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ABSTRACT Understanding the physical interactions of objects with environments is critical for multi-object
robotic manipulation tasks. A predictive dynamics model can predict the future states of manipulated objects,
which is used to plan plausible actions that enable the objects to achieve desired goal states. However, most
current approaches on dynamics learning from high-dimensional visual observations have limitations. These
methods either rely on a large amount of real-world data or build a model with a fixed number of objects,
which makes them difficult to generalize to unseen objects. This paper proposes a Deep Object-centric
Interaction Network (DOIN) which encodes object-centric representations for multiple objects from raw
RGB images and reasons about the future trajectory for each object in latent space. The proposed model
is trained only on large amounts of random interaction data collected in simulation. The learned model
combined with a model predictive control framework enables a robot to search action sequences that
manipulate objects to the desired configurations. The proposed method is evaluated both in simulation and
real-world experiments on multi-object pushing tasks. Extensive simulation experiments show that DOIN
can achieve high prediction accuracy in different scenes with different numbers of objects and outperform
state-of-the-art baselines in the manipulation tasks. Real-world experiments demonstrate that the model
trained on simulated data can be transferred to the real robot and can successfully perform multi-object
pushing tasks for previously-unseen objects with significant variations in shape and size.

INDEX TERMS Deep learning in robotic manipulation, model learning, representation learning, visual
learning.

I. INTRODUCTION
Humans possess a natural physical intuition that can pre-
dict the effects of actions and the state of things in the
future. The ability to interpret the physical world can be
acquired and improved through experience. Understanding
the efforts of physical interactions is essential for planning
actions in robotic manipulation tasks. If a robot could reason
about the effects of actions and the future states of objects
to manipulate, it would plan feasible actions to navigate
objects to their goal configurations. Nonetheless, the abil-
ity to reason physical interactions has been a longstand-
ing challenge in robotics. Although many predictive models
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that leverage fully observable states have shown impressive
results for various mechatronic systems [1]–[5], the system
states, such as object poses, may not be directly accessible
in many real scenarios. In particular, learning a predictive
model only from high-dimensional sensory inputs, such as
raw RGB images, remains significantly challenging [6], [7].
Furthermore, for multi-object manipulation tasks, predictive
models require to consider not only the interaction between
the robot and the manipulated objects, but also the interaction
between objects, such as collisions between objects [8]. Thus,
an effective and robust prediction model should accurately
predict the object states in the future conditioned on applied
actions, which allows a robot to perform multi-object manip-
ulation tasks for unseen objects with variations in shape
and size.
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Recently, video prediction models have been success-
fully applied to perform various manipulation tasks [9]–[11],
which directly predict future frames [12] or 2D flow of pix-
els [13] from raw visual observations. However, these models
typically require large amounts of real data, hindering many
potential real-world applications. Although such prediction
models combined with a model-predictive control (MPC) are
applied for predicting future trajectories of object states [14],
they are limited to short-term tasks due to the accumulation
of model error over prediction time [11]. On the other hand,
from a robotic perspective, there is no need to generate the
raw pixels of future frames. Directly predicting raw pixels
containing a lot of noise, such as background and shadows,
can increase the difficulty of predicting the each entity state
in the image. Moreover, the pixel-based methods discard the
structured knowledge about the world, such as object posi-
tions and visual shapes, resulting in inefficient and inaccurate
predictions. Therefore, instead of directly predicting raw pix-
els in image space, the key idea in this paper is to represent
each entity with an object-centric representation that contains
the object positions and visual features in latent space. Such
compact representation allows for an accurate and efficient
prediction model for planning plausible actions.

This paper proposes a Deep Object-centric Interaction Net-
work (DOIN), a deep neural network that can learn system
dynamics of physical interaction and predict object-centric
representations of multiple objects through visual observa-
tions. The proposed model can abstract object-centric rep-
resentations for multiple objects in latent space from raw
images, and reason about future representations conditioned
on the interactions between objects. The object-centric rep-
resentation for each object contains the explicit position in
image space and implicit visual feature that encodes the
object information (such as shape, size, and rotation) and
the context of the environment. The proposed DOIN model
contains two major components: 1) an encoder module that
abstracts object-centric representation for each entity, and
2) an interaction prediction network that predicts future object
states. DOIN model is trained purely on data collected in
simulation through self-supervised random interactions. The
learned model combined with a model-predictive control
framework can allow a robot to perform multi-object manip-
ulation tasks, such as planar pushing tasks. Simulation exper-
iments demonstrate that the proposed method successfully
performs multi-object pushing tasks, and outperforms state-
of-the-art baselines. Real-world experiments validate that the
model trained only on simulated data can accurately reason
the effect of physical interactions and allows the robot to
successfully manipulate previously-unseen objects to achieve
goal configurations in real world.

