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ABSTRACT The stabilization of periodic switched k-valued logical networks is investigated in this paper,
and some new results are presented. The system considered consists of several k valued logical networks
and these networks run in a periodic switching law. First, by using the Cheng product of matrices, a periodic
switched k-valued logical (control) network is transformed into a discrete dynamic system which is written
as an algebraic form. Second, the switching-state space and the switching-input-state space are defined.
Then combining with the algebraic form, some necessary and sufficient conditions for the stability and the
stabilization are obtained. An algorithm to find the input sequence that stabilizes the system is also provided.
Finally, illustrative examples are given to support the proposed new results.

INDEX TERMS k-valued logical networks, periodic switched, stability, stabilization, control design.

I. INTRODUCTION
Gene regulatory network, a network of genes and their inter-
actions within a cell or a particular genome, is the mech-
anism that controls the gene expression in an organism.
Boolean networks (BN), originally proposed by Kauffman
in 1969 [1], becomes a powerful tool for describing, ana-
lyzing and simulating cellular networks. It has attracted a
lot of attention and interest from many biologists, physi-
cists and system scientists [2]. By expressing the complex
connections and interactions between genes through sim-
ple logical relationships, BN has a high degree of abstrac-
tion, and can reflect the system’s rich kinetic behaviors.
With the emergence of many high-quality research results
[3]–[5], it is further confirmed that BN is very effec-
tive in simulating practical processes. Therefore, the study
of control problem has important theoretical and practical
significance.

Recently, a new matrix product, namely, the semi-tensor
product of matrices, is proposed. Here we call it Cheng prod-
uct due to the fact that it was proposed by Prof. Cheng [6].
Cheng product extends the ordinary matrix multiplication
to any two matrices, which not only preserves all the basic
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properties of the original matrix multiplication, but also has
a certain degree of commutativity. These properties make
the matrix method easy to be applied to logical functions,
high-dimensional arrays and nonlinear problems. So the
Boolean logic equation can be transformed into the discrete
dynamic equation, which is more convenient to describe and
study. Using Cheng product, BNs can be successfully ana-
lyzed andmany essential results have been obtained [7]–[11].
Similar to linear systems, some properties have been dis-
cussed, including their controllability, observability and syn-
chronization [12]–[16].

In actual gene networks, the multi-mode switching
phenomenon usually appears. For switched systems, the
switching mechanism can improve the control capability.
Refs. [17], [18] investigated the controllability and observ-
ability of switched Boolean control networks under the
switching signal. Ref. [19] studied the set stability and sta-
bilization of switched BNs with state-based switching. How-
ever, the switching signals of the above results are the general
signals. Sometimes the switching signals actually are gener-
ated by external intervention or constraints. For example, the
cycle of day and night makes biological system evolutive and
alive in a cyclic environment. Ref. [20] studied the reach-
ability and controllability of periodic switched BNs where
the switching signals are periodic signals. Under the periodic
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special switching signals, the property of switched BNs is
meaningful.
k-valued logical network consists of a family of k-valued

logical variables and a set of k-valued logical functions.
It is an important networked system since it can be regarded
as the extension of BNs. The k-valued logical network
has become an effective tools in researching evolutionary
games [21]–[23], discrete event systems [24], [25] and finite
automata [26], [27]. 2-valued BNs could describe the switch-
ing characteristics of biological networks by 0 and 1. While
3-valued logical networks can describe catalytic, inactive and
inhibitory behaviors of cell activities. So far, some fundamen-
tal problems of them have been deeply studied, such as the
stability at point attractors and stability at dynamic attractors,
see [28], [29] for details. To the best of our knowledge, the
stability and stabilization of k-valued logical networks is still
relatively little from the perspective of periodic switching
signals. So inspired by that, we investigate the stability and
stabilization of periodic switched k-valued logical networks.
Some contributions are as follows.

(1) Under a periodic switching law, a system composed by
several k-valued logical networks is considered. By Cheng
product and its properties, the system is converted as an
algebraic form.

(2) Two spaces, the switching-state space and the
switching-input-state space, are defined. Combining with the
algebraic form, some necessary and sufficient conditions for
the stability and the stabilization of k-valued logical networks
are obtained.

(3) An algorithm to find the input sequence that stabilizes
the k-valued logical network is also provided.

The contents of this paper consist of two parts: one is
stabilization problem, which is the key content of this paper,
and the other is some theoretical analysis derived from the
study of stabilization problem.

(4a) The methods, provided for solving the stabilization
problem, are based on k-valued logical networks, which is
a generalization of BNs. Besides, the corresponding results
can be also applied to periodic switched BNs.

