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ABSTRACT Since the decision trees (DTs) have an advantage over ‘‘black-box’’ models, such as neural
nets or support vector machines, in terms of comprehensibility, such that it might merit improvement for
further optimization. The node splitting measures and pruning methods are primary among the techniques
that can improve the generalization abilities of DTs. Here, we introduced the unequal interval optimization
for node splitting, as well as the local chi-square test for tree pruning. This new method was named an
adaptive multi-branch decision tree (CMDT). 11 benchmark data sets with different scales were chosen
from UCI Machine Learning Repository and coupled with 12 classifiers to evaluate the CMDT algorithm.
The results showed that CMDT can be more reliable than the twelve comparative approaches, especially for
imbalanced datasets. We also discussed the performance metrics and the weighted decision-making table in
unbalanced data sets. The CMDT algorithm can be found here: https://github.com/chenyuan0510/CMDT.

INDEX TERMS Decision tree, node splitting, Chi-MIC, CMDT, pruning methods.

I. INTRODUCTION
With the advancement of science and technology, machine
learning has been widely employed for classification and
recognition tasks in many domains [1]. As it is one type
of the many important techniques in data mining, decision
trees (DTs) have been very popular classification tools for
decades due to their higher performance fewer parameters,
and better comprehensibility [2]. Furthermore, DTs can nat-
urally result in attribute selection and work with both categor-
ical and numerical data directly. The Iterative Dichotomiser
3 algorithm (ID3) is the well-known and most widely used
DT algorithm. [3]. As seen, many efforts are also underway
to improve the performance of DT, such as Improvement on
ID3 Algorithm, Re optimization of ID3, C4.5, and C5.0 algo-
rithm [4], [5]. G. Ke et al. proposed an improved Gradient
Boosting Decision Tree (GBDT) called LightGBM that could
speed up the training process of conventional GBDT by up to
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over 20 times while achieving almost the same accuracy [6].
P. Tzirakis et al. proposed the T3C algorithm to offer bet-
ter splits continuous attributes and results in high accuracy
whilst keeping the size of the tree [7]. However, they are not
always robust [8]. The larger decision trees tend to produce
poorer generalization performance. Node splitting measures
and pruning methods are primary among the techniques that
can improve the generalization abilities of DTs.

Overall, we proposed a Chi-MIC-based adaptive
multi-branch decision tree (CMDT), which can also handle
mixed-type attributes. For discrete attributes, the constructing
CMDT is composed of two major phases. Firstly, cutting the
number of splitting points for each attribute by backtracking
method based on local chi-square test. Secondly, growing
the tree and simplify each node by backtracking method
based on local chi-square test, the growing phase continues
until no attributes can be introduced on the backtracking
criterion. The DT induction process for numerical attributes
is consistent with the former, except that the numerical
attribute should first be discretized by the Chi-MIC method.
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To evaluate the proposed CMDTmethod, 12 reference classi-
fiers were compared on 11 benchmark datasets with different
scales from UCI Machine Learning Repository [9].

The results showed that CMDT can be more reliable than
the comparative approaches, especially for imbalanced data
sets. The remainder of this paper is organized as follows:
Section II discusses the two major phases of the DT and the
background of MIC. The algorithm of CMDT and data sets
are included in Section III. Section IV shows the result of
CMDT compared with the other 12 classifiers in balanced
and imbalanced data sets. Some issues related to performance
metrics and splitting criteria in unbalanced classification are
discussed in Section V. And the conclusion reveals the limi-
tation of the algorithm in Section VI.

II. BACKGROUND
There are two major phases of the DT induction process: the
growth phase and the pruning phase. In the growth process,
the choice of splitting measurement is particularly impor-
tant. The splitting measure provides a means for evaluating
the discrimination power and significance of each attribute
in the classification process, as well as the generation of
child nodes when growing the tree. The central choice in
tree algorithms is finding the best split point [2]. Numerous
types of algorithms have been employed to calculate suit-
able splitting points, especially for numerical data. Most of
them tend to construct binary decision trees by some split-
ting criteria [10], [11], such as information gain, gain ratio,
Gini value [12], Kolmogorov-Smirnov distance [13] and
histogram-basedmethod [14], etc. Theminimization problem
for decision trees is known to be NP-hard [2], the binarization
of data can simplify the growing of trees. However, there
are multiple complicated nonlinear relations in real-world
data, not just a simple linear relation, binarization might lead
to loss of information [15], [16]. Reshef et al. presented a
novel estimator for two variables called maximal informa-
tion coefficient (MIC) [17]. This algorithm could search the
approximate optimal split by unequal interval optimizing and
can capture a wide range of associations, both linear and
non-linear. In this paper, we employed the improved MIC
algorithm, Chi-MIC [18], [19], to find suitable splitting points
for the numeric attributes.

