modifying the planner’s imple-
mentation to include the state validator method might
require more complex coding, depending on the com-
plexity or technique used;

o As the restrictions increase, the number of plans not
found can also increase. As seen in the result of the
last experiment of this study, when the invalid state
prevented the planner from finding the solution to the
problem. If this type of situation occurs, mitigative
solutions can be used, such as operating the domain with
its reduced functions or creating contingency plans that
take actions to achieve solutions in another way;

o The validation of the invalid states during the planning
stage is performed in the known states of the planning

68299

IEEE Access

C. G.R. D. Cruz et al.: Automated Planning With Invalid States Prediction

domain used. In other words, the domain must contem-
plate the invalid state in its instance so that it is possible
to be validated. However, any invalid state that may
appear in the domain must be contained in the domain
definition;

C. FUTURE WORK

As the restrictions increase, the number of unfound plans
may also increase. As shown in the last experiment result
of this work, when the invalid state prevents the planner
from finding the solution to the problem. When this type of
situation occurs, mitigative solutions or contingency plans
must be created.

As future work, we intend to use techniques for meet-
ing partial plan objectives combined with the validation of
invalid states. Using the invalid states feature to improve
performance and planning time, as well as learning, can
contribute to improve performance because the planner elim-
inates search paths as it finds invalid states.

REFERENCES

[1]
[2]

[3]

[4]

[5]

[6]

[71

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. Souza, “A mathematical model to predict operating states of satellites,”
in Proc. SpaceOps Conf., Jun. 2012, Art. no. 1272995.

J. Tominaga, M. Ferreira, and J. Silva, A rule-based satellite simulator
for use in flight operations planning,” J. Comput. Interdiscipl. Sci., vol. 2,
no. 2, pp. 111-121, 2011.

L. Cardoso, M. Ferreira, and V. Orlando, “‘An intelligent system for gener-
ation of automatic flight operation plans for the satellite control activities
at INPE,” in Proc. SpaceOps Conf., Jun. 2006, p. 5575.

J. A. Baier, C. Fritz, M. Bienvenu, and S. A. Mcllraith, “Beyond classical
planning: Procedural control knowledge and preferences in state-of-the-art
planners,” in Proc. AAAI 2008, pp. 1509-1512.

B. Nebel, “On the compilability and expressive power of proposi-
tional planning formalisms,” J. Artif. Intell. Res., vol. 12, pp. 271-315,
May 2000.

M. Van Den Briel, R. Sanchez, M. B. Do, and S. Kambhampati, “Effective
approaches for partial satisfaction (over-subscription) planning,” in Proc.
19th Nat. Conf. Artif. Intell., 2004, pp. 562-569.

A. Gerevini and D. Long, “Preferences and soft constraints in PDDL3,”
in Proc. ICAPS Workshop Planning Preferences Soft Constraints, 2006,
pp. 46-53.

J. Rintanen, “Complexity of concurrent temporal planning,” in Proc.
ICAPS, vol. 7, 2007, pp. 280-287.

A. Coles and A. Smith. (2004). Marvin: Macro-Actions From Reduced
Versions of the Instance. [Online]. Available: https://nms.kcl.ac.
uk/andrew.coles/publications/publication84.pdf

C. Domshlak, E. Karpas, and S. Markovitch, *““To max or not to max: Online
learning for speeding up optimal planning,” in Proc. 24th AAAI Conf. Artif.
Intell., 2010, pp. 1-6.

M. Alhossaini and J. C. Beck, “Instance-specific remodelling of planning
domains by adding macros and removing operators,” in Proc. 10th Symp.
Abstraction, Reformulation, Approximation, 2013, pp. 1-9.

C. Areces, F. Bustos, M. A. Dominguez, and J. Hoffmann, “Optimizing
planning domains by automatic action schema splitting,” in Proc. ICAPS,
2014, pp. 1-9.