(4b) Many remarks, proposed in the process of studying
stabilization problem, indicates the possibility that relevant
results can be generalized to other networks and situations.
In addition, pure mathematical issues derived from some
problems, which are the unique properties of the periodic
switched k-valued logical networks, are worthy of further
study by interested readers.

The paper is organized as following. In Section II, we recall
some preliminaries on Cheng product and problem formu-
lation which will be used in later sections. For the peri-
odic switched k-valued logical networks, the main results
of this paper, stability, stabilization and optimal control
design for stabilization are discussed in Section III. More-
over, the application of the design in solving the stabilization
problem is shown. At last, a brief conclusion is given in
section IV.

A. NOTATIONS
The following symbols will be used throughout the paper:
R and Z denote the sets of real and positive integer numbers,
respectively.

1) Colj(M ) and Rowi(M ) stand for the jth column and the
ith row of the matrixM , respectively, and Col(M ) is the
set of columns of matrix M .

2) δik denotes the i
th column of the k-dimensional identity

matrix Ik .
3) A matrix L ∈ Lm×n is called a logical matrix if

Col(L) ⊆ Lm×n, Lm×n represents the set of all m × n
logical matrices.

4) Dk := {0, 1, 2, . . . , k − 1}.
5) 1k := {δ

i
k | i = 1, 2, . . . , k}, where δik represents the

i-th column of identity matrix Ik .
6) ⊗ represents the Kronecker product of matrices.

If A = (aij) ∈ Rm×n and B = (bij) ∈ Rp×q, then

A⊗ B =


a11 × B a12 × B · · · a1n × B
a21 × B a22 × B · · · a2n × B

...
...

. . .
...

am1 × B am2 × B · · · amn × B

 ,
where

aij × B =


aij × b11 aij × b12 · · · aij × b1t
aij × b21 aij × b22 · · · aij × b2t

...
...

. . .
...

aij × bs1 aij × bs2 · · · aij × bst

 .

II. PRELIMINARIES
This section gives some necessary preliminaries on Cheng
product and periodic switched k-valued logical networks,
which will be used in the following.

A. CHENG PRODUCT
Definition 1 [30]: The Cheng product of matrices A ∈ Rm×n
and B ∈ Rs×t is defined as

An B = (A⊗ I p
n
)(B⊗ I p

s
), (1)

where p is the least common multiple of n and s.
Proposition 1 [30]: Cheng product satisfies combination

law and pseudo exchange law:
(1) Let A ∈ Rm×n, B ∈ Rp×q, C ∈ Rr×s, then

(An B)n C = An (Bn C). (2)

(2) Let X ∈ Rt×1, A ∈ Rm×n, then

X n A = (It ⊗ A)n X . (3)

Proposition 2 [30]: If X ∈ 1k , then

XX = 8k n X , (4)

where 8k = [δ1k δ
1
k δ2k δ

2
k · · · δkk δ

k
k ] is the base-k

power-reducing matrix.
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TABLE 1. Three structure matrices in Example 1.

If X ,Y ∈ 1k , then

EkXY = X , (5)

where Ek = [Ik Ik · · · Ik ] is the base-k dummy operator.
Lemma 1 [30]: (1) Let f (x1, x2, . . . , xn) be a logic func-

tion. Then there exists a unique logic matrix Mf ∈ L2×2n ,
called structure matrix of f , such that

f (x1, x2, . . . , xn) = Mf n x, (6)

where x = nn
i=1xi.

(2) Assume {
y = My nn

i=1 xi,
z = Mz nn

i=1 xi,
(7)

where xi ∈ 1, i = 1, 2, . . . , n, My, Mz ∈ L2×2n . Then

yz = (My ∗Mz)nn
i=1 xi, (8)

where My ∗ Mz = [Col1(My) ⊗ Col1(Mz),Col2(My) ⊗
Col2(Mz), . . . , Col2n (My)⊗ Col2n (Mz)].
Proposition 3:

¬X = 1− X ,

X ∧ Y = min{X ,Y },

X ∨ Y = max{X ,Y },

and

¬ ∼ Mn = δk [k k − 1 · · · 1],

∧ ∼ Mc = δk [1 2 · · · k 2 2 · · · k · · · k k · · · k],

∨ ∼ Md = δk [1 1 · · · 1 1 1 · · · 2 · · · 1 2 · · · k].

