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ABSTRACT Processing-in-memory (PIM) comprises computational logic in the memory domain. It is
the most promising solution to alleviate the memory bandwidth problem in deep neural network (DNN)
processing. The hybrid memory cube (HMC), a 3D stacked memory structure, can efficiently implement
the PIM architecture by maximizing the existing legacy hardware. To accelerate DNN inference, multiple
HMCs can be connected, and data-independent tasks can be assigned to processing elements (PEs) within
each HMC. However, owing to the packet-switched network structure, inter-HMC interconnects exhibit
variable and unpredictable latencies depending on the data transmission path and link contention. A well-
designed task schedule using context switching can effectively hide communication latency and improve PE
utilization. Nevertheless, as the number of HMC increases, the variability of a wide range of inter-HMC
communication latencies causes frequent context switching, degrading overall performance. This paper
proposes a DNN task scheduling that can effectively utilize task parallelism by reducing the communication
latency variance owing to HMC interconnect characteristics. Task partitions are generated to exploit
parallelismwhile providing inter-HMC traffic within the sustainable link bandwidth. Task-to-HMCmapping
is performed to hide the average communication latency of intermediate DNN processing results. A task
schedule is generated using retiming to accelerate DNN inference while maximizing resource utilization.
The effectiveness of the proposed method was verified through simulations using various realistic DNN
applications performed on a ZSim x86-64 simulator. The simulations revealed that DNN processing with
the proposed scheduling improved the DNN processing speed by reducing the processing time by 18.19%
over conventional methods where each HMC operated independently.

INDEX TERMS Processing-in-memory, hybridmemory cube, deep neural network, task scheduling, parallel
computing.

I. INTRODUCTION
Deep neural networks (DNNs) have achieved breakthroughs
in solving awide range of challenging computation problems,
from image recognition to speech translation [1]. State-of-
the-art DNNs rely on massive parameter count (≥108) and
manually designed architectures (with 101–103 layers) to
surpass human performance. Inferring these models causes
the von Neumann bottleneck between the memory and the
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processor in existing architectures. Off-chip DRAM access
consumes hundreds of times the power consumed by an
ALU operation [2], [3]. The processing-in-memory (PIM)
paradigm performs computations using computational logic
added to memory and is the most promising approach for
alleviating these shortcomings [4]. Past attempts to integrate
high-density memory and computational logic on a single
chip or die have been extremely complex and expensive.

3D-stacked memory architectures, including hybrid mem-
ory cubes (HMCs), offer the possibility of implement-
ing PIM platforms efficiently [5]–[7]. Their through-silicon
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via (TSV)-based connections dramatically reduce process
complexity and yield degradation problems by enabling cost-
effective integration of independently fabricated logic and
memory. In an HMC, each grouping of memory partitions
is combined with a corresponding section of the logic die,
forming a parallelizable computing unit referred to as a vault.
Although processing elements (PEs) in the HMC provide the
benefit of computational efficiency, the system performance
does not scale proportionally with the number of PEs [8].
This occurs because adding a PE also increases the amount of
memory bandwidth required to support it. However, themem-
ory bandwidth remains almost constant irrespective of the
memory capacity owing to the limitation on the number of
TSVs per HMC. As a result, to support a higher computing
performance, a new HMC must be connected to increase the
memory bandwidth and the number of PEs. Existing studies,
including Tesseract [5] and GraphH [6], have focused on this
problem and proposed an efficient connection structure of
HMCs for PIM.

The most important objective is to maximize the overall
performance by balancing the total computing throughput
of PEs and the sustainable BW that inter-HMC links can
provide. Data-level independent tasks can be allocated to
different PEs to improve parallel processing. Throughput can
be improved compared to a single HMC by utilizing PEs in
multiple HMCs. However, the increased latency of commu-
nication traffic between HMCs may cause a bottleneck in
throughput improvement.

In inter-HMC networks, a packet-switched protocol is used
instead of the DDRx protocol [9], [10]. This allows parallel
transmission between HMCs, but the communication latency
between HMCs increases and becomes variable owing to the
following reasons. First, the number of hops that the packets
pass through varies depending on the source and destination
of data transmission owing to the router-based connection.
In intra-HMCcommunications, data can be transferredwithin
a guaranteed time through a fully connected interconnect
with sufficient bandwidth, but this is not possible in inter-
HMC communications. Second, when the number of packets
exceeds the sustainable link bandwidth, contention occurs,
further increasing the latency. A well-designed task schedule
that uses context switching is effective for hiding communi-
cation latency and improving the PE utilization. Nevertheless,
latency hiding that mitigates the high latency of the intercon-
nect betweenHMCs requires frequent context switching, thus
generating additional delays. Therefore, a task scheduling
technique is needed that considers the effect of the number
of context switching on the worst-case latency.

This paper proposes a DNN task scheduling that fully
utilizes data-level parallelism by reducing the communication
latency variance owing to HMC interconnect characteristics.
Tasks are allocated to the HMC to reduce link contention and
long hop count, which are the factors that increase the worst-
case latency. First, in task partitioning to utilize data-level
parallelism, contention is prevented by maintaining the com-
munication between HMCs as a sustainable link bandwidth.