The contributions of this paper are presented as follows.
First, a novel interaction network is proposed to lever-
age object-centric representations to predict the effect of
multi-object interactions only from RGB observations. Sec-
ond, DOIN is trained only on simulated data collected
through self-surprised random interactions and can be

directly transferred to the real-world experiments without
any extra effort. Third, extensive experiments in simulation
and the real-world demonstrate that the learned model suc-
cessfully performs multi-object manipulation tasks, substan-
tially outperforming the baselines. Furthermore, the proposed
method can generalize to manipulate novel unseen objects
with variations in shape.

II. RELATED WORK
A. LEARNING PHYSICAL INTERACTIONS
Learning models that can predict the future states of objects
is an active research area. Many approaches on the predic-
tion of physical interactions have been applied from video
prediction [15] to robotic manipulation tasks [16]. Some
methods build the system dynamics by explicitly model-
ing the state transitions, leveraging ground-truth poses [17],
[18] or known physical properties [19]. However, access
to the ground-truth states and physical properties may be
difficult for most real-world applications. Recently, some
data-driven methods have been proposed to reason about
physical interactions from visual observations via predicting
the objects’ center of mass [20], predicting objects’ physical
properties via external multi-step interactions [21], or pre-
dicting 3D volumetric scene flow [22]. However, most of
them only consider isolated objects and cannot be easily
extended to multi-object manipulation tasks. On the other
hand, some generic approach has been proposed to leverage
graph neural network [23] to capture the relations between
objects in a scene [24], [25]. For example, Janner et al. [8]
learn an object-centric dynamics model trained by a physics
simulator and show that such models can be utilized for block
stacking tasks. However, these methods often rely on a pre-
defined number of objects. Furthermore, they only consider
simple scenes like falling blocks, and do not involve applied
actions for robotic manipulation tasks, In contrast, the pro-
posed method learns multiple interactions without limiting
the number of objects, and can be used for planning action
sequences to perform robotic pushing tasks.

B. LEARNING VIDEO PREDICTION
Recently, pixel-based prediction models have shown impres-
sive results in video prediction applications [12], [13]. Some
approaches have utilized a transformation-based model to
generate pixels by predicting the flow of pixels [12], [26],
and have successfully performed robotic manipulation
tasks [27]. For example, VisualMPC [10] has been proposed
to combine a video prediction model with a model pre-
dictive control framework to predict the flow of the desig-
nated pixels, and has achieved to manipulate unseen objects,
even multiple objectives, in the real world. However, such
action-conditioned video prediction models typically require
a large amount of real data, making it difficult to generalize to
different scenes efficiently. Instead of predicting raw pixels,
the proposed method leverages object-centric representations
for multiple objects, enabling an efficient and accurate pre-
diction for object states. Furthermore, the proposed model
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combines the object-centric representations with a interaction
network to reason about the effect of physical interactions.

C. LEARNING OBJECT-CENTRIC REPRESENTATIONS
Object-centric representations have been widely applied
in robotic manipulation applications from pick-and-place
[25] to non-prehensile pushing [28]. Recently, a number of
learning-based method have leveraged object-centric rep-
resentations to plan actions, including 6-DOF poses esti-
mator [29], keypoint-based methods [30], [31], and visual
descriptors [32], [33]. However, most of these methods are
task-specific data collection procedures and are not sufficient
to generalize to unseen objects with large variations in shape.
The work most related to ours is [34], which also com-
bines an object-centric representation with MPC for pushing
objects. However, instead of using a video prediction model,
this paper proposes a novel object-centric representation,
which combines object pixel positionswith the visual features
produced by a modified CVAE architecture. The proposed
method also shows stronger generalization capability for
unseen objects than prior work.

III. OVERVIEW
This paper considers the problem of multi-object robotic
manipulation tasks only from visual observations, such as
RGB images. Robotic manipulation can be formulated as a
Markov Decision Process (MDP) with a high-dimensional
state space S and an action space A, where the dynamics
model, i.e., P : S × A × S → R, defines a transition
probability of the next state st+1 given the current state-action
pair (st , at ). In this paper, the state st is processed from raw
RGB image It and at is a planner pushing primitive command
of the robot end-effector. The goal of this paper is to learn an
interaction prediction model that, given an initial scene and
a goal image Ig, is used for planning action sequences such
that the objects match the specified goal configurations after
executing the push actions.

As illustrated in Fig. 1, the proposed approach for
multi-object robotic manipulation tasks contains three
phases: self-supervised data collection, latent interaction pre-
dictive model training, and planning control via the model
at test-time. First, to train DOIN, large amounts of data are
collected autonomously by applying random actions in the
simulation. A variety of objects with a different number of
objects in a scene are used for data collection. The synthetic
data does not require any human annotation or extra supervi-
sion. Second, during the training phase, the model is trained
on the collected data. The model takes as input the current
image and abstracts an object-centric representation for each
entity. Using this representation, the model can predict the
future states under applied actions. Last, at test time, an MPC
method is used to search the action sequences that can min-
imize the task-specific cost function. The robot executes the
action a∗t each step after receiving the current image It in a
closed-loop manner until the task goal is achieved.