Example 1:The structurematrices of three common logical
operators (k = 3) is shown in Table 1.
Proposition 4: Let Pk = A1A2 . . .Ak ,Ai ∈ 1, then

P2k = 8kPk , (9)

where

8k =

k∏
i=1

I2i−1 ⊗
[
(I2 ⊗W[2,2k−i])Mr

]
. (10)

B. PERIODIC SWITCHED k-VALUED LOGICAL NETWORKS
We consider a periodic switched k-valued logical networks
with n state nodes {x1, x2, . . . , xn}. The state nodes take val-
ues from Dk . Its dynamics can be described as

x1(t + 1) = f σ (t)1 (x1(t), . . . , xn(t)),

x2(t + 1) = f σ (t)2 (x1(t), . . . , xn(t)),
...

xn(t + 1) = f σ (t)n (x1(t), . . . , xn(t)),
σ (t) = t mod l + 1,

(11)

where xi is state variable, f ji : Dn
7→ D, i = 1, 2, . . . , n,

j = 1, 2, . . . , l logical functions, σ (t) : N 7→ {1, 2, . . . , l} is
the switching signal.

We make a preliminary analysis about switching
signals σ (t). According to the formula σ (t) = t mod l + 1,
we can know that l systems evolve in a fixed order. After
the system state is updated by l steps, it enters the repeated
evolution process again. For example, when l = 3, the system
runs according to

t = 0, 6σ (0) = 61 = {f 11 , f
1
2 , . . . , f

1
n };

t = 1, 6σ (1) = 62 = {f 21 , f
2
2 , . . . , f

2
n };

t = 2, 6σ (2) = 63 = {f 31 , f
3
2 , . . . , f

3
n };

t = 3, 6σ (3) = 61 = {f 11 , f
1
2 , . . . , f

1
n };

t = 4, 6σ (4) = 62 = {f 21 , f
2
2 , . . . , f

2
n };

t = 5, 6σ (5) = 63 = {f 31 , f
3
2 , . . . , f

3
n };

· · ·

III. MAIN RESULTS
A. MATRIX EXPRESSION
Next, we use the Cheng product of matrices to transform the
system form Boolean function form to algebraic form. Using
Lemma 1, we have

x1(t + 1) = Mσ (t)
1 x1(t)x2(t) · · · xn(t),

x2(t + 1) = Mσ (t)
2 x1(t)x2(t) · · · xn(t),

...

xn(t + 1) = Mσ (t)
n x1(t)x2(t) · · · xn(t).

where Mσ (t)
i is the structure matrix of f σ (t)i , i = 1, 2, . . . , n.

Let x(t) = x1(t)x2(t) · · · xn(t), multiply the left and right
formulas above and get the following algebraic form:

6σ (t) : x(t + 1) = Mσ (t)x(t), (12)

where Mσ (t) = Mσ (t)
1 ∗Mσ (t)

2 ∗ · · · ∗Mσ (t)
n ∈ Lkn×kn .

Identify σ (t) ∼ δt mod l+1
l , then a new logical matrix is

formed by all matrices M1, M2, . . ., Ml :

M = [M1 M2 · · · Ml] ∈ Lkn×lkn . (13)

Hence, (12) can be rewritten as:

6σ (t) : x(t + 1) = Mσ (t)x(t), (14)

where σ (t) ∈ 1l . In this paper, we use σ, x, u to represent
both their quantitative forms and vector forms with a slight
abuse.

B. STABILITY ANALYSIS
This section considers global stability. Stability is an impor-
tant property of the system, which describes the future direc-
tion of the system. A system is said to be globally stable if it
globally converges to a fixed point [31]. In other words, it has
a fixed point as the only attractor.

The global stability of periodic switched k-valued logical
networks is defined by the following mathematics symbol.
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Definition 2: System (14) is said to be globally stable to
δdkn ∈ 1kn , if for any initial state x(0) ∈ 12n , x(t) = δdkn
holds for some s ∈ N, t ≥ s.

In order to study this property, we introduce the concept of
reachability
Definition 3: Consider system (14), its switching-state

space is defined as

S = {(σ, x)|σ ∈ {1, 2, . . . , l},

x = (x1, x2, . . . , xn) ∈ Dn
k }. (15)

1) Let pi = (σi, x i) ∈ S, under vector form, if (p1, p2)
satisfies {

x2 = Mσ1x1,
Eσ2 = Eσ1 mod l + 1,

(16)

where E := [1, 2, · · · , l], then call (p1, p2) a directed edge.
The set of directed edges depending on switching is remarked
as V ⊆ S × S.

2) If (pi, pi+1) ∈ V , i = 1, 2, . . . , θ − 1, then
(p1, p2, . . . , pθ ) is a path, denoted by p1 → pθ . pθ is reach-
able from p1 after θ − 1 steps.

Note that a path with two edges (p1 = (σ1, x1),
p2 = (σ2, x2), p3 = (σ3, x3)) means that the σ1-th subsystem
transforms x1 to x2, and then the σ2-th subsystem transforms
x2 to x3. Though x3 is reachable from x1, the transformation
of state depends on the running subsystem.