Next, task-to-HMCmapping is performed to hide the average
communication latency of the intermediate DNN process-
ing results. Finally, in task scheduling, the communication
latency of each task becomes hidden, and PE utilization is
improved. The primary contributions of this study are as fol-
lows. First, the DNN computation performance is improved
by mitigating the worst-case communication latency between
HMCs in task scheduling. This is solved by preventing traffic
that exceeds the sustainable bandwidth in task partitioning
and minimizing the hop count of communication in task-to-
HMC mapping. Second, because the proposed task partition-
ing and scheduling are recursive, the schedule can be derived
faster through dynamic programming.

The remainder of this paper is organized as follows.
Section II introduces HMC-based PIM studies related to the
proposed method. Then, the advantages of the new method
over the existing methods are presented. Section III presents
the proposed technique in terms of task partitioning, task-
to-HMC mapping, and schedule generation. In Section IV,
the effectiveness of the proposed method is confirmed
through a ZSim-HMC-based system-level simulation using
various realistic DNN applications. Section V provides the
conclusion.

II. RELATED WORK
A. PROCESSING-IN-MEMORY
PIM architecture can place computational resources
inside or near the memory to enhance the processing speed
[11]–[14]. Several solutions have been proposed to improve
the performance of PIM architectures. To date, PIM solutions
typically leverage the high internal bandwidth of DRAMdual
in-line memory modules (DIMM) to accelerate computation
by modifying the architecture or operation of DRAM chips
to implement computations within the memory [15], [16].
Beyond DRAM, researchers have also demonstrated simi-
lar PIM capabilities by leveraging the unique properties of
emerging non-volatile memory (NVM) technologies such
as resistive RAM (ReRAM) and phase-change memory
(PCM). The specific implementation approaches vary widely
depending on the type of memory technology used; however,
the modifications are generally minimal to preserve the origi-
nal function of thememory unit andmeet area constraints. For
instance, certain DRAM-based solutions minimally change
the DRAM cell architecture while relying heavily on altering
memory commands from the memory controller to enable
functions such as copying a row of cells to another, logical
operations such as AND, OR, and NOT, and arithmetic
operations such as addition and multiplication. DRAM and
NVM-have demonstrated promising improvements for graph
and database workloads by accelerating search and update
operations directly where the data are stored.

The HMC is also a promising solution for implement-
ing PIM by maximizing the legacy hardware without new
process technology [10]. The HMC memory stack contains
16 or 32 vaults. The memory and logic layers in each vault
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are connected to the TSVs. The HMC architecture places
the PE close to the data in memory. Similar architectures
have been applied to TETRIS [17] and Tesseract [5], which
integrate a neural network engine on a logic die and utilize
multiple DRAM dies on the HMC.

Azarkhish et al. proposed a smart memory cube
that added high bandwidth, low latency, and eXtensible
Interface-4.0 [18] compatible logic base (LoB) interconnect
to meet the enormous bandwidth demand of HMC serial
links [19]. The modified intra-HMC interconnect provides
additional bandwidth to the PIM device embedded in the
LoB. Dai et al. proposed GraphH which links 16 HMCs for
large graph processing [6]. They dealt with random access
and poor locality issues through an on-chip vertex buffer
and reconfigurable double mesh topology. In addition, they
solved the problem of unbalanced workloads and heavy
conflicts through index mapping interval-block and round
interval pairs.

Ahn et al. proposed a Tesseract architecture to maximize
the available memory bandwidth in multiple HMC-based
PIM structures for graph processing [5]. Tesseract is still
widely used as the base architecture for HMC-based PIM, and
the system architecture is presented in Fig. 1. In Tesseract,
the network between the PEs of the HMC and the I/O links
is configured in a fully connected topology. Each PE has an
integrated in-order core for execution and a PF buffer (PFB)
to prefetch communication traffic. Links between HMCs are
connected in a dragonfly topology.

FIGURE 1. HMC system architecture for PIM processing.

The proposed method focuses on the HMC architecture,
such as Tesseract. It provides task scheduling that aims to
exploit parallelism in a system connecting HMCs to improve
PIM throughput and reduce the communication delay time
between HMCs.

B. DEEP NEURAL NETWORK SCHEDULING
Numerous DNN acceleration techniques have been con-
ducted to alleviate the complexity of DNN tasks that
require tremendous computation and data access, consider-
ing the attributes of algorithms and computational structure.

Related studies have mainly focused on minimizing data
movements while incorporating compression and pruning to
eliminate redundances in computation processes and data
formats [18], [19]. By pruning weights and zero activations,
the computational efficiency can be improved, and memory
footprints can be effectively reduced. Chen et al. proposed the
neural network accelerator Eyeriss, which uses zero-valued
neurons to reduce power consumption [20].

