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ABSTRACT Many facial landmark methods based on convolutional neural networks (CNN) have been
proposed to achieve favorable detection results. However, the instability landmarks that occur in video frames
due to CNNs are extremely sensitive to input image noise. To solve this problem of landmark shaking, this
study proposes a simple and effective facial landmark detection method comprising a lightweight U-Net
model and a dynamic optical flow (DOF). The DOF uses the fast optical flow to obtain the optical flow
vector of the landmark and uses dynamic routing to improve landmark stabilization. A lightweight U-Net
model is designed to predict facial landmarks with a smaller model size and less computational complexity.
The predicted facial landmarks are further fed to the DOF approach to deal with the unstable shaking. Finally,
a comparison of several common methods and the proposed detection method is made on several benchmark
datasets. Experimental evaluations and analyses show that not only can the lightweight U-Net model achieve
favorable landmark prediction but also the DOF stabilizing method can improve the robustness of landmark
prediction in both static images and video frames. It should be emphasized that the proposed detection system
exhibits better performance than others without requiring heavy computational loadings.

INDEX TERMS Facial landmark detection, lightweight U-Net, fast optical flow, dynamic routing, landmark

stabilization.

I. INTRODUCTION

Over the past decade, several facial image applications have
been widely developed such as facial recognition, facial
enhancement, head pose estimation, facial expression recog-
nition, face swapping, and face monitoring [1]-[3]. Facial
landmark detection is a very important research topic in these
applications but it poses many challenges such as blurred
images, extreme lighting, artificial occlusion, extreme head
posture, and data imbalance. To tackle these problems, active
shape models have become one of the most popular tradi-
tional facial landmark methods [4]. Since an active shape
model performs low-level matching along the edges, a high
error rate of matching results gives a poor prediction per-
formance. Furthermore, a local neural field patch expert [5],
which can learn the similarity of surrounding pixels and
the sparsity constraints of pixels, was proposed to solve
the problem of matching failure. A convolutional expert
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network [6], which combined the advantages of neural archi-
tectures and mixtures of experts in an end-to-end frame-
work, was proposed to improve the robustness of landmark
prediction. However, it required time-consuming training
to build a model for the appearance of each facial land-
mark and poor initial sample selection led to poor learning
results.

Compared with traditional detection methods, facial land-
mark detection methods based on deep learning [7]-[13]
showed better performance. There are two approaches,
namely direct and indirect. Usually, convolutional neu-
ral networks (CNN) are used to detect the landmark
coordinates [7]-[9] under the direct scheme, but the land-
marks are obtained by post-processing the predicted
heatmaps [10]-[13] under the indirect approach.

In [7], Sun et al. first applied CNN to facial land-
mark detection. A cascaded regression scheme was pro-
posed to improve the accuracy of landmark detection based
on the powerful feature extraction capabilities of CNN.
In [8], a multi-task deep-learning method was proposed by
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optimizing the relationship between landmark coordinates
and facial attributes. In [9], a fast multi-task framework
was proposed with only the label of the coordinate gen-
erated. The feature map converted into coordinate values;
however, the spatial information gradually disappeared or the
entire landmark moved as interference from the environment
occurred. On the other hand, since heatmap regression retains
spatial information on the regression task, it has high spatial
generalization ability and can improve the accuracy of land-
mark detection [10]-[13]. In [10], the landmark coordinates
were obtained by using the boundary-aware face-alignment
method. The boundary lines were utilized as the geomet-
ric structure of a human face to remove the ambiguity of
landmark definition. In [11], a coarse-fine network coor-
dination regression was proposed, in which the heatmap
regression network branch used a spatial pyramid and atten-
tion mechanism to return better quality heatmaps. In [12]
and [13], a multi-level network based on the convolutional
pose architecture was proposed. Not only can the global
context be merged to improve the part confidence map
but also the position of each part can be executed at each
stage.

Generally speaking, a large number of parameters in the
network model help landmark prediction results, but the
increased calculation time is not ideal for practical applica-
tions. A common approach to solve this problem is to employ
parallel paths with different sizes of receptive fields [14].
Using a 1 x 1 convolutional layer for dimensionality reduction
can greatly reduce the calculation time. A neural network
compression method was proposed to increase the speed and
reduce the model size [15], but it usually sacrifices some
accuracy. Meanwhile, some studies focused on a design with
a loss function generated by the heatmap to improve the
accuracy of the model. In [16], an adaptive wing loss for
the heatmap was proposed by considering the significance
of every pixel on the heatmap. In [17], a fractional heatmap
regression was proposed to accurately estimate the fractional
part based on the 2D Gaussian function.