For example, the σ2-th subsystem transforms x2 to some
state but x3. From Definition 3, if p1→ pθ , one has

x2 = Mσ1x1, Eσ2 = Eσ1 mod l + 1,

x3 = Mσ2x2, Eσ3 = Eσ2 mod l + 1,
...

xθ = Mσθ−1xθ−1, Eσθ = Eσθ−1 mod l + 1,

then

xθ = Mσθ−1xθ−1

= Mσθ−1Mσθ−2 · · ·Mσ1x1.

By resetting the corresponding subscript, the following
properties can be obtained.
Proposition 5: Let x ij = δ

ij
kn , j = 1, 2, . . . , θ , then

(pi1 , pi2 , . . . , piθ ) is a path if and only if

[Mi1+θ2−1 · · ·Mi1+1Mi1 (M i1 )
θ1 ]iθ ,i1 = 1, (17)

where M j = Mj−1Mj−2 · · ·M1Ml · · ·Mj+1Mj, θ = θ1l + θ2
and θ2 = θ mod l.

The next theorem can be easily obtained by Proposi-
tion 5 and the arbitrariness of x0.
Theorem 1: Consider system (14), state δdkn is reachable

from any initial state if and only if there exists an integer
s ∈ N, such that

Ms2Ms2−1 · · ·M1M1 = δkn [d d · · · d], (18)

where s = s1l + s2 and s2 = s mod l.

Proof: Under the periodic switching signals, the initial
state of the system circulates along the order of 1, 2, . . . , l.
Given an initial state x(0) = x0, the system state x(s) is

x(s) = Mσ (s− 1)x(s− 1)

= Mσ (s− 1)Mσ (s− 2)x(s− 2)
...

= Mσ (s− 1)Mσ (s− 2) · · ·Mσ (0)x0.

From Proposition 5, state x(s) = δdkn is reachable from state
x(0) = x0 if and only if

δdkn = x(s) = Mσ (s− 1)Mσ (s− 2) · · ·Mσ (0)x0
= Ms2Ms2−1 · · ·M1(MlMl · · ·M1)s1x0
= Ms2Ms2−1 · · ·M1M1x0.

By the arbitrariness of initial state x0, the conclusion can be
obtained.
Proposition 6: If system (14) is globally stable, the upper

bound of s is knl − 1.
Proof: Consider the system states at integral multiple

time of l,

x(0), x(l), x(2l), x(3l), · · · , x(knl), (19)

then definitely exists 0 ≤ k1 < k2 ≤ kn, such that
x(k1l) = x(k2l). So begin from time k2l, the state trajec-
tory repeats this trajectory x(k1l), x(k1l + 1), . . . , x(k2l − 1).
Hence, the upper bound of s is knl − 1
Proposition 7: If system (14) is globally stable to δdkn ,

then δdkn is a fixed point of each subsystem, i.e.,

[Mi]d,d = 1, i = 1, 2, . . . , l. (20)

Proof:Apply the reduction method. Assume there exists
i ∈ {1, 2, . . . , l} satisfying [Mi]d,d 6= 1. Then [Mi]d ′,d =
(δd
′

kn )
TMiδ

d
kn = 1 for some d ′ 6= d . This means that the i-th

subsystem changes state δdkn to δ
d ′
kn , then the system is stable,

this is a contradiction.
Theorem 2: System (14) is globally stable to δdkn if and only

if (18) and (20) hold.
According to system (14), we can get

x(1) = M1x(0),
x(2) = M2x(1) = M2M1x(0),
...

x(l) = Mlx(1− 1) = MlMl−1 · · ·M2M1x(0).

(21)

Denote M1 = MlMl−1 · · ·M2M1, then we have

x((t + 1)l) = M1x(tl), t = 0, 1, 2, 3, . . . . (22)

Let x̄(t) := x(tl), t = 0, 1, 2, 3, . . .. Then the following
theorem which gives a necessary condition of globally stable
is derived.
Proposition 8: If system (14) is globally stable to δdkn ,

then δdkn is the unique fixed point of system

x̄(t + 1) = M1x̄(t). (23)
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FIGURE 1. The state transition diagram of Example 2.

Proof: Since the number of elements in 1kn is kn and

x̄(kn) = M1x̄(kn − 1) = M
kn

1 x̄(0), (24)

If (14) is globally stable to δdkn , then

x̄(kn) = x̄(kn + 1) = · · · = δdkn . (25)

Assume δd
′

kn 6= δ
d
kn is also a fixed point of (23), then the system

state will remain

x̄(kn) = x̄(kn + 1) = · · · = δdkn (26)

if x(0) = δd
′

kn , which is a contradiction.
It is noted that this proposition is just a necessary condition

and the sufficiency is not established. The following gives a
counterexample.
Example 2: Consider periodic switched 3-valued logic net-

work system (14) with 2 state nodes and 2 subsystems, where

M1 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0
1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


, (27)

M2 =



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


. (28)

FIGURE 2. The corresponding system state trajectory of Example 2.