A schedule that improves data-level parallelism under a
given task size and memory access volume can also be
combined with the aforementioned redundancy removal tech-
nology to accelerate DNNprocessing. Previously, loop block-
ing or auto-tuning has been used to improve the operation
speed of DNNs [21], [22]. Donyanavard et al. proposed
SPARTA, a throughput-aware task scheduling for many-core
platforms [23]. SPARTA collects sensor data to characterize
tasks and uses this information to prioritize these tasks while
performing assignments. Gao et al. proposed Tetris, an HMC-
based neural network accelerator, and a scheduling algorithm
for it [17]. Tetris developed a hybrid partitioning scheme
that parallelizes neural network calculations through multiple
accelerators. Wang et al. jointly optimized the allocation
of computation and memory resources on the 3-D-stacked
PIM architecture to minimize schedule length by removing
synchronization overhead [24]. In the depth of previous work,
Wang et al. proposed a scheduling scheme, Para-Net, to com-
pletely utilize all the resources of a single HMC in a neural
network application [7]. They maximized resource utilization
by setting the standard for storing intermediate results in a
cachewith fast access or in a large-capacity DRAMand deter-
mining the phase through retiming-based task scheduling.

The proposed task scheduling differs from the aforemen-
tioned technology. We aim to accelerate DNN processing
through task scheduling by reducing the variance of inter-
HMC communication latency. None of the above tasks con-
sider the data communication latency that changes according
to task allocation in scheduling.

III. TASK PARALLELISM-AWARE SCHEDULING
By scaling up the number of HMCs, the computing capacity
can be expanded; however, the variation in communication
latencies in the inter-HMC communications also increases,
which exacerbates the worst-case performance. The proposed
task scheduling exploits parallelism while preventing longer
communication latencies between HMCs. First, task parti-
tions are generated to exploit parallelism while providing
inter-HMC traffic within the sustainable link bandwidth.
Second, a task-to-HMC mapping is performed to hide the
average communication latency of intermediate DNN pro-
cessing results. Third, a task schedule is generated using
retiming to accelerate the DNN processing while maximizing
resource utilization. For the formal expression of each step,
Definition 1 and the notation list of Table 1 are presented.
Definition 1: A DNNmodel can be expressed as a directed

graph, G(V, E). vi,j ∈ Vi corresponds to the j-th node of the
i-th layer, and Vi is a subset of V . eij,k ∈ E is the directed edge
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TABLE 1. Notations used in the proposed scheduling.

from vi,j on the upstream layer Vi to vi+1,k on the downstream
layer Vi+1. Each edge represents a delivery of processing
results from the upstream node to the downstream node.

A. DNN TASK PARTITIONING
Prior to task scheduling, set of vertices V on the DNN graph
is partitioned into subgraphsPn to be allocated to each HMC.
The finer the granularity of task partitions, the more the PEs
that can operate concurrently. However, this concept causes
frequent data transmission on inter-HMC communication and
consequently leads to diminishing return. Therefore, the size
of the task partition should be determined by considering the
link bandwidth and delay time between HMCs.

If data-dependent tasks are assigned to different PEs,
the transmission of intermediate results between the PEs
is inevitable. Since the inter-HMC communication latency
is longer than that of intra-HMC communication, data-
dependent tasks can be allocated within the same HMC to
reduce the latency. By contrast, even though data-independent
tasks are allocated to different PEs, there is no communica-
tion traffic. By assigning them to different HMCs, parallel
processing can be improved without communication latency.

Fig. 2(a) presents an example of graph processing through
a single HMC in a DNN graph.We assume a DNN graph with
four layers and 12 vertices and an HMC structure with two
vaults for simplicity. If all tasks in theDNN are performed in a
single HMC, the results will be stored in the cache or DRAM
of the vault where the next task will be processed. In DNN
processing using two HMCs, tasks can be partitioned parallel
to the DNN layers as depicted in Fig. 2(b) or perpendicular to
the DNN layers as depicted in Fig. 2(c). If task partitions are
generated parallel to the DNN layers, there is a dependency

FIGURE 2. Example of partitioning a DNN task graph (a) Operation on a
single HMC, (b) Operation on two HMCs with partition parallel to the
layer, (c) Operation on two HMCs with partition perpendicular to the
layer, and (d) Operation on two HMCs with partition perpendicular to the
layer minimizing data movement between partitions.

between all the tasks between partitions. Consequently, com-
putational speedup cannot be achieved. In contrast, if task
partitions are generated perpendicular to the DNN layers,
parallel computation is possible between vertices in each
layer in different partitions.

Because the number of edges between task partitions rep-
resents the amount of communication traffic between HMCs,
task partitions should be generated to reduce the number of
edges between the partitions. In Fig. 2(c), Ein(P1) is five,
Ein(P2) is four, E(P1,P2) is seven, and E(P2,P1) is seven.
Because these task partitions have more external edges than
internal edges, if these partitions are assigned to different
HMCs, they have more inter-HMC communications than
intra-HMC communications. These allocations do not prop-
erly utilize the low-latency, high-bandwidth interconnects
inside the HMC.

Fig. 2(d) shows the partitioning result that minimizes the
number of edges between subgraphs. Here, Ein(P1) is six,
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Ein(P2) is eight, E(P1,P2) is four, and E(P2,P1) is five.
The result has more internal edges and fewer external edges
than that shown in Fig. 2(c); thus faster intra-HMC links can
be utilized as much as possible compared to slower inter-
HMC links. To reduce the worst-case communication latency
caused by setting communication traffic to less than the
sustainable bandwidth, partitions with reduced inter-HMC
communication are needed, as shown in Fig. 2(d).