IV. METHOD
This section first presents a description of the proposedDOIN
that uses object-centric representations to perform interaction
reasoning and predicts the object states. Then, a sampling-
based planner combined with the learned model is proposed
to perform robotic multi-objects manipulation tasks.

A. DEEP OBJECT-CENTRIC INTERACTION NETWORK
1) LATENT OBJECT-CENTRIC REPRESENTATIONS
In order to accurately predict the effect of physical interaction
between objects and applied actions, object representations
require an implicit understanding of the dynamics between
the object and the robot and how they affect the future
object motion. To this end, an object-centric representation
is applied to denote an individual entity in a scene, as shown
in Fig. 1. Concretely, given N objects in a scene, an object-
centric representation is denoted as

{
x it
}N
i=1. The representa-

tion for i-th object at the t time step consists of the explicit
spatial location pit ∈ R2 and the implicit visual feature
f it ∈ Rdf that encodes the object information, such as shape
and orientation, where df is the dimension of visual feature.
In this paper, an advanced instance segmentation algorithm
[35] is implemented to extract the region of interest (ROI)
for each object from a raw RGB image. The pit is assumed
to be the center of the corresponding ROI, denoted as a
2-dimensional xy-coordinate in image space. The visual fea-
ture f it can be extracted from the corresponding ROI of the
current image It and the context image (i.e., initial image I0)
through the encoder modules. The context image provides a
description of different scenes so that the representations not
only contain the own object information but also the environ-
mental information. Therefore, i-th object is represented as
x it ≡

(
pit , f

i
t
)
∈ R2+df , where N denote the number of objects

in a scene.

2) ENCODER MODULE
The encode modules consist of two encoder networks to
extract object-centric representations for multiple objects in
latent space. Given the current image It and the initial image
I0 with size 3 × H × W , each object’s corresponding ROIs,
i.e,

{
ROII i0

}N
i=1 and

{
ROII it

}N
i=1, can be extracted from an off-

the-shelf segmentation algorithm. The two encoder networks
take in the ROIs and output the latent features

{
zic
}N
i=1 and{

zit
}N
i=1 in latent space, respectively. These latent features are

concatenated to the final visual features f it , i.e., f
i
t ≡

(
zit , z

i
c
)
.

Besides the visual features, the object-centric representation
is the concatenation of visual features and XY coordinates in
image space. In this work, the dimension of visual features
is df = 96, and the representation for each object is a
98-dimension vector, i.e., the dimension of the x it is d = 98.

3) INTERACTION NETWORK
The interaction network predicts the future representations
for each object by considering physical interactions between
objects. The future state of an object depends not only on
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FIGURE 1. System Overview. For N objects, the proposed DOIN takes in the corresponding ROIs of the current image It and the initial image I0 for
each object as input, and outputs object-centric representations through the encoder networks (a). Then the model can predict the future
representations conditioned on applied actions by interaction networks (c). During the planning phase, an MPC planner is used to plan an action
sequence that minimizes the cost function to achieve the manipulation task. Additionally, the decoder networks are used for training (b).

the applied actions but also on the physical interaction with
the surrounding objects. Assuming that there exist N objects
in a scene, with object-centric representations as

{
x it
}N
i=1 ={

x1t , x
2
t , . . . , x

N
t
}
. The interaction model of each object and

its surrounding object can be characterized as a single-layer
fully connected neural network

FI

(
x it , x

j
t , at

)
= ReLU

(
W T
I

[
x it , x

j
t , at

])
(1)

where W T
I is a learnable weight and FI is a single-layer

fully network with ReLU activations. For object i, its own
representation x it and interaction reasoning with surrounding
objects are forwarded to a multi-layer fully connected net-
work to predict the future object state:

p̂it+1 = Fp

Fh

(
x it
)
+

∑
j∈N (i)

FI

(
x it , x

j
t , at

)+ pit (2)

f̂ it+1 = Ff

Fh

(
x it
)
+

∑
j∈N (i)

FI

(
x it , x

j
t , at

) (3)

where Fh, Ff and Ff are two fully connected layers with
64 hidden units and ReLU activation.N (i) stands for a set of
the neighboring objects. It should be noted that the interaction
model FI is only used when the Euclidean pixel distance
between the two objects in image space is smaller than a
certain threshold, i.e.,

N (i) =
{
j |
∥∥pj − pi∥∥2 ≤ ζ, j 6= i

}
(4)

where ζ is the pixel threshold.
The interaction module uses fully connected networks to

predict the change of the position state1pt and the next visual
feature ft . And the next position p̂t+1 is computed by adding
the current state pt to the predicted change of the position state
1pt . For similarity, the interaction modules are denoted as

{x̂ it+1}
N
i=1 = F

(
{x it }

N
i=1, at

)
. (5)

The learned interaction module can be used for predicting
future trajectories of object states with a length of H in

latent space via applying it recurrently over H time steps
conditioned on a sequence of actions at:t+H−1.