The state transition process of this system is shown in Fig. 1.
We omit the subscript ‘‘δ9’’ for simplicity. It is easy to get that

M1 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0
1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


, (29)

and [M1]6,6 = 1. Hence, δ69 is the unique fixed point of
system (23). But system (14) is not globally stable to δ69 since
M1δ

6
9 = δ

5
9 and M2δ

5
9 = δ

6
9 . The corresponding system state

trajectory is shown in Fig. 2.

C. STABILIZATION ANALYSIS
For the stabilization of the system, it is important to study
whether there is an input sequence, so that after a period of
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time, the state of the system is stable at a certain state. Con-
sider the following periodic switched k-valued logic control
network:

x1(t + 1) = gσ (t)1 (u1(t), . . . , um(t), x1(t), . . . , xn(t)),

x2(t + 1) = gσ (t)2 (u1(t), . . . , um(t), x1(t), . . . , xn(t)),
...

xn(t + 1) = gσ (t)n (u1(t), . . . , um(t), x1(t), . . . , xn(t)),
σ (t) = t mod l + 1,

(30)

where xi(i = 1, 2, . . . , n), uj(j = 1, 2, . . . ,m) are
state variables and input variables, respectively. gσ (t)i :

Dm+n
7→ D, i = 1, . . . , n are logical functions and

σ (t) : N 7→ {1, 2, . . . , l} is the switching signal.
According to Lemma 1, the algebraic form of system (30)
is: 

x1(t + 1) = Mσ (t)
1 u(t)x(t),

x2(t + 1) = Mσ (t)
2 u(t)x(t),

...

xn(t + 1) = Mσ (t)
n u(t)x(t),

(31)

where u(t) = u1(t) · · · um(t), x(t) = x1(t) · · · xn(t) and M
σ (t)
i

are the structure matrices of gσ (t)i , (i = 1, 2, . . . , n).
Furthermore, system (30) is equivalent to

6σ (t) : x(t + 1) = Mσ (t)u(t)x(t), (32)

where Mσ (t) = Mσ (t)
1 ∗Mσ (t)

2 ∗ · · · ∗Mσ (t)
n ∈ Lkn×kn .

The difference from before is that the matrixMσ (t), here is
an order logic matrix. Thus, we have{

M = [M1 M2 · · · Ml] ∈ Lkn×lkm+n ,
Mj = [M j

1 M
j
2 · · · M

j
kn ],

(33)

Hence, (32) can be rewritten as:

6σ (t) : x(t + 1) = Mσ (t)u(t)x(t), (34)

where σ (t) ∈ 1l , u(t) ∈ 1km .
We introduce the previously defined switch-state space

into input.
Definition 4: Consider system (32), its switching-input-

state space is defined as

S = {(σ, u, x)|σ ∈ {1, 2, . . . , l},

u = (u1, u2, . . . , um) ∈ Dm
k ,

x = (x1, x2, . . . , xn) ∈ Dn
k }.

Based on this space, if (p1, p2) ∈ V ⊆ S × S is a
directed path, under vectors form, p1 = (σ1, u1, x1) and
p2 = (σ2, u2, x2) should satisfy{

x2 = Mσ1u1x1,
Eσ2 = Eσ1 mod l + 1,

(35)

where E = [1, 2, 3, . . . , l].

Accordingly, if (p1, p2, . . . , pθ ) is a path, then

x2 = Mσ1u1x1, Eσ2 = Eσ1 mod l + 1,

x3 = Mσ2u2x2, Eσ3 = Eσ2 mod l + 1,

· · ·

xθ = Mσθ−1uθ−1xθ−1, Eσθ = Eσθ−1 mod l + 1.

then

xθ = Mσθ−1uθ−1xθ−1

= Mσθ−1uθ−1Mσθ−2uθ−2 · · ·Mσ1u1x1.

According to the method of paper [17] to define the
switching-input-state incidence matrix. The range of switch-
ing signal σ (t) has k values. Hence, there are l × km × kn

points in switching-input-state space.
Definition 5: Consider system (32), its switching-input-

state incidence matrix T is an lkm+n× lkm+n Boolean matrix,
defined as

T =

{
1, (pj, pi) ∈ V is a directed path,
0, otherwise.

(36)

Proposition 9: The switching-input-state incidence matrix
of system (32) is

T = [δ2l T1 δ
3
l T2 · · · δ

l
lTl1 δ

1
l Tl], (37)

where Ti = 1km nMi.
Proof: For any two points, pi, pj ∈ S, pi =

δ
i1
l δ

i2
kmδ

i3
kn , pj = δ

j1
k δ

j2
kmδ

j3
kn , from Definition 4, (pj, pi) is a

directed edge, if and only if Mj1 and u(t) = δ
j2
km , δ

j3
kn can be

updated by δi3kn in one step, thus

δ
i3
kn = Mj1δ

j2
kmδ

j3
kn ,

δl[2, 3, . . . , l, 1]δ
j1
l = δ

i1
l .