Algorithm 1 DNN graph partitioning, TPart(G(V, E),NP)
Input 1) DNN graph G(V,E),

2) the number of task partitions NP
Output 1) Graph partitions {P0, P1, . . . , PNP−1}
1: if G violates Condition 1 do
2: return {G}
3: end if
4: determine a balanced initial partition of the nodes into Pa and Pb

5: do
6: compute D(vi,j) values for all vi,j ∈ V
7: generate gv, av, and bv as empty lists
8: for i:=0 to NL − 1 do
9: for n:=1 to n(Vi)/2 do

10:

find vi,j from Pa and vi,k from Pb such that
g = max(E(vi,j,Pb),E(vi,k ,Pa))

Ein(vi,j)− Ein(vi,k )
is maximal

11:
remove vi,j and vi,k from further consideration

in this pass
12: add g to gv, a to av, and b to bv
13: update D values for the elements of Pa and Pb

14: end for
15: end for
16: find k which maximizes gmax , the sum from gv[0] to gv[k]
17: if gmax > 0 then

18:
exchange av[0], av[1], . . . , av[k] with bv[0], bv[1],

. . . , bv[k]
19: end if
20: until gmax ≤ 0
21: if Pa and Pb violates Condition 2 and Condition 3 then
22: return {G}
23: end if
24: NP ++
25: if NP < 5 then
26: Pa

= Partition(Pa,NP)
27: Pb

= Partition(Pb,NP)
28: else if NP = 6 then
29: Pa

= Partition(Pa,NP + 1)
30: end if
31: return {Pa,Pb}

Algorithm 1 presents the task partitioning to reduce the
number of edges between partitions First, it is necessary to
check whether the performance gain can be observed when
the target DNN graph is separated. There are situations in
which it is difficult to expect performance improvement when
partitions are divided. These cases occur when task paral-
lelism cannot be improved even by partitioning or the inter-
HMC communication delay time is long, offsetting the gain
of parallel processing. Therefore, a partition is generated only
when the following three conditions are satisfied.

Condition 1) In the layer with the most vertices, the num-
ber of vertices per partition is greater than the number of PEs
in a single HMC.

∀Vi ⊂ V,Max(n(Vi)) > NPE (1)

Condition 2) The number of internal edges of a partition
is greater than Dout/Din times the number of external edges.

∀i,Ein(P i)>Dout/Din×max(
∑
∀j

E(P i,P j),
∑
∀j

E(P j,P i))

(2)

Condition 3) The number of external edges between par-
titions is less than the bandwidth requirement.

∀i,∀j,E(P i,P j) < BWMAX (3)

When Conditions 1 to 3 are satisfied, the DNN graph
is partitioned based on the Kernighan-Lin algorithm. The
Kernighan-Lin algorithm is a heuristic method for partition-
ing arbitrary graphs which is both effective in determining
optimal partitions, and fast enough to be practical in solving
large problems [25]. Because this algorithm solves the parti-
tioning problem of undirected graphs, it must be modified to
apply to DNN graphs whose edges have orientation. Because
HMC links operate in full-duplex mode, the edges must be
reduced by dividing the edges according to the direction of
the edges. Therefore, when dividing the DNN graph G into
two subgraphs Pa and Pb, the target to reduce should be as
follows.

max(E(Pa,Pb),E(Pb,Pa)) (4)

The Kernighan-Lin algorithm is modified considering the
oriented edge of this DNN graph and the full-duplex commu-
nication link between HMCs.

First, initial partitions Pa and Pb are generated by ran-
domly dividing the vertices on each layer in half. For the
vertices belonging to each partition, Ein(vi,j) for vi,j ∈ Pa is
the internal cost of vi,j for Pa, that is, the sum of the number
of edges between vi,j and other vertices in Pa. E(vi,j,Pb) is
the external cost of vi,j for Pb, that is, the sum of the number
of edges with vertices in Pb. Let D(vi,j) be the difference
between the external and internal costs of vi,j in Pa:

D(vi,j) = E(vi,j,Pb)− Ein(vi,j) (5)

When vi,j in Pa and vi,k in Pb are interchanged, the reduc-
tion in cost g is

g = max(E(vi,j,Pb),E(vi,k ,Pa))

−Ein(vi,j)− Ein(vi,k ) (6)

The goal of the proposed partitioning is to determine the
optimal series of interchanges between the components ofPa

and Pb that maximize g. The algorithm randomly classifies
the pairs of vertices in each layer of the DNN graph and
calculates the cost reduction according to their exchange.
For each layer, an interchange that can maximize this cost
reduction is explored.
The Kernighan-Lin algorithm divides a graph into two

subgraphs with half the number of vertices. To generate
additional partitions, the algorithm should be recursively
run with Pa and Pb as inputs. The algorithm is repeated
until a specific partition does not satisfy the aforementioned
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conditions or until up to seven task partitions are gener-
ated. The partitions generated in this manner are combined
with the dragonfly topology between HMCs to generate a
task schedule that hides latency. The details are described
in Section 3.B.