4) LOSS FUNCTIONS
The loss function used for training uses a weighted combina-
tion of three components: 1) a reconstruction loss Lrecon, 2) a
Kullback-Leibler (KL) lossLKL, and 3) a dynamics lossLdyn.
The reconstruction loss is similar to a conditional variational
autoencoder (CVAE) [36]:

Lrecon =

N∑
i=1

∥∥∥D(zit )−
ROI I it

∥∥∥2
2
+

N∑
i=1

∥∥∥Dc(zi0)−
ROI I it

∥∥∥2
2

(6)

where zi0 and z
i
t are latent features of the i-th object extracted

from the Ec and E , respectively. In addition, the network
is also learned by minimizing the KL divergence between
the latent distribution and Gaussian distribution. Impor-
tantly, to improve the perdition accuracy for future object
states, a dynamics loss is used. The dynamics loss can be
expressed as:

Ldyn =

N∑
i=1

λ2

∥∥∥p̂it+1 − pit+1∥∥∥22
+

N∑
i=1

λ1

∥∥∥D(ẑit+1)−
ROI I it+1

∥∥∥2
2

+

N∑
i=1

λ3

∥∥∥E(ROI Î it+1)− zit+1∥∥∥22
+

N∑
i=1

λ4

∥∥∥D(ẑit+1)−
ROI I it+1

∥∥∥2
2

(7)

where λ1, λ2, λ3, and λ4 are weighted factors. The first
term minimizes the average Euclidian distances between the
predicted and ground-truth positions of the multiple objects
for each step. The second term encourages minimizing the
`2 loss between predicted visual images and the ground-truth
images. The third itemminimizes the average `2 loss between
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the prediction zit+1 and the next encoded states E(ROI Î it+1)
in latent space. The fourth item minimizes the average `2
loss between the reconstructed image D(ẑit+1) and the next
ground-truth image ROI I it+1. Using a weighted combination
of these loss functions, i.e, L = Lrecon + 0.1LKL +Ldyn, the
whole training process of the proposed model can be fully
self-supervised without any human intervention.

Algorithm 1 Planning via DOIN
Input: predictive model F , cost function C , goal image Ig,

and initial action Gaussian distribution N (0, I )
1: for t ∈ [0,H − 1] do
2: for i ∈ [0, niter − 1] do
3: Sample M action sequences

{
ait , . . . , a

i
t+H−1

}M
i=1

from the action Gaussian distribution.
4: Predict states

{
x it+1, . . . , x

i
t+H

}N
i=1 with sampled

actions and current representation
{
x it
}N
i=1 by recur-

sively using DOIN model as Equation 5.
5: Evaluate action sequences using a cost function C .
6: Refit the actionGaussian distribution to theK action

samples with lowest cost.
7: end for
8: Execute the first action of the best action sequences a∗t
9: end for

B. PLANNING VIA DOR-NN IN ROBOT MANIPULATION
During planning, the goal of the manipulation task is to find
a sequence of actions such that executing them to manip-
ulate multiple objects to the desired goal configurations.
Amodel predictive control framework uses the learnedmodel
to predict future states of multiple objects and plans plau-
sible actions. Given the learned interaction model F and a
sequence of sampled actions, future position trajectories of
the objects with a length can be recursively predicted by the
model F using Equation 5. Each trajectory has length H ,
i.e., x̂ it+1:t+H . A sampling-based optimizer is used to plan
action sequences a1:T that minimize the sum of the costs
C1:T along the planning horizon H . Although there exists
a variety of trajectory optimization methods in the litera-
ture, this paper uses a cross entropy method (CEM) [37],
a simple stochastic optimization, gradient-free optimization
procedure. The process often includes randomly resampling
actions sequences and refitting Gaussian distributions to
selected actions according to the results of the cost function.
The whole planning process is illustrated in Algorithm 1.
First, M action sequences are sampled from a Gaussian dis-
tribution. Then the future position trajectories of the objects{
x it+1, . . . , x

i
t+H

}N
i=1 is predicted by the interaction model

F conditioned on the sampled actions. Second, the action
sequences are evaluated by computing the task-specific cost
function C . The Gaussian distribution of the actions is refit
based on the bestK action sequences. Finally, only the current
best action a∗t is applied to the robot, and then the robot
receives a new observation and acts in a closed-loop manner.