It follows that

T =


0 0 0 · · · 1kmMl

1kmM1 0 0 · · · 0
0 1kmM2 0 · · · 0
...

...
...

. . . 0
0 0 · · · 1kmMl−1 0

 .
Setting Ti = 1kmMi, i = 1, 2, . . . , l, the proof is completed.
This proposition well explains the structure of matrix T of

periodic switched k-valued logic network (32) and the origin
of its definition (Definition 5).
Definition 6: Suppose A ∈ Mm×n, if there is a posi-

tive integer r which can divide m, satisfying Rowi+r (A) =
Rowi(A), 1 ≤ i ≤ m − r , then the matrix A is called as row
periodic matrix, and the period is r .
For example, Tσ (t) is a row periodic matrix with

periodic km. Noting that

Tσ (t) = 1kmMσ (t),

Tσ (t) n B = 1km nMσ (t) n B
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= 1km n (Mσ (t) n B),

Therefore if a matrix is a row periodic matrix with r rows,
right multiply this matrix by any matrix, and the result is still
a row periodic matrix with r rows.
Remark 1: For the period of the row period matrix which

is defined here, there is no strict restrictions. However, from
a mathematical point of view, we can restrict the period value
to the minimum value of all periods, and we want to know
whether the right multiplication matrix change this minimum
period? The reader who is interested in this can discuss it
further.
Remark 2: The constraint problem is related to the switch-

ing problem to a certain extent. For example, the periodic
switching of traffic lights at intersections is associated with
the direction restriction of vehicles. Therefore, it is an inter-
esting topic to study the relationship between switched BCNs
and restricted BCNs. Reference [32] recorded some works on
BNs and Boolean control networks in which states or inputs
are admissible or constrained. The results in [32] can be used
as the point of penetration for interested readers.
Theorem 3: Consider system (32), if the initial state is

x(0) = δ
j
kn , then x(0) has been updated θ times, and get

x(θ ) = δikn which path number is c

[(δ1km )
TTθ2Tθ2−1 . . . T1T

θ1
1 1km ]i,j = c, (38)

where T 1 = TlTl−1 . . . T1, θ = θ1l + θ2, θ2 = θ mod l.
Proof: This theorem is proved by induction. When

θ = 1, σ (θ ) = 1, one has

[(δ1km )
TT11km ]i,j = [(δ1km )

T1kmM11km ]i,j
= [M11km ]i,j,

where M11km records all of the possible inputs. The conclu-
sion obviously holds.

Suppose that the conclusion is established after θ steps of
update. Now consider the case where it updates by θ+1 steps,
the path from x(0) to x(θ+1) by θ+1 steps, these steps can be
decomposed into the path from x(0) to each x(θ ) by θ times
updating and from x(θ ) to x(θ + 1) by one step.
At the given time θ , the evolved system is Mσ (θ ). At this

time, there are km+n choices, so from time x(0) to x(θ + 1)
the number of paths is

km+n∑
s=1

((δ1km )
TTθ2+1)i,s[Tθ2Tθ2−1 . . . T1T

j
11km ]s,j

= [(δ1km )
TTθ2Tθ2−1 . . . T1T

θ1
1 1km ]i,j.

By mathematical induction, the theorem is proved. Obvi-
ously, we can get the following results:
Theorem 4: Consider system (32), the state x(θ ) = δikn is

reachable from the initial state x(0) = δjkn if and only if

[(δ1km )
TTθ2Tθ2−1 . . . T1T

θ1
1 1km ]i,j > 0. (39)

Next we consider the relationship between the above sev-
eral matrices. Tσ (t) = 1kmMσ (t), Lσ (t) = Mσ (t)1km .

Proposition 10: Tσ (t) and Lσ (t) satisfy:

Tθ2Tθ2−1 . . . T1T
θ1
1 = 1kmL

θ1
θ2+1Lθ2Lθ2−1 · · · L2M1, (40)

Lθ2Lθ2−1 . . . L1L
θ1
1 = Mθ2Tθ2−1Tθ2−2 · · · T1T

θ1
1 1km , (41)

where

T k = Tk−1 · · · T1Tl · · · Tk+1Tk ,

Lk = Lk−1 · · · L1Ll · · · Lk+1Lk .