B. TASK-TO-HMC MAPPING
After task partitioning, they are mapped to the HMC to
perform DNN operations. Task mapping aims to generate an
advantageous structure to hide latency while reducing com-
munication between task partitions. The size of task partitions
obtained usingAlgorithm 1may be uniform or non-uniform.
For example, if G(V, E) is divided into five task partitions,
partitionsP0,P1, andP2 with n(V)/4 number of vertices and
P3 and P4 with n(V)/8 number of vertices are composed.
When performing operations on these in each HMC, each
layer operation in P3 and P4 consumes half the computation
time compared to P0, P1, and P2. HMCs assigned with P3

and P4 have half the number of computation tasks as the
HMCs assigned P0, P1, and P2; therefore, they have an
idle time corresponding to the difference in processing time.
In task scheduling, the frequency of context switching for
latency hiding is reduced by utilizing the idle time caused by
the uneven workload between these partitions.

TABLE 2. Value of NPB and NPL according to the number of partitions NP .

The size of the task partition is classified into one or two
types. Depending on the value of NP, the number of greater
partitions NPB and the number of smaller partitions NPL are
determined as shown in Table 2. When F is defined as:

F = 2floor(log2 NP). (7)

The value of NPB and NPL can be expressed as:

NPB =

{
NP, (F = NP),
2F − NP, (F 6= NP),

(8)

NPL = 2NP − 2F (9)

The dragonfly topology between HMCs enables one-hop
communication for every four HMCs. If the maximum value
of NP is limited to seven, then NPB has a value of four or less.
By assigning NPB large partitions to these HMCs, they can
minimize latency through one-hop communication.

Fig. 3(a) presents an example of a mapping for a DNN
graph divided into four task partitions. Uniform sizesP0,P1,

FIGURE 3. (a) Mapping example for a DNN graph divided into four task
partitions and (b) Corresponding DNN processing schedule in C0 and C1.

P2, and P3 are allocated to C0, C1, C2, and C3, respectively.
Fig. 3(b) shows an example of the corresponding DNN pro-
cessing schedule. When the operation on Vi is completed in
each HMC, intermediate results are moved to prepare for the
operation on Vi+1. The latency that occurs during this process
slows the operation start time of Vi+1 and increases the DNN
processing time.

Fig. 4(a) shows an example of mapping for a DNN graph
divided into five task partitions. For operation on input 0 of
DNN processing, task partitions P0, P1, and P2 are assigned
to C0, C1, and C2, respectively, to enable one-hop commu-
nication. P3 and P4 can be assigned to C3 and C12 to min-
imize the hop count of communication with other assigned
task partitions. To reduce communication latency variation,
a partition with a larger number of external edges among P3

and P4 is allocated to C1. Both C1 and C4 are assigned tasks
of size n(V)/8 and have idle time to perform tasks of size
n(V)/8 for other inputs. Accordingly, P3 and P4 for another
DNN processing input 1 may be allocated to C4 and C1,
respectively.

Fig. 4(b) illustrates an example of the corresponding DNN
processing schedule. The operation of theVi+1 layer ofP0 for
DNN input 0 mapped to C0 takes 4t .However, the operation
of the Vi+1 layer of P3 mapped to C1 takes 2t . If the Vi layer
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FIGURE 4. (a) A mapping example for DNN graph divided into five task
partitions and (b) Corresponding DNN processing schedule in C0, C1,
C4, and C5.

operation of P3 starts at 5t , this operation is completed at 7t .
Because the Vi layer of P0 is completed at the time of 4t ,
there is a spare time of 1t for transferring the intermediate
result to C1. Similarly, because the Vi+2 layer operation of
P0 is completed at the time of 8t , there is a spare time of 1t
to transfer the intermediate result from C1. Thus, P0 and P3

have an extra interval of 1t between operations in each layer,
and this interval can be used to hide the transmission latency
of the intermediate results.

This method reduces the worst-case communication
latency between each HMC and maintains the traffic limited

to less than sustainable bandwidth using Condition 3 in the
task partitioning step. In Fig. 3(a), the amount of commu-
nication of the link between C1 and C2 is the same as that
in Fig. 4(a). This is because this link also includes communi-
cation between C4 and C2.
Algorithm 2 describes the task-to-HMC mapping that

reduces the communication hop count between HMCs. First,
NPB and NPL values are obtained using (8) and (9). Next,
the NPB partitions are mapped in ascending order starting
from C0 with the smallest number of linked links. Next,
the remaining NPL partitions are mapped from CNPB−1 and
C4(NPB−1). Consequently, the mapping result shortens the
communication path of the intermediate resulting in detailed
scheduling, thereby reducing latency variation.

Algorithm 2 Task-to HMC mapping, TMap(P, C)
Input 1) Task partitions P0, P1, . . . , PNP−1 ⊂ P,

2) HMC set C0, C1, . . . , CNC−1 ⊂ C
Output 1) Task partition mapping on HMCs MP i→Cj ,

Pi ⊂ P, Cj ⊂ C
1: find F from (7)
2: if F == Np then
3: NPB = Np
4: else
5: NPB = 2F − Np
6: end if
7: NPL = 2NP − 2F
8: for i := 0 to NPB − 1 do
9: Map(P i

→ Ci)
10: end for
11: forj := 0 to NPB + (NPL/2) do
12: if Eext (P2j) > Eext (P2j+1) then
13: Map(P2j

→ Cj)
14: Map(P2j+1

→ C4j)
15: else then
16: Map(P2j+1

→ Cj)
17: Map(P2j

→ C4j)
18: end if
19: end for

C. TASK SCHEDULING

After the task-to-HMC mapping, DNN task scheduling is
performed, which maximizes resource utilization between
HMCs and hides communication latency between HMCs.
The retiming concept of Para-Net [7] can improve the uti-
lization of PEs while effectively hiding latency for interme-
diate results. However, these were limited to a single HMC
research; hence, a schedule must be generated that considers
the communication delay time between HMCs.