The cost function is defined as a weighted combination
of average Euclidean distance to the goal configurations for
multiple objects in latent space. The cost function consists
of two parts: position distance and visual feature distance,
as follows:

C=
T∑
t=1

ct=
T∑
t=1

N∑
i=1

[
∥∥∥p̂it+H−pig∥∥∥22 + λc ∥∥∥f̂ it+H−f ig∥∥∥22] (8)

where λc is weighting factor; pig and f ig are two parts of
the object-centric representation of the goal configuration.
The expected position distance to the goal provides effec-
tive information that enables the robot to manipulate the
object toward the target direction. The latent feature distance
encourages the objects to match the goal image and implicitly
encodes the object positions in latent space, which can be
considered as a supplement to the position distance.

V. EXPERIMENTS
In this section, both simulation and the real-world experi-
ments are conducted to assess the perception and manipula-
tion performance. Videos for the quantitative examples can
be found in the supplementary material.

The goal of the experimental evaluation is to answer
four primary questions: (1) How accurately does the pro-
posed model DOIN predict future states of multiple objects?
(2) Does the model using the interaction network out-
perform alternative methods without interaction network?
(3) Compared to the benchmarked methods, can the pro-
posed approach improve the generalization capability for
unseen multi-object manipulation tasks? (4) Can the pro-
posed approach be transferred to the real world and enable
a robot to perform manipulation tasks?

The question (1) is addressed through both simulation
and real-world evaluations (Sec. V-C), questions (2)(3)
are addressed through qualitative experiments compared
with baseline methods(Sec. V-D), and the last question is
addressed through real-world experiments (Sec. V-E).

A. EXPERIMENTAL SETUP
The proposed method is evaluated both in simulation and
real-world experiments. The experiments are evaluated on a
series of tabletop multi-object pushing tasks. The objective of
tasks is to push multiple previously-unseen objects such that
the objects achieve the goal configurations. The experimental
setup of manipulation tasks includes a Kinova Jaco2 7DOF
robot arm with an attached cylinder tool and an overhead
RGB camera both in simulation and the real world, as shown
in Fig. 2. In the simulation, the robot and camera layout is
consistent with the real-world experiments, according to the
real calibration results. In the real world, an Intel RealSense
D435i camera is used to capture only RGB images. The object
ROI is obtained by a segmentation algorithmDetectron2 [35].
For observation space, the raw images with a resolution
480 × 640 are fed to the model. For action space, each
action is defined as a series of primitive movements that can
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FIGURE 2. Experimental Setting and Testing Objects. (a)(b) Simulation
and real-world experimental setting. (c) Simulation test objects:
ShapeNet, Blocks and YCB. Except for ShapeNet, the others have never
been seen during training. (d) Real-world objects. These datasets are
used to evaluate manipulation performance of the proposed method.

achieve a straight line pushing motion along x-and y-axes.
The action is represented as a 4-dimension tuple consisting
of the initial XY coordinates and the relative movements of
the end-effector.

1) NETWORK ARCHITECTURE
The encoder modules contain two encoder networks. Two
encoder networks have the same architecture and take as input
the cropped image with a size of 64 × 64. Each network
contains three conventional layers with 16, 32, 64 channels,
respectively, and kernels size of 5, 3 and 3, followed 3 fully
connected layers of size [512, Nz] where Nz is the size of
the latent space (mean and variance). Different Nz for two
encoder networks are used, i.e., Nzt = 64 and Nzc = 32.
The decoder network D takes in a concatenation of zit and z

i
c

and feeds it through 3 fully connected layers [98, 256, 512],
followed by three de-conventional layers with 32, 16, 16s
channels, respectively, and kernels size of 2 × 2. The stride
sizes of the first and second de-convolutional layers are 2×2.
Another layer has a stride of 4× 4 and a kernel size of 4× 4.
All layers except the final layer use batch normalization and
ReLU activation. For the interaction network, pixel threshold
ζ = 96 corresponds about 15cm.

2) IMPLEMENTATION DETAILS
The proposed model is implemented using PyTorch. All the
networks in the experiments are trained for 100 epochs with
the batch size 2048. Optimization is carried out using ADAM
with β1 = 0.9 and β2 = 0.95. An initial learning rate of 10−3

with a decay of 0.5 after 30 steps is used. During the planning,
M = 200, H = 5, K = 10, niter = 3 and λc = 0.1 are used.
During test time, the proposed model is run on a laptop with
Intel i7 2.2 GHz CPU and an NVIDIA GTX 1060 Ti GPU,
which is efficient enough for real-time control.