Though deep-learning-based facial landmark detectors can
achieve favorable detection performance in static images,
they usually display unnatural landmark shaking and unstable
prediction results in video frames. The shaking problem is
one of the most critical handicaps for applying facial land-
marks to real-time applications. Some researchers proposed
recurrent neural network (RNN) architectures [18]-[21] to
improve the unnatural landmark shaking. Though RNNs
are suitable for time-series analysis, they require a lot of
resources to annotate each frame of information. Further-
more, a semi-supervised training using the correlation of
optical flow as a source of supervision was proposed [22],
but cannot be easily implemented. In [23], a Kalman filter
was used to stabilize the facial position estimation; however,
it cannot solve the landmark shaking problem when the face
moves smoothly. In [24], a global and local filtering method
was proposed based on the evaluation parameters of the
global shaking value. It can ensure the robustness of global
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FIGURE 1. The network architecture of the proposed lightweight U-Net.

overall facial shape tracking and the adaptability of local
facial part tracking.

Based on the above literature review, it can be seen that
most of the existing facial landmark detection methods only
consider the accuracy of face landmark location. Whether
a detection system is robust against input image uncer-
tainties is an important issue for a detection performance
assessment. This study proposes a facial landmark detection
method, which comprises a lightweight U-Net model and a
dynamic optical flow (DOF). The DOF approach combines
the advantages of fast optical flow and dynamic routing,
thus it can greatly improve the accuracy and stability of
landmark detection. The contributions of this study can be
summarized as follows. (1) A lightweight U-Net is studied
to predict facial landmark points with a simple, small, and
lightweight network architecture. (2) A training trick with
adaptive foreground ratio is proposed to avoid training fail-
ure. (3) A DOF approach is proposed to solve the problem
of landmark shaking with high-quality detections in video
frames. (4) Stability analysis is used to show the performance
of the proposed DOF approach. (5) Several datasets including
the 300W [25] and 300VW [26] datasets are used to show
the effectiveness of the proposed facial landmark detection
method.

The rest of the work is organized as follows. Section II
describes the materials and Section III discusses the proposed
facial landmark detection method with DOF. Some experi-
mental tests and stability analysis are given in Section I'V. The
conclusion is given in Section V.

Il. MATERIALS

A. LIGHTWEIGHT U-NET

It is important that facial landmark detection be simple and
accurate as it is a necessity in various facial applications.
Figure 1 shows the details of the lightweight U-Net architec-
ture. It is pruned and quantized to improve the speed of the
network based on the network architecture of the U-Net [27],
[28]. At the last layer, a 1 x 1 convolution (yellow arrow) is
used to map the feature vector to the number of heatmaps of
the landmarks. Each heatmap can be viewed as a probability
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TABLE 1. Input, output and network settings for the lightweight U-Net
architecture. The kernels are described as height x width x depth.

Lightweight U-Net network setting

Layer Tag Output Dim Layer Tag Output Dim
0 Input 3x48x48 13 Concatl 256x12x12
1 Convl-1 32x48x48 14 Convs-1 128x12x12
2 Convl-2 32x48x48 15 Conv5-2 128x12x12
3 Pooll 32x24x24 16 Dconv2 64x24x24
4 Conv2-1 64x24x24 17 Concat2 128x24x24
5 Conv2-2 64x24x24 18 Conv6-1 64x24x24
6 Pool2 64x12x12 19 Conv6-2 64x24x24
7 Conv3-1 128x12x12 20 Dconv3 32x48x48
8 Conv3-2 128x12x12 21 Concat3 64x48x48
9 Pool3 128x6x6 22 Conv7-1 32x48x48
10 Conv4-1 256x6x6 23 Conv7-2 32x48x48
11 Conv4-2 256x6x6 24 Output 68x48x48
12 Dconvl 128x12x12

label input image  merge result foreground
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FIGURE 2. Percentage of the foreground with different values of o.

response map. Thus, the position coordinates of the land-
marks are obtained after finding the maximum value of the
heatmap.