The intermediate result transfer schedule between data-
dependent tasks is affected by the end time of the upstream
task and the start time of the downstream task. Intermedi-
ate results can be stored in PFB or large-capacity DRAM
presented in Fig. 1, varying access latency accordingly. This
latency variance is intensified by the packet-based commu-
nication structure in the multi-HMC based PIM system. The
concept of retiming is applied to solve the problem of context
switching and latency hiding accordingly. First, the terms
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iteration, prologue, and retiming to introduce the proposed
task scheduling is described.
Definition 2 (Iteration): Given a DNN partition G(V, E),

iteration is a set of processes that repeat a set of vertices vi,j∈V
that are concurrently processed by a number of PEs.
Definition 3 (Prologue): Given a DNN partition G(V, E),

a prologue is an opening to a schedule that contains vertices
vi,j∈V . After prologue, the iteration is repeated until the DNN
processing is completed.
Definition 4 (Retiming): Given a DNN partition G(V, E),

retiming R of G is a function that vi,j∈V to an integer R(i, j).
Initially R(i, j) = 0. By retiming vi,j once, if it is legal,
R(i, j) = R(i, j) + 1, and one iteration of a convolution
operation vi,j is re-allocated into the prologue.
The retiming value R(i, j, k) for intermediate result L ij,k

transferred from each vi,j to vi+1,k represents the number
of iterations of eij,k re-allocated in the prologue. When two
data-dependent tasks are retimed as prologues, the following
relation exists between the two tasks.
Theorem 1: For a pair of convolution operations eij,k∈E

in iteration l, after vi,j is retimed R(i, j) times and vi+1,k is
retimed R(i+ 1, k)-times, the associated intermediate result,
L ij,k , with a transmission latency less than mT can always be
scheduled if vi,j that has been retimed (l−R(i, j)) times is re-
allocated at least (m + 1) more iterations ahead of the vi+1,k
retimed (l − R(i+ 1, k))-times.

Proof: By retiming vi,j two more iterations ahead of
vi+1,k in the iteration (l − R(j)), vi,j will be re-allocated in
iteration (l − R(j) − 2). In each iteration, es(vi,j) < T . Let
L ij,k in iteration (l−R(i, j)−1) be the associated intermediate
result of vi,j retimed (l−R(i, j)− 2)-times and vi+1,k retimed
(l−R(i+1, k))-times. As es(vi,j)+ef (vi,j) in (l − R(j)− 2)-th
iteration is less than es(eij,k ) in (l − R(j)− 1)-th iteration and
es(vi,j)+ef (vi,j) in (l−R(j)−1)-th iteration is less than es(eij,k )
in (l−R(j))-th iteration, the associated intermediate result L ij,k
is always schedulable during that time span.

FIGURE 5. Exemplary allocation for DNN tasks with data dependency
relationships.

The application of Theorem 1 is illustrated in Fig. 5.
Theorem 1 represents the upper limit of the maximum rel-
ative retiming value for each pair of operations. Based on the
definition of this retiming value, the dependency for each task
pair places at most two vi,j iterations in the prologue.

rmax = {max(R(i, j), vi,j∈V)} (10)

For period T of iteration, the length of the prologue is
determined as follows.

prologue time = rmax×T (11)

Task scheduling has two main steps to completely utilize
the parallelism of DNN applications. The first step is to
generate an initial schedule that guarantees the threshold PE
utilization ratio. The PE utilization ratio of an HMC Cm is
defined as the non-idle time ratio of PEs in the Cm. Its value
Um can be expressed as:

Um =

∑
∀vi,j→Cm [ef (vi,j)− es(vi,j)]

T ·NPE
(12)

Algorithm 3 provides the generation of the initial
schedule. The proposed scheme calculates Uavg, the average
value of Um, and compares it with a predefined threshold
utilization ratio Ureq. If the PE utilization ratio is less than
the threshold value, the proposed scheme allocates a DNN
task set corresponding to other inputs to increase it. This
process is repeated until the value of Uavg exceeds the value
of Ureq.

Algorithm 3 Initial DNN schedule generation,
TInit(MP i→Cj )

Input 1) Task partition mapping on HMC: MP i→Cj
Output 1) Initial task schedule schinit 1: Um = Ureq + 1
2: while Um < Ureq do
3: for m := 0 to NC − 1 do
4: for i := 0 to NL − 1 do
5: for n := 0 to NP − 1 do
6: if Map(P i

→ Cm) then
7:

Assign all vi,j∈Pn to a PE in Cm
with the earliest available time

8: end if
9: end for
10: end for
11: find Um using (12)
12: end for
13: Find the average PE utilization ratio Uavg
14: end while

After the initial schedule generation, context switching
between tasks is determined based on the communication
latency between PEs and the PFB capacity. First, n intermedi-
ate results are sorted. In the sorted order, intermediate result
Im is the m-th task allocated to the PFB or DRAM. Im is the
m-th intermediate result to be allocated to the PFB or DRAM.
Considering the allocation of the intermediate result Im within
the cache capacity Im, it is possible to determine a method
to allocate m − 1 tasks with PFB capacity S. Im alloca-
tion is determined by m − 1 task allocation that mini-
mizes the maximum retiming value and the remaining PFB
capacity.