B. DATA COLLECTION
In order to collect large amounts of interaction data for
training and evaluating the model, a self-supervised data

collection framework is developed to generate synthetic train-
ing data automatically. The simulation environment is imple-
mented on an open-source physics simulator PyBullet as
described in Sec. V-A. During collection, multiple objects are
randomly placed on the workspace, and then the robot exe-
cutes random pushing actions. The raw images are recorded
before and after applying each action. The data are collected
in the form of triplets (It , at , It+1), where the at denotes the
random action after receiving the image It .

To collect meaningful interaction data, a heuristic random
policy like [20] is utilized to generate random actions. The
policy first uniformly samples a pixel inside the object mask
and sets the pixel as the action’s end position. A line segment
with one end being the pixel position is then randomly sam-
pled. If the segment’s starting position does not fall in the
mask of all objects, then it deems as the feasible action. Oth-
erwise, random sampling is repeated until a feasible action is
obtained. This policy makes the end position of each push fall
inside the object mask, ensuring that each action can change
the object states.

1) TRAINING DATASET
A subset of ShapeNet dataset [38] is used for data collection
during training. 38 objects of 5 categories with variations
in shape are collected: mug, bottle, can, sofa and phone.
For each scene, three objects are randomly sampled from
the dataset and are randomly placed on the table. To fur-
ther improve robustness, many aspects of the objects are
randomized: color, size, initial positions, and orientations.
Each episode has a length of 12 time steps. An episode is
early terminated when the object is outside the boundary
of the workspace, or the object is flipped. In total, 30K
episodes (approximately 360K pushes in total) are collected
for training.

2) TESTING DATASET
To evaluate the perception performance of the proposed
method, three simulated test sets are collected: ShapeNet,
Blocks, and YCB [39], as shown in Fig 2. For Blocks and
YCB, each test set contains 8 previously-unseen objects with
different shapes, where the objects in YCB have larger sizes
and are closer to common everyday objects. For each test
set, the interaction data are collected from 4 different scenes
with a different number of objects (i.e., 2 to 5). Each scene
has 100 episodes with approximately 1200 interactions in the
simulation. In total, ∼14.4K synthetic interaction data are
collected for testing.

C. PREDICTION EVALUATION
1) BASELINES
To evaluate the prediction performance of multi-object states,
the proposed approach is compared with the two baselines:
1) SNA [9]: An advanced video prediction model directly
predicts the 2D flow of the pixels from raw images, which
has been successfully applied in manipulation tasks in the
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FIGURE 3. Qualitative Results for Three Test sets Box-plots of the average position error (APE) for the predicted object states under 12 scenes with
four different numbers of objects from 2 to 5 and three test sets. The crosses represent outliers. Units are pixels in the 480 × 640 images. 20 pixel
corresponds to around 3.5cm.

real-world [10]. 2) DOR-NN: A dynamic object-centric rep-
resentation network without interaction modules is similar
to the proposed model, which uses the same object repre-
sentations to estimate future object states. 3) DOIN (Ours):
The proposed object-centric method with interaction net-
works predicts future object representations conditioned on
the applied actions and interaction relations.

2) METRIC
All methods are evaluated in terms of the perception accuracy
of the object positions. Given the future predicted positions
for N objects p̂ in image space, Average Position Error
(APE) is used as metric: average Euclidean distance between
the predicted and the ground-truth positions over the predic-
tion horizon T :

APE =
1
NT

N∑
i=1

T∑
t=1

∥∥∥p̂it − pit∥∥∥2 (9)

For comparison, all the compared methods are trained on the
same simulated dataset. Three simulated test sets are used for
testing. All the methods use the first 2 ground-truth frames
and predict the next 9 frames conditioned on the same actions.

3) PERCEPTION RESULTS
The qualitative results of the perception performance are
shown in Fig. 3. The median and third quartile (Q3) of
APE metric are summarized in Table 1. From the results,
comparedwith the other baselines, the proposedmodel DOIN
has relatively small median errors and small outliers (Q3) in
terms of APE for overall test sets and the most scenes with
varying numbers of objects. For seen ShapeNet objects that
are used for training, the average position errors of DOR-NN
are slightly worse than the proposed method. However, for
previously-unseen objects (Blocks and YCB), the prediction
accuracy of the proposed model with interaction networks
substantially outperforms the alternative methods that do
not consider physical interactions. Moreover, as the num-
ber of objects increases, the proposed method achieves bet-
ter object position perdition in image space than baselines.

TABLE 1. Prediction Results for multi-object interactions. The numbers in
the table show median and third quartile (Q3) of the average position
error (pixel 480 × 640 image).

FIGURE 4. Average Position Error over prediction steps on ShapeNet.
Units are pixels in the 480 × 640 images.

For example, for YCB objects with larger shapes, the pro-
posed method outperforms the second-best method by a large
margin of at least 18.2% in APE metric. These results show
that the proposed method using interaction networks can
significantly improve perception accuracy for multi-object
scenes.