M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and
Practice. Amsterdam, The Netherlands: Elsevier, 2004.

R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application
of theorem proving to problem solving,” Artif. Intell., vol. 2, nos. 3-4,
pp. 189-208, Dec. 1971.

C. Rodrigues da Cruz, M. Ferreira, and R. Silva, “State validation in
automated planning,” in Proc. ICEIS, 2020, pp. 396-406.

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “PDDL—The planning domain
definition language—version 1.2,” Yale Center Comput. Vis. Control,
Lenoir City, TN, USA, Tech. Rep. CVC TR-98-003/DCS TR-1165,
1998. [Online]. Available: https://homepages.inf.ed.ac.uk/mfourman/
tools/propplan/pddl.pdf

68300

(17]

(18]
(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

M. Vallati, L. Chrpa, M. Grzes, T. L. McCluskey, M. Roberts, and
S. Sanner, “The 2014 international planning competition: Progress and
trends,” AI Mag., vol. 36, no. 3, pp. 90-98, Sep. 2015.

C. Domshlak, E. Hiillermeier, S. Kaci, and H. Prade, “‘Preferences in Al:
An overview,” Artif. Intell., vol. 175, nos. 7-8, pp. 1037-1052, May 2011.
A. Jorge and S. A. Mcllraith, “Planning with preferences,” Al Mag.,
vol. 29, no. 4, p. 25, 2008.

A. Gerevini and D. Long, “Plan constraints and preferences in
PDDL3,” Dept. Electron. Automat., Univ. Brescia, Brescia, Italy,
Tech. Rep. 2005-08-07, 2005.

C. Boutilier, T. Dean, and S. Hanks, ‘‘Decision-theoretic planning: Struc-
tural assumptions and computational leverage,” J. Artif. Intell. Res.,
vol. 11, pp. 1-94, Jul. 1999.

P. Haslum and P. Jonsson, “‘Planning with reduced operator sets,” in Proc.
AIPS, 2000, pp. 150-158.

A. Botea, M. Enzenberger, M. Miiller, and J. Schaeffer, “Macro-FF:
Improving Al planning with automatically learned macro-operators,”
J. Artif. Intell. Res., vol. 24, pp. 581-621, Oct. 2005.

J. Frank, ““Using data mining to enhance automated planning and schedul-
ing,” in Proc. IEEE Symp. Comput. Intell. Data Mining, Mar./Apr. 2007,
pp. 251-260.

R. Silva, M. G. Ferreira, and N. Vijaykumar, “An object-oriented meta-
model as ontology for describing domains and problems for planning
space applications planning,” in Proc. SpaceOps Conf., Apr. 2010,
p. 2172.

A. A. S. Ivo, “A tool for evaluating satellite flight plans using state
models,” M.S. thesis, Eng. Manage. Space Syst., Nat. Inst. Space Res.,
Séo José dos Campos, Brazil, 2013.

M. Tafazoli, ““A study of on-orbit spacecraft failures,” Acta Astronautica,
vol. 64, nos. 2-3, pp. 195-205, Jan. 2009.

D.R. Azevedo, A. M. Ambrésio, and M. Vieira, “Applying data mining for
detecting anomalies in satellites,” in Proc. 9th Eur. Dependable Comput.
Conf., May 2012, pp. 212-217.

M. A. Galal, W. M. Hussein, E. E.-D. A. Kawy, and M. M. Sayed, “Satellite
battery fault detection using Naive Bayesian classifier,” in Proc. [EEE
Aerosp. Conf., Mar. 2019, pp. 1-11.

S. Abdelghafar, A. Darwish, A. E. Hassanien, M. Yahia, and A. Zaghrout,
“Anomaly detection of satellite telemetry based on optimized extreme
learning machine,” J. Space Saf. Eng., vol. 6, no. 4, pp.291-298,
Dec. 2019.