Proof: According to Cheng product, one has

Tθ2Tθ2−1 . . . T1T
θ1
1

= 1kmMθ21kmMθ2−1 · · · 1kmM1︸ ︷︷ ︸
θ

= 1km Mθ21kmMθ2−11km · · · 1km︸ ︷︷ ︸
θ−1

M1

= 1km Lθ2Lθ2−1 · · · L2︸ ︷︷ ︸
θ−1

M1

= 1kmL
θ1
θ2+1Lθ2Lθ2−1 · · · L2M1.

The proof of other formula is similar to that.
The global stabilization problem of system (32) is to find

an input sequence such that the system globally converges to
a fixed point.
Definition 7: System (32) is said to be global stabilizable

to δdkn ∈ 1kn , if there exists an input sequence u(0), u(1), . . .,
such that for any initial x(0) ∈ 12n , x(t) = δdkn holds for some
s ∈ N, t ≥ s.
From Definition 7, we can know that the problem of stabi-

lization is divided into two processes. One is that the system
can stabilize at a fixed point after a finite number of steps,
and the other is that the system has such a fixed point.
Theorem 5: δdkn is a fixed point of system (32) if and only

if there exists an input sequence u(σ (t)) such that

[Mσ (t)u(σ (t))]d,d = 1. (42)

A fixed point of system (32) means it is a common fixed
point of all subsystems. Hence, we can proof this theorem
simply by contradiction. When the system runs to a certain
subsystem 6i, and the state is stabilized to δdkn , then input
δ
ji
km , can be taken to make the state unchanged. Continue this
process, run to the subsystem 6i+1, and take input δji+1km ,. . . .,
Therefore, as long as the initial state of the system can be
reached δdkn , then the input sequence of the system repeats
the input sequence of the above structure.
Theorem 6: System (32) is global reachable to δdkn if and

only if there exists an input sequence u0, u1, . . . , uθ , such that

Mθ2uθMθ2−1uθ−1 · · ·M1u0 = δkn [d d · · · d], (43)

where θ = θ1l + θ2 and θ2 = θ mod l.
Proof: From system (32), one has

x(t) = Mσ (t − 1)u(t − 1)x(t − 1)

= Mσ (t − 1)u(t − 1)Mσ (t − 2)u(t − 2) · · ·

Mσ (0)u(0)x(0)
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= Mσ (t − 1)u(t − 1)Mσ (t − 2)u(t − 2) · · ·

M1u(0)x(0),

x(θ ) = Mθ2u(θ )Mθ2−1u(θ − 1) · · ·M1u(0)x(0). (44)

The conclusion can be obtained by the arbitrariness of initial
state x(0).
By Theorem 6 and Theorem 5, two processes of the

global stabilization problem can be done. (42) and (43) could
construct an input sequence u0, u1, . . . , uθ , u(1), u(2), . . . ,
u(1), u(2), . . . , u(l), . . . such that system (32) is global stabi-
lizable to δdkn . Hence, combining Theorem 5 and Theorem 6,
we can obtain the necessary and sufficient conditions for the
system to be stabilized.
Theorem 7: System (32) is global stabilizable if and only

if formulas (42) and (43) hold.
Remark 3: When the system is stable at some observable

states, the set stability and stabilization problems become
the detectability. Ref. [33], [34] proposed the data form to
investigate the detectability and obtained several criteria via
novel form. Ref. [33] preliminarily analyzed the relationship
between detectability and stabilization. Interested readers can
further investigate this problem, and also continue to study
the detectability of k-valued logical networks, which are all
challenging topics.

Next we design an algorithm for finding the control
sequence based on (42) and (43).

Algorithm 1 Consider system (32), Assuming that the
system can be stabilized to a fixed point δdkn ∈ 1kn through s
steps,

Step 1: Compute s = s1l + s2, where s2 = s mod l;
Step 2: Replace θ in (43) with s, find u0, u1, . . . , us satis-

fying (43);
Step 3: Find an input sequence δj1km , δ

j2
km , . . . , δ

jl
km satisfying

[Miδ
ji
km ]d,d = 1, i = 1, 2, . . . , l; (45)

Step 4: The control sequence u(0), u(1), . . . , u(s), . . . can
be designed as:

u0, u1, . . . , us, δ
js+1
km , δ

js+2
km , . . . , δ

l
km , δ

1
km , . . . , δ

js
km , (46)

where the underlined part of the input sequence is repeated in
subsequent input sequences.
Remark 4: Reference [35] proposed the input network,

in which controls are logical variables satisfying certain logi-
cal rule. Notice that an input network will eventually become
some limit cycles after finite steps, which is equivalent to
periodic switching. The methods, proposed in this paper, are
based on k-valued logical networks, which is a generalization
of traditional BNs. And the corresponding results can be
also applicable to periodic switched BNs. Compared with
reference [20], in which the reachability and controllability
of periodic switched BNs with periodic signals were investi-
gated, but the problem of stabilization was not analyzed in
detail. Our methods can not only effectively deal with the
reachability and controllability problems in [20], but also
settle the stabilization problem.