Fig. 4 illustrates the prediction results of baselines over
time steps. Although when the prediction step increases the

VOLUME 9, 2021 68283



J. Wang et al.: Dynamics Learning With Object-Centric Interaction Networks for Robot Manipulation

FIGURE 5. Snapshots of Multi-object Pushing Manipulation in Simulation. The robot executes the planned actions (green arrows) and
pushes the unseen objects to match the human-specified goal images. Simulation experiments show that the proposed model can
enable the robot to push multiple unseen objects for different tasks with different numbers of objects: Task 1 (a,b), Task 2 (c,d), and
Task 3 (e,f).

position error compounds, the prediction accuracy of the
proposed method for the whole episode is significantly bet-
ter than compared methods. Moreover, when the number
of objects increases, the probability of collisions between
objects increases, which leads to deterioration of the predic-
tion accuracy of the compared methods that do not reason
about the physical interactions between objects. In contrast,
it can be seen that the proposed method can also achieve
higher prediction accuracy than alternatives when the number
of objects increases. These results show the proposed method
can accurately predict object positions for unseen objects via
reasoning about the physical interactions between objects.

D. SIMULATION EXPERIMENTS
To assess the manipulation performance of the proposed
method, extensive experiments on multi-object pushing
manipulation tasks are conducted using the simulated setup
described previously. In the setting, multiple objects are ran-
domly placed on the specified initial area, and their goal posi-
tions are specified. The goal image is captured by placing the
objects at the goal positions. The objective of the experiments
is to push multiple objects to match the target configurations
given the goal image.

1) TASKS
According to the different target configuration distributions
as shown in Fig. 6, three tasks are designed to evaluate all
baselines: Task 1, rearrange multiple objects into a column

FIGURE 6. Tasks. Three pushing tasks are defined in simulation
experiments. For each trial, the initial positions of objects are randomly
sampled from the red region and their goal configurations are set to the
blue points.

on the right; Task 2, rearrange multiple objects into a row on
the bottom; Task 3, rearrange multiple objects on both sides
of the workspace. Since the workspace’s width is less than
the length, it is more likely to collide among multiple objects
during the execution of Task 2, making it more difficult
than Task 1. Similarly, Task 3 requires manipulating multiple
objects to reach left and right sides of the workspace, leading
to increasing the difficulty of the task.
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FIGURE 7. Quantitative Results of Simulated Experiments. Box-plots of the average final distance to goals for all scenes. We compare
performance separately on three different pushing tasks using three object categories as shown in Figure 2: ShapeNet, Blocks and YCB.
30 trials for each scene are run with a different number objects for each method, for a total of 1080 trials. The proposed model outperforms all
baselines using the three object categories in both tasks. In the plot, the crosses represent outliers.

2) BASELINES
Three baselines are used to showcase the effectiveness of the
proposed approach.

• VisualMPC [10]: A state-of-the-art model-based
method uses a flow-based video prediction model
(SNA), as described in Sec. V-C, to predict the 2D flow
of the designated object pixels. For each step, the desig-
nated object pixel is assumed to be the center of the ROI,
so it is actually stronger than the previous method [10]
that does not capture the ground-truth pixels. The video
model is trained on the same simulated data as ours and
also leverages a CEM method to plan a sequence of
actions.

• DOR-NN: An object-centric dynamics network with-
out interaction modules uses the same object-centric
representations to predict future object states as ours.
A similar MPC palnner is used to plan actions.

• DOIN (Ours): The proposed multi-object dynamic
network with interaction modules predicts the

object-centric representations for multiple objects and
a CEM planner to plan the actions given a goal image.

3) METRIC
To evaluate the performance for multi-object manipulation
tasks, Average Final Distance is defined as the metric to
measure the average distance between the final positions
of all objects and the target positions like the previous
work [10], [20].

To evaluate generalization of the proposed method, all
baselines are evaluated using the three test sets: ShapeNet,
Blocks and YCB. Except for ShapeNet, the rest of the test
sets have never previously been seen during training. Each
test set contains 8 different objects with variations in shape.
Each test has 12 scenes containing four different numbers
of objects from 2 to 5 and three different tasks. In total,
36 different scenes are used for evaluating all methods. For a
fair comparison, the initial positions and goals of all baselines
are the same for each scene. For each scene, 30 trails are run
with different random seeds.

VOLUME 9, 2021 68285



J. Wang et al.: Dynamics Learning With Object-Centric Interaction Networks for Robot Manipulation

TABLE 2. Quantitative performance of simulation experiments on YCB test set. The median and third quartile (Q3) of average final distances to goals are
reported in the table. All the units are expressed in centimeter.

FIGURE 8. Real-world experiments Given the initial configuration (in red box) and the goal configuration (in blue box), the plot
shows the results of two baselines at different time steps.