J. Demsar, T. Curk, A. Erjavec, C. Gorup, T. Hocevar, M. Milutinovi¢,
M. Mozina, M. Polajnar, M. Toplak, A. Stari¢, M. gtajdohar, L. Umek,
L. Zagar, J. Zbomar, M. Zitnik, and B. Zupan, “Orange: Data mining
toolbox in Python,” J. Mach. Learn. Res., vol. 14, no. 1, pp. 2349-2353,
2013.

Orange Data Mining. (2020). Orange Visual Programming Documenta-
tion. [Online]. Available: https://orange3.readthedocs.io/en/latest/

P. B. de Souza, M. G. V. Ferreira, and J. D. S. da Silva, “A tool for
prediction of satellite future states,” J. Aerosp. Comput., Inf., Commun.,
vol. 7, no. 12, pp. 406-414, Dec. 2010.

CAIO GUSTAVO RODRIGUES DA CRUZ grad-
uated in system analysis and development from
the FATEC Mogi das Cruzes, Sdo Paulo Tech-
nological College, Mogi das Cruzes, Sdo Paulo,
Brazil, in 2016. He received the master’s degree in
space systems engineering and management from
the National Institute for Space Research—INPE,
Sdo José dos Campos, Sdo Paulo, in 2021.

He currently works as a Software Developer
with Muralis Technology. He has an article pub-

lished in Proceedings of the 22nd International Conference on Enterprise
Information Systems (ICEIS 2020).

VOLUME 9, 2021

C. G.R. D. Cruz et al.: Automated Planning With Invalid States Prediction

IEEE Access

RODRIGO ROCHA SILVA graduated in com-
puter science from the University of Mogi das
Cruzes, Brazil. He received the master’s degree
in applied computing from the National Institute
for Space Research—INPE, and the Ph.D. degree
in computing from the Technological Institute of
Aeronautics—ITA.

He is currently a Full Professor with the Paula
Souza Center, Sdo Paulo. He is also a member of
the Center for Informatics and Systems, Depart-
ment of Informatics Engineering, University of Coimbra. He is the author of
more than 30 articles in international journals and conferences, he develops,
and guides works in big data and data mining in academic and business
contexts.

MAURICIO GONCALVES VIEIRA FERREIRA
received the master’s and Ph.D. degrees in applied
computing from the National Institute for Space
Research (INPE), in 1996 and 2001, respectively.

He is currently a Full Professor with the Post-
graduate Course in Space Engineering and Tech-
nology (ETE): concentration area Engineering and
Management of Space Systems. He is also a
Researcher and a Coordinator of the Satellite Con-
trol Center, INPE. He produced more than 170 arti-
cles, supervised 16 Ph.D., 24 master’s, and two postdoctorates. He supervises
four Ph.D. students and seven master’s students. He works in the area of
research and development of software for satellite control. He is a Scientific
Advisor to FAPESP in the area of software engineering. He was already

VOLUME 9, 2021

a Productivity Scholarship Developer at Technology and Innovative Exten-
sion Level 2. He is a member of the International Committee for Standard-
ization of Software in the Space Area (CCSDS). He is a member of the
Organizing Committee of the International Space Congress—SPACEOPS.

JORGE BERNARDINO (Member, IEEE) received
the Ph.D. degree from the University of Coimbra,
in 2002.

From 2005 to 2010, he was the President of
ISEC, Portugal. From 2017 to 2019, he was also
the President of ISEC Scientific Council. He was
a Visiting Professor with CMU, in 2014. He is cur-

i rently a Coordinator Professor with the Polytech-
”\ ; nic of Coimbra—ISEC. He is also the Director of
N the Applied Research Institute (i2A), Polytechnic
of Coimbra, Portugal. He participated in several national and international
projects. He has authored more than 200 publications in refereed conference
papers and journal articles. His main research interests include big data,
NoSQL, data warehousing, dependability, and software engineering. He is
a member of ACM.

68301