As we have analyzed in Remarks 2-4, the periodic switched
k-valued logical network has many special properties, includ-
ing the minimal periodic problem of row periodic matrix,
the connection of switched BCNs and restricted BCNs, the
relationship between detectability and stabilization, which
are worth making efforts for further investigation.

BNs can be seen as a special case of k-valued logical
networks. Then one example on BN is given to verify the
results of this paper.
Example 3: Consider the periodic switched 2-valued logic

network, which consists of three subsystems:

61 :

{
x1(t + 1) = x2(t)∨̄u(t),
x2(t + 1) = x1(t) ∧ x2(t),

(47)

62 :

{
x1(t + 1) = x2(t) ∨ u(t),
x2(t + 1) = x1(t)→ x2(t),

(48)

63 :

{
x1(t + 1) = x2(t) ∧ u(t),
x2(t + 1) = x1(t) ∧ x2(t),

(49)

The algebraic form of the three subsystems is as follows:

61 : x(t + 1) = M1u(t)x(t), (50)

62 : x(t + 1) = M2u(t)x(t), (51)

63 : x(t + 1) = M3u(t)x(t), (52)

where

M1 =


0 0 0 0 1 0 0 0
0 1 0 1 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 1

 ,

M2 =


1 0 1 1 1 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0


and

M3 =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 1 0 1 1 1

 .
Similar to Example 2, we draw a state transition diagram

in Fig. 3. Then we can get

6σ (t) : x(t + 1) = Mσ (t)u(t)x(t), (53)

where

M = [M1 M2 M3]

=


0 0 0 0 1 0 0 0 1 0 1 1
0 1 0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 1 0 1 1 1

 .
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FIGURE 3. The state transition diagram of Example 3.

It is easy to know that

Mδ13δ
2
2 = M1δ

2
2 =


1 0 0 0

0 0 1 0

0 0 0 0

0 1 0 1

 ,

Mδ23δ
2
2 = M2δ

2
2 =


1 0 1 0

0 0 0 0

0 0 0 1

0 1 0 0

 ,

Mδ33δ
1
2 = M3δ

1
2 =


1 0 0 0

0 0 1 0

0 0 0 0

0 1 0 1

 .
We can see

[Mδ13δ
2
2]1,1 = 1,

[Mδ23δ
2
2]1,1 = 1,

[Mδ33δ
1
2]1,1 = 1.

Therefore, byTheorem 5, δ14 is the fixed point of system (60).
As long as the initial state of the system reaches δ14 ,

as long as the corresponding control input (61, δ
2
2), (62, δ

1
2),

(63, δ
1
2), the system state can be stabilized at δ14 .

After simple calculation, we can get

M2δ
1
2M1δ

1
2M3δ

1
2M2δ

1
2M1δ

2
2

=


1 0 1 1
0 1 0 0
0 0 0 0
0 0 0 0



1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 1



1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 1



1 0 1 1
0 1 0 0
0 0 0 0
0 0 0 0



1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 1



=


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 .
According to Theorem 6, for any initial state of the system,
we can design the input sequence

δ22, δ
1
2, δ

1
2, δ

2
2, δ

1
2,

such that this system is global reachable to δ14 .
In summary, in order to stabilize the system state to δ14 ,

we can design the input sequence through Algorithm 1 as
follows:

u(0), u(1), u(2), u(3), u(4), u(5), u(6), u(7)

= δ22, δ
1
2, δ

1
2, δ

2
2, δ

1
2, δ

1
2, δ

2
2, δ

2
2 .
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FIGURE 4. The corresponding system state trajectory of Example 3.

The corresponding system state trajectory is shown
in Fig. 4.

IV. CONCLUSION
The stability and stabilization of periodic switched k-valued
logic network were preliminarily explored in this paper. As an
effective tool, the Cheng product and its properties plays
an important role for this work. Based on Cheng product,
the system was transformed as an algebraic form. Under the
framework of the switching-state space and the switching-
input-state space, some new matrices were constructed. Then
some necessary and sufficient conditions for the stability and
stabilization of periodic switched k-valued logic networks
were obtained. Moreover, the stabilizer design algorithm was
also provided. Finally, two examples were given to verify the
validity of the proposed method.

Future works like observability and controllability of peri-
odic switched k-valued logic networks are challenging. From
Proposition 7 and Theorem 5 in the paper, we can see that
this state is a fixed point of each subsystem. Stabilization is a
stronger concept than controllability, which requires not only
that the system state can reach a certain state, but also that
the state remains unchanged after reaching it. For the observ-
ability problem, the output data before the system stabilizes
to some state is more important.
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