4) QUANTITATIVE RESULTS
Fig. 5 shows some examples for pushing multiple objects
in the simulation. The visualization suggests the proposed
method can successfully push multiple objects to reach des-
ignated goal configurations and generalize to unseen objects
with variations in shape and color. The quantitative result
of all baselines in terms of the average final distance is
illustrated in Fig. 7. The results show that the proposed model
with the interaction network achieves lower average final
distances for most scenes of all test sets, significantly out-
performing the state-of-the-art video prediction VisualMPC
and the alternatives without reasoning about physics interac-
tion. Moreover, as the number of objects or the difficulty of
the task increases, the overall performance of the compared
methods deteriorates. In contrast, although the final distance
of the proposed method increases as the number of objects
increases, the final distances are significantly lower than the
other baselines, especially when there are more objects in
a scene. In particular, the statistical results of YCB objects
are summarized in Table 2. For Task 3 using YCB objects
with relatively large shapes, it can be seen from the table
that the final distance of the proposed method is lower than
DOR-NN by approximately 14%. These extensive experi-
ments demonstrate that the proposed method can generalize

to perform multi-object pushing tasks for unseen shape vari-
ations, achieving better performance than baselines.

E. REAL-WORLD EXPERIMENTS
To validate the performance of the proposed method in the
real world, multiple trials are conducted in different scenes
on the real robot Kinova Jaco2. The experimental setting
is consistent with the simulation. The experiments involve
18 real objects including 11 relatively small building blocks
and 7 everyday common objects with large shapes (Fig. 2).
Two scenes with different numbers of objects (i.e., 3 and
4) are used for evaluating. 10 trials are run for each scene.
For each trial, multiple objects are randomly placed in the
workspace, and the goals are set at positions that are at least
20cm away from their initial positions.

1) RESULTS
Fig. 8 shows several examples of pushing real objects. The
quantitative results are illustrated in Fig. 9. These results show
that the proposedmodel trained only on simulated data allows
the robot to perform previously-unseen object pushing tasks
in the real world successfully. For comparison, VisualMPC
and DOR-NN are implemented as baselines trained on the
same simulated data as ours. From the Fig. 9, the proposed
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FIGURE 9. Performance of real-world experiments. We compare our
model with other baseline in terms of average final distance. Two scenes
with 3 and 4 objects are used for evaluating. For each scene, 10 trials are
run. The numbers show the medians.

method substantially outperforms the baselines in term of
average final distance for all scenes. In particular, for the
4-object scene, compared to DOR-NN that does not consider
the physical interactions, the average final distance of the pro-
posed method is about 60% lower than the one of DOR-NN
(3.0cm versus 7.5cm). Moreover, it can be found that the
future object states generated by VisualMPC nearly had large
deviations in most cases, which led to a complete failure to
perform the tasks. The explanation is that the video prediction
model trained on simulated data is insufficient to generalize
to predict states of real objects. Thus, a significant prediction
error compounds as the planning step increases, resulting in
planning invalid actions. These experiments demonstrate that
the proposed model can accurately predict the effect of the
physical interactions between objects and applied actions,
and can provide sufficient generalization to plan plausible
actions for unseen objects with shape variations in the real
world.

2) FAILURE ANALYSIS
The primary failure modes of real-world experiments are
analyzed. First, most failure cases result from the objects out
of the workspace boundary. Due to the workspace limitation,
as the number of objects increases, the possibility of objects
out of the boundary increases. This issue could be alleviated
by expanding the workspace of the robot end-effector. Sec-
ond, when a large object has been pushed to the vicinity of the
target position, the robot may not plan an effective action to
reach the object due to prediction errors. This problem can be
alleviated by adding real data to the train dataset to improve
the prediction accuracy. Alternative solution is to leverage
3D information to build a dynamic prediction model [22].
Finally, several failure cases result from the undesired colli-
sions between the tool at the end-effector and the object, like
directly poking on the object. This problem can be solved
by adding an action constraint during the planning phase,
ensuring the sampled actions keep a certain safe distance
between the starting position and the object.

VI. CONCLUSION
This paper has presented an approach that learns a deep
interaction network to predict the effect of physical inter-
actions between objects and the robot using object-centric
representations. The proposed model DOIN can achieve
accurate and efficient predictions, enabling the robot to per-
form unseen objects pushing manipulation tasks successfully.
The model is trained on simulated interaction data through
the self-supervised procedure without any human annotations
and can be transferred to the real world. Extensive simulation
experiments have shown that the proposed model outper-
forms the state-of-the-art baselines in terms of perception
andmanipulation performance. Furthermore, the experiments
have validated that the proposed approach can successfully
performmultiplemulti-objects pushing tasks in the real world
and generalize to never-before-seen objects with variations in
shape.
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