The advantage of this design is that the network can not
only obtain local and global features of different propor-
tions but also save the spatial information of each resolution.
It reduces the merging steps and the number of channels in
order to increase the speed of the network. Table 1 shows the
detailed structure of the network and the size of the feature
map. It should be emphasized that the basic topology of
U-Net is not changed. The parameter amount of the original
U-Net is approximately 30 million, but it is approximately
2 million in the developed lightweight U-Net. Thus, it can
quickly and accurately predict facial landmarks with a sim-
plified computation complexity.

Furthermore, Fig. 2 shows the percentages of the fore-
ground for different values of o. It can be seen that a
large value of o brings a large proportion of foreground
into the picture. At the beginning of the training process,
it often happens that the loss of certain landmarks remains
fixed or the output shows all zeros. This is because the
low percentage of the foreground causes the training to
tend to become the background of the entire picture. Mean-
while, if the percentage of the foreground is large, it will
cover too much unnecessary information and increase the
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uncertainty interval, which results in insufficient coordinate
positioning.

To solve this problem, this study proposes a novel train-
ing trick to train the network as follows. When making
the output labels, generate heatmaps of different sizes of
Gaussian probability distributions in different training stages.
Choose a larger value of o to begin training the networks,
and then gradually reduce the value of ¢ according to the
learning effect. From a large range to a small range of precise
positioning, the foreground ratio can be reduced. This coarse-
to-fine training method can effectively avoid training fail-
ure. Thus, the proposed training trick can gradually improve
the learning effect and convergence speed of lightweight
U-Net.

B. SOFT-ARGMAX OPERATION

Heatmap regression accurately locates key points in the
image for 2D pose estimation through pixel-by-pixel pre-
diction. It can be viewed as a probability response map,
where the location coordinates of the landmark are obtained
by finding the maximum value of the heatmap [10]-[13].
Because the heatmap output is a 2D image, the model can
be designed as a fully convolutional network. The output
feature area is large and the spatial generalization ability is
strong. The correlation between the heatmaps corresponding
to the input image can be used to guide network learning. The
heatmap regression captures the contrast between the fore-
ground and the background and is used to improve network
learning.

For the conversion between the heatmap and the coordi-
nates, a soft-argmax function is used to alleviate the prob-
lem of accuracy loss caused by quantification. It is used to
extract the locations of image key points. The soft-argmax
calculation formula of the heatmap M € R"*# is defined as
follows [29]:

W H .
U,(M) = ZZ (1)
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where M; ; is the value of the heatmap M at position (i, j), and
W x H is the size of the heatmap output. Thus, the predicted
regression position for the given heatmap M is:

P = (Wx (M), Wy(M)) 3

For the labelling part of the network training proce-
dure, a heatmap with a Gaussian probability distribution
can be generated in terms of the landmark coordinates as
follows [29]:

(Cx— C(m)xO )2 +H(Cy— C(m)yO )2

H(m)(C) =e 202 4
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FIGURE 3. Overview of the proposed detection framework.

where C = (C,, C,) represents the coordinates, o represents
the standard deviation, and (Cm)x0, Cm)y0) means the center
coordinates of the m-th heatmap Gaussian distribution.

ill. METHOD

As shown in Fig. 3, the proposed facial landmark detection
system comprises a lightweight U-Net and a DOF. Since
the global optical flow can determine the overall movement
direction of the face and the local optical flow can avoid
losing sensitivity to expressions, the DOF approach calculates
the correlation information between local optical flow and
global optical flow. The DOF uses the fast optical flow [30]
to obtain the optical flow vector of the landmark and uses
dynamic routing [31] to improve landmark stabilization. Fast
optical flow can effectively reduce the coupling coefficient
that is inconsistent with the overall direction. Thus, important
landmarks that fit the entire vector can be selected to elimi-
nate unstable landmarks.