For intermediate result Im, R[S][m] is defined as the max-
imum retiming value for the subset of m intermediate results
I1, I2, . . . , Im according to PFB capacity S. This gain repre-
sents a decrease in the maximum retiming value using the
PFB capacity S. It is assumed that crm is the space required
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to allocate Im to the PFB. As a result, Im is placed in the PFB,
and MR(m) is defined as a reduced retiming value. At this
time, the optimal subproblem is defined as follows.

R[S][m] =



0, (m = 0 or S = 0),
0, (m = 1 and cr1 > S),
MR(1), (m = 1 and cr1 ≤ S),
R[S][m− 1], (m ≥ 2 and cr1 > S),
max(R[S][m− 1],R[S − crm][m− 1]

+ max(MR(m)− MR(rmax), 0)),
(m ≥ 2 and cr1 ≥ S)

(13)

If m or PFB free space S is zero, R[S][m] becomes zero.
This means that the intermediate result is not required for
scheduling, or the PFB capacity is zero. As a result of the first
intermediate processing, if the PFB free space cr1 required
to allocate I1 is larger than S, then I1 cannot be allocated in
the PFB. If the space requirement of I1 is less than or equal
to S, the profit is initialized to the reduced retiming value
MR(1). If the number of intermediate results is greater than
one and the required PFB capacity is greater than S, this inter-
mediate result cannot be allocated, and the retiming value
cannot be reduced. In this case, R[S][m] is initialized to the
maximum retiming value of the previous m− 1 intermediate
results.

Algorithm 4 DNN task scheduling, TSch(MP i→Cj )

Input 1) Initial task schedule, schinit
2) DNN graph G(V, E)
3) PFB capacity S
4) Queue Q

Output 1) DNN task schedule sch
1: m = 0
2: for ∀eij,k∈E do
3: Im = enqueue(Q, I ij,k )
4: obtain MR(m)
5: m++
6: end for
7: sort Im in descending order by MR(m)/crm
8: while Q is not empty do
9: for ∀Cm⊂C do

10:
if R[S − crm][m− 1]+ max(MR(m)

−MR(rmax ), 0) > R[S][m− 1] then
11: allocate Im on the PFB
12: sch(Im) = es(Im)
13: else
14: allocate Im on the DRAM
15: sch(Im) = es(Im)− T
16: end if
17: dequeue(Q, Im)
18: end for
19: end while
20: return sch

Algorithm 4 presents the task allocation method reflecting
this. The communication of the intermediate result whose
MR(m) value is zero is not retimed; therefore, it does not affect
the prologue time. Therefore, these intermediate results are

allocated to DRAM to create a PFB free space for other tasks.
The intermediate result with the highest maximum retiming
value is selected and allocated to the PFB.

The intermediate result is inserted into queueQ. This queue
defines the order of the allocation of the intermediate results.
The proposed scheduling first sorts tasks by deadline. For
tasks with the same a deadline, scheduling sorts m interme-
diate results in descending order according to MR(m)/crm.
intermediate results with low PFB capacity requirements and
large MR(m) values have priority to be reserved in the PFB.
Algorithm 4 determines the schedule of each intermediate

result by using the dynamic programming model in compar-
ing R[S][m − 1] and R[S − crm][m − 1] + max(MR(m) −
MR(rmax), 0). All intermediate results assigned to PFB have
a relative retiming value MR(m). MR(rmax) is the maximum
relative retiming value among these. When R[S − crm]
[m − 1] + max(MR(m) − MR(rmax), 0) is greater
than R[S][m − 1], it indicates that storing Im in the
PFB can reduce the maximum retiming value. When
R[S][m−1] is greater thanR[S−crm][m−1]+max(MR(m)−
MR(rmax), 0), even if Im is placed in the PFB, it does not
reduce the retiming value, so it is placed in the DRAM. The
dynamic programmingmodel iteratively fetches each value of
the matrix R[S][m], and this matrix can produce an optimal
assignment for the intermediate result.

IV. EVALUATION
A. SIMULATION SETUP

To verify the performance of the proposed task scheduling,
we used a ZSim-HMC [26], which implements the HMC-
based PIM operation environment on an x86-64 simulator.
According to the HMC 2.1 specification, the bandwidth of
each memory was set to 10GB/s. The logic layer of each vault
in the HMC included an in-order core operating at a 1GHz
clock frequency, a 4MBPFB for caching intermediate results,
a router with four virtual channels, and a network interface
for packetization. Similar to Tesseract, it was assumed that
16 HMCs were connected in a dragonfly topology, and sim-
ulations were conducted by dividing the cases where HMCs
had 16 and 32 vaults. The simulation was conducted with a
server equipped with Intel(R) Xeon(R) Gold 6152 CPU @
2.10GHz and 512GB DDR4 DRAM@2666MHz.