According to the coarse-to-fine method, the fast optical
flow establishes a scale pyramid, where the iteration starts
from the first (coarsest) level 6 in a scale pyramid with
a downscaling quotient of 6y to the final (finest) level .
A dense flow field Uy in each iteration s can be obtained as
follows. First, the uniform grid patch in the image domain is
initialized with the trivial zero flow. The number of patches
N; x N; and grid density is determined through parameters
O,y € [0, 1), where 6,, = 0 denotes patch adjacency with
no overlap and 6,, = 1 — ¢ takes each pixel on the refer-
ence image as the center of the patch to form a dense grid.
On each subsequent scale, use the flow from the previous
scale ujj jnir = Usy1(x/05q)05q to initialize the displacement
of each patch ij € N;, N; at its location x and update the
optical flow vectors u;;. In order to obtain more robustness
against outliers, reset all patches to their initial flow u;; i, to
update the displacement ||u;j jni; — u;j||2 until it exceeds the
patch size. In the reference image I;, the intensity difference
between the template patch and warped image at this pixel for
a given template patch T is obtained as:

dij(x) = L1 (x + uy) — T(x) )

where u;; is the estimated displacement of patch ij. Further-
more, the indicator A;; x = 1 iff patch ij overlaps with loca-
tion x in the reference image. The normalization parameter
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Z is given as:

S, M 6
ZZ max(1, ||d;j(x)]]2) ©

Applying the Weighted average method, the estimated dis-
placements of all patches overlapping at each pixel x in
the reference image can be used to obtain the dense flow
field U, as follows:

I S
Us(x) = ZZ max(1, ||di(x)|]2) “ 7

Furthermore, the dynamlc routing can effectively distribute
the output vector of each node to the next node through the
coupling coefficient [31]. First, initialize dynamic routing as
follows:

1

b 0,cpk = — 8
k< Oa =% ®)

where by is the initial base, c is the coupling coefficient of
each vector and N is the number of landmarks. Obtain each
optical flow vector u; from the dense flow field U, and then
use initialization to start the iteration of dynamic routing, as
follows:

N
5= e ©)
k=1

where s is the sum of the inputs of all input nodes. The
coupling coefficient is used to update the coefficient through
the inner product of the prediction vector and the output
vector of each node. The output vector of the node v, can
be obtained as follows:

s
Vg = — (10)
£ sl
The k-th base vector can be further updated as:
TV
bi < by + <5 (11)
ot I
and the k-th coupling coefficient ci is given as:
b
k= (12)

N
> el
=1

It can be found that the coupling coefficient of this node
will be increased through feedback from top to bottom if the
inner product is large, yet the coupling coefficients of other
nodes will be reduced. After continuous iterative approxima-
tion, the best coupling coefficient cx can be obtained with
dynamic selection. The weight o can be obtained using the
best coupling coefficient between the front and rear frames
as follows:

N N
Lo LDl i Y e > 0 13)
k=1 k=1
0 otherwise
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TABLE 2. Details of the used benchmark databases.

Name Year Images Subjects Landmarks Description
BP4D 2014 - 41 49 pts
300VW | 2015 218,595 - 68 pts Video base
AU code, 2D/3D
300W 2016 689 - 68 pts Landmark, head pose
300W-LP | 2016 61225 - 68 pts Larger pose
AU code, 2D/3D/IR
BP4D+ | 2016 - 140 49 pts Landmark, head pose,
physiological signal

The k-th estimated landmark coordinate ﬁk can be obtained
as follows:

Pi = (1 — )P +aP} (14)

where w%‘Pk is the k-th predicted landmark coordinate and
132"6 is the k-th estimated landmark coordinate of the previous
frame image. It should be emphasized that the DOF method
can be used for other facial landmark detections.

In summary, the steps of the proposed facial landmark
detection method are described below:

Step 1: Load an image into the facial landmark detection
system.

Step 2: Use a learned lightweight U-Net to find the pre-
dicted facial landmark coordinate Py.

Step 3: Obtain the optical flow vector u; of each landmark
between frames by using fast optical flow.

Step 4: Use dynamic routing to obtain the global optical
flow vector v, for iteration of each vector.

Step 5: Calculate the weight « between the front and rear
frames in (13).

Step 6: Obtain the estimated facial landmark coordinate Py
in (14).