We ran a simulation using benchmarks of real-life DNN
applications. DNN graphs for AlexNet, LeNet-5, ZFNet-1,
ZFNet-2, VGG-F, VGG-16, and ResNet-50 were imple-
mented using the deep learning framework Caffe [27]. The
proposed scheduling model used SPARTA, a throughput-
aware schedulingmodel, and data-level parallelism, and com-
pared it with the Para-Net model that maximizes resource
utilization in a single HMC. Because SPARTA and Para-Net
performed scheduling in a single HMC, they were configured
to operate independently in each HMC. The DNN processing
time, prologue time, PE utilization ratio, and time cost for
scheduling were compared.
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TABLE 3. DNN processing time for SPARTA, Para-Net, and the proposed
method.

FIGURE 6. DNN processing time for SPARTA, Para-Net, and the proposed
method using (a) HMC with 16 PEs and (b) HMC with 32 PEs.

B. SIMULATION RESULTS
1) DNN PROCESSING TIME

Table 3 and Fig. 6 present the DNN processing time of the
DNN application of SPARTA [23], Para-Net [7], and the
proposed scheduling for HMCs composed of 16 and 32 PEs.
According to the experimental results, our approach reduced
the DNN processing time by 44.73% and 18.19% compared
to SPARTA and Para-Net, respectively. SPARTA does not
adopt the retiming operation and operates while preserving
the dependency between tasks. In addition, for SPARTA and
Para-Net, HMCs operate independently. The DNN process-
ing time was optimized based on effective task allocation,
but it did not increase parallelism in allocating intermediate
results.

TABLE 4. Prologue time for Para-Net and the proposed method.

2) PROLOGUE TIME

Prologue time is the time the DNN processing takes during
the preprocessing step. This metric affects the total execution
time and system throughput. This is presented in Table 4.
Both the proposed scheme and Para-Net had a normalized
prologue length because they utilized the concept of retim-
ing. As the number of PEs increased, the prologue length
decreased, and Para-Net had a longer prologue length than the
proposed scheme because an initial schedule was generated
for DNN processing. Our method and Para-Net integrate the
operations of several periods into one iteration to guaran-
tee PE utilization. Therefore, they introduced prologues for
multiple periods. The prologue runs only once. Compared
to the advantages obtained by greatly reducing the DNN
processing time in each iteration, prologue execution does
not induce significant timing overhead. Furthermore, because
the proposed scheme divides DNN tasks into partitions,
it has a smaller task size and iteration time per HMC than
Para-Net.

3) PE UTILIZATION RATIO

The utilization ratio of the PEs indicates how the DNN
application utilizes the computational resources of the PIM
architecture. Because our target PIM architecture is memory-
bounded, the PFB in the PE can be completely used. Then,
the PE utilization ratio affects the throughput and the final
task schedule. This is presented in Table 5. Our method
achieved the highest utilization ratio for all benchmarks:
91.81%–97.40%, with an average ratio of 94.67%.

Compared to the proposed method, the SPARTA could
only utilize 42.24% of the PE. The utilization ratio of
SPARTA decreased as the number of PEs increased. These
results indicated that SPARTA does not fully consider the
data-level parallelism of DNN tasks and could not utilize all
PEs. In contrast, our method and Para-Net utilized more than
90% of PE parallelism by allocating tasks to idle PEs. There-
fore, the proposed method and Para-Net together achieved a
utilization ratio similar to that of the proposed method.
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TABLE 5. PE utilization ratio for SPARTA, Para-Net, and the proposed
method.

TABLE 6. Time cost to generate a schedule in SPARTA, Para-Net, and the
proposed method.

4) TIME COST FOR SCHEDULING

The execution time of each scheduling algorithm reflects its
time complexity. These performance indicators were quanti-
fied, and the results are presented in Table 6. The time cost
for scheduling in the proposed scheme was 303.82% and
178.57% higher than in SPARTA and Para-Net, respectively.
Similar to Para-Net, the proposed method adopted a dynamic
programming model and had a longer processing time
than heuristic-based SPARTA. The proposed scheme had a
longer time cost than Para-Net because it had to perform as
many scheduling as the number of task partitions. However,
the results revealed the time cost of the three scheduling
algorithms to be of acceptable magnitude. This was because
the proposed technique and the dynamic programming model
of Para-Net were based on the initial schedule. Not all inter-
mediate results are selected as inputs for the dynamic pro-
gramming model. Accordingly, the time cost of the proposed
technique did not incur significant overhead unlike other
existing dynamic programming-based algorithms.

V. CONCLUSION

In this paper, we proposed scheduling considering inter-
connect latency variance that limits data-level parallelism

of DNN in multi-HMC based PIM. Inter-HMC connections
show various communication latencies according to trans-
mission path and link load owing to packet-based commu-
nications. The proposed scheduling improved PE utilization
by reducing the variance of communication latency through
task partitioning and mapping to the HMC. The evaluation
was conducted under a widely used deep learning appli-
cation through the ZSim-HMC system-level simulator. The
proposed method increased the schedule generation time by
178.57% compared to the existing methods but reduced the
DNN processing time by 17.87%. This indicated that the pro-
posed scheduling increased the utilization of PEs by reducing
the variance of inter-HMC communications.
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