IV. EXPERIMENTAL RESULTS

A. DATASETS AND EXPERIMENTAL SETUP

Five benchmark datasets for training and testing, 300W [25],
300VW [26], BP4D [32], BP4D+ [33], and 300W-LP [34],
are utilized as summarized in Table 2. On the 300W dataset,
each face has 68 landmarks and the dataset is divided into
four groups: training set, common set, challenging set, and
full set. The 300W-LP dataset is an extended version of 300W
to provide more images with larger poses. The 300-VW
dataset includes 114 lengthy videos (approx. 1 min each)
with 68 landmarks annotated densely. In the BP4D dataset,
eight tasks in the form of interviews are designed to generate
spontaneous emotions and the BP4D+ dataset increases the
number of tasks to ten. Furthermore, this study utilizes the
Caffe framework to train the lightweight U-Net model with
the optimal learning rate between 10~* and 107°107¢ and
a batch size setting of 256. The input image is 48 x 48
pixels with several data augmentation methods that include
blur, zoom, translation, rotation, light and dark, and flip, crop
and zoom. When the loss function uses adaptive wing loss,
the penalty loss for foreground pixels is larger, but the loss
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FIGURE 4. Results of predicted landmarks on 300W dataset.

for background pixels is smaller, so the training effect is
better.

To evaluate the proposed method, a normalized mean error
(NME%) is defined as follows:

N
=,

k=

NME% = (15)

Nd
where x; is the predicted coordinates of the k-th landmark, x;/
is the ground truth of the k-th landmark, N is the total number
of landmarks, and d is defined as the distance between the left
and right corners of the eye and the average distance between
twelve landmarks in the binocular region for ION and IPN,
respectively.

B. EVALUATION ON DATASETS
The 300W and 300VW datasets are employed to evaluate
the effectiveness of the proposed detection method. First, the
proposed facial landmark detection is applied to the 300W
dataset and the experimental results are given in Fig. 4.
It can be seen that the proposed method is robust to par-
tial occlusion, head pose, and extreme expressions. Fur-
thermore, a comparison of cascade regression [35]-[37],
the coordinate or heatmap regression [38], [39], the 3D shape
model [38], and the proposed method is made in Table 3.
It shows that the NME% of the proposed method is better
than that of most methods, reaching a similar level as [37],
but worse than that of [38] and [39]. It should be emphasized
that the used network model only requires 7 MB and does
not occupy too much space on the storage device, while
the network size in [39] is 798.5 MB. This simple design
significantly helps to reduce the computational burden.
Next, the proposed facial landmark detection is applied
to the 300VW dataset and the experimental results are
shown in Fig. 5. It can be seen that the proposed method
achieves satisfactory prediction results for each frame even
if the head posture and light and shadow change between
video frames. Table 4 summarizes the experimental results
of SDM [41], CFSS [37], TCDCN [8], DSRN [42], and
the proposed method. Compared with other methods, the
proposed method can achieve better measurement values,
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TABLE 3. The NME(%) of facial landmark detection results on 300W. The
lower value is better.

Method | Common Challenging Fullset
Inter-pupil Normalization(IPN)

RCPR [35] 6.18 17.26 8.35
TCDCN [8] 4.80 8.60 5.54
CFAN [36] 5.50 16.78 7.69
CFSS [37] 4.73 9.98 5.76
3DDFA [34] 6.15 10.59 7.01
Openpose[12] 8.4 12.67 9.23
DeFA [40] 5.37 6.38 6.10
LAB(8-stack) [10] 3.42 6.98 4.12
DAN [38] 3.19 5.24 3.59
SAN [39] 3.34 6.60 3.98
Ours 4.68 9.13 5.55

FIGURE 5. Results of predicted landmarks on 300VW dataset.

TABLE 4. The NME(%) of facial landmark detection results on 300VW. The
lower value is better.

Method Categoryl Category2 Category3
Inter-ocular Normalization(ION)

SDM [41] 7.41 6.18 13.04
Openpose [12] 8.5 7.42 21.69
CFSS [37] 7.68 6.42 13.67
TCDCN [8] 7.66 6.77 14.98
AAN [43] 5.03 4.82 7.98
DSRN [42] 5.33 4.92 8.85
SA [44] 3.85 3.46 7.51
DeCaFA [45] 3.82 3.63 6.67
AND [46] 4.69 4.34 6.72
Ours 3.64 38 5.03

and the most difficult Category 3 can also be increased by
approximately 30%. According to these results, the proposed
detection method can efficiently improve inference speed and
maintain performance.

C. STABILITY ANALYSIS
Two testing scenarios are considered to analyze the stability
performance of the DOF approach. Scenario 1 is a static

68742

-
[6)]

=N

o
3

STD of mean square error

0
0 10 20 30 40 50 60 70
landmark IDs

FIGURE 6. Comparison variation of each landmark mean square error in
static experiment (= s=: DIib, s : Dlib with DOF, == == : lightweight
UNet, : lightweight U-Net with MF, == = : lightweight U-Net with FF,
== == lightweight U-Net with SF, mm : lightweight U-Net with DOF).

0.5 T T T T T
@ the 34" landmark
5
*
5 0
it
<
5
05 ! | | | |
5500 5550 5600 5650 5700 5750 5800
frame count
0.5 T T T
the 34" landmark
12}
5
>
w0
&
8
5
05 | | | | |
5500 5550 5600 5650 5700 5750 5800
frame count
(a)
0.5 T
.4
5
= 0
=
]
-
1<)
=1
)
05 | | ! |
5500 5550 5600 5650 5700 5750 5800
frame count
0.5 T T
the 49" landmark
«
G
> 0
13
fist
8
=1
[}

05 : : : : :
5500 5550 5600 5650 5700 5750 5800
frame count
(b)

FIGURE 7. Landmark error for static testing scenario (m=: lightweight
U-Net, s : lightweight U-Net with DOF).

testing scenario used to observe the effects of processing
by the DOF method in static images, and Scenario 2 is a
dynamic testing scenario used to observe the effect of the
DOF method in video frames. In both testing scenarios, com-
parisons with the Dlib [47], mean filter (MF), first-order filter
(FF), second-order filter (SF), and DOF are made. For the
static testing scenario, a stationary image is obtained from
the photo recording experiment. The experimental results
of the static testing scenario are shown in Figs. 6 and 7,
where the landmark average of the entire video is used as
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the ground truth. Figure 6 shows that both the Dlib and
lightweight U-Net cause unstable shaking for each point but
the shaking amplitude of the lightweight U-Net is smaller
than that of Dlib. It can be seen that the DOF approach
achieves better performances than other approaches such as
MF, FF, and SF. Meanwhile, the time responses of the 34th
and 49th landmark points for the x-axis and y-axis are shown
in Figs. 7(a) and (b), respectively. It can be seen that the DOF
approach can solve the problem of facial landmark shaking.
It should be emphasized that the DOF method can be used
for other facial landmark detections. The detection perfor-
mance of the Dlib also can be improved by using the DOF
approach.

For the dynamic testing scenario, the 300VW dataset is
used to observe landmark shaking. The experimental results
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for the dynamic testing scenario are shown in Figs. 8 and 9
for stability analysis and time-delay analysis, respectively.
Figure 8 shows the results of stability analysis of No. 114 in
Category 1. The original prediction has a serious shaking
problem, but this can be improved after considering with
DOF. Compared with the ground truth and the lightweight
U-Net without DOF, the curve between frames becomes more
stable by using the lightweight U-Net with DOF. Mean-
while, Figure 9 shows the time-delay analysis of No. 411 in
Category 3. The original prediction has a serious time-delay
problem, and the lightweight U-Net with SF cannot han-
dle instantaneous changes. Since the DOF can dynamically
adjust the weight according to the degree of movement,
the lightweight U-Net with DOF can reduce time delay and
can get closer to the ground truth data.

V. CONCLUSION
Accurate and stable facial landmark detection presents a

considerable challenge for researchers in the field of com-
puter vision. This study proposed a simple yet effective
solution for facial landmark detection. The proposed facial
landmark detection system comprised a lightweight U-Net
and a dynamic optical flow (DOF) to produce high-quality
detections. The lightweight U-Net was designed to pre-
dict facial landmarks and reduce model size and com-
putational complexity without sacrificing model accuracy.
Furthermore, the proposed DOF integrated the global and
local structural constraints of facial landmarks to calcu-
late the motion of objects between frames. Although the
lightweight U-Net model achieved good prediction perfor-
mance in static images, unnatural landmark shaking occurred
in video frames. To deal with the unstable shaking, the pre-
dicted facial landmarks using lightweight U-Net were fur-
ther inputted to the DOF approach. Finally, two benchmark
datasets (300W and 300VW) were applied to verify the effec-
tiveness of the proposed facial landmark detection system.
Experimental evaluations and analyses showed that the pro-
posed detection method not only needed less memory space
but also effectively suppressed landmark shaking.
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