The pruning phase aims to control DT complexity and
generalize the DT. The actions of the pruning phase are often
referred to as post-pruning (error-based pruning, pessimistic
error pruning and, minimum error pruning) in contrast to the
pre-pruning (cost-complexity pruning, reduced error prun-
ing). The pruning phase aims to delete unnecessary leaves
and avoid overfitting. This procedure is the same as the
maximal grid size B(n) of MIC [17] while setting B(n) too
high (too many splitting points), such as B(n) equal to n
(n is the number of samples), can lead to MIC score equal
to ‘‘1’’ even for random data because each data point gets
its own cell. In previous works, we used a local chi-square
test to determine whether each splitting point is useful, and
remove the splitting points that are not significant. The local

chi-square test method can significantly control the grid size
and improve the performance of MIC [18]. Here we use the
backtracking method based on the local chi-square test to
determine the branching of each node, and as the stopping
criteria for tree-growing.

III. METHODS AND MATERIALS
A. DISCRETIZATION FOR NUMERICAL ATTRIBUTES
Binarization of numerical attributes is not the best dis-
crete method to evaluate the discrimination power of each
attribute or discover the complicated association. The MIC
method explores various combinations of splitting points by
unequal interval optimizing and can capture a wide range of
associations. Theoretically, MIC should find the best splitting
points for each numerical attribute, however, the approxima-
tion algorithm proposed by Reshef et al. tend to provide too
many splitting points. In our previous work, the Chi-MIC
method, based on the local chi-square test, was proposed to
resolve this problem by removing splitting points that are not
significant [18]. Here, Chi-MIC was used to find splitting
points for numerical attributes, and the numerical attribute
was discretized.

B. SIMPLIFICATION FOR SPLITTING POINTS
Given a finite set D ={Y :X}, Y is labeled as positive and
negative (represented by the values ‘‘+’’ and ‘‘−′′), attribute
X taking a set of discrete, mutually exclusive values (x1, x2,
x3, and x4). It is unnecessary that a discrete attribute is split
on all splitting points into many child nodes since it could
result in a larger tree. For the set D we can construct a 2× 4
contingency table depicted in Figure 1A. While one splitting
point is pruned, there are 6 alternative 2×3 contingency tables
depicted in Figure 1B, and then the table with maximum χ2-
value is selected as the candidate. For the candidate table
(Figure 1C), it transformed form to the 2 × 3 contingency
table by merge the x2 and x4. We can use a chi-square test
to determine whether the merging is useful. The sample
points distributed in the red area (Figure 1C) are used to
perform a chi-square test on a 2× 2 contingency table. If the
p-value of the chi-square test is greater than a given threshold
(0.05/0.01), the merging is useful and the algorithm contin-
ues pruning for the next splitting point. On the other hand,
if the p-value of the chi-square test is lower than the given
threshold, the merging is quite unnecessary and the process of
simplifying splitting points is terminated. Additionally, if all
splitting points of one attribute are merged, the attribute also
is pruned.

C. GROWING OF THE TREE
While the splitting points are confirmed for each attribute,
the growth phase of the tree includes the following steps:
attributes evaluation, attributes introduction and stopping
criteria.
Step 1: Attributes evaluation: Let S =

{
Xj
}m
j=1 be a set

of attributes, where Xj is the j-th attribute and |S| (= m)
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TABLE 1. The detailed information of the data sets.

FIGURE 1. Backtracking method for simplifying splitting points based on
local chi-square test.

is the number of features in S. The Information Gain Ratio
(Y , Xj) [20] is computed for evaluating the discrimination
power of each attribute. The attribute with maximum Gain
Ratio (having Gain greater than Average Gain) is selected as
the first introduced attribute.
Step 2: Attributes introduction: Suppose the current tree

including q nodes, we will select additional attributes from
the rest attributes set �S in an incremental way: earlier
selected attributes remain in the attribute set [21]. Suppose
attribute Xj ∈ �S with k − 1 splitting points (Xj containing
k values), then Xj splits the current of each node into k
child nodes. For these child nodes, the backtracking method
based on the local chi-square test (the same as above in part
2.2 Simplification for splitting points) is used to determine
the branching of each node. Let Uhj (1 ≤ Uhj ≤ k)
denote the numbers of branches in the h-th node, and we
can get

∑q
h=1Uhj child nodes and compute the Gain Ratio.

At last, the attribute with maximum Gain Ratio (having
Gain greater than Average Gain) is selected as the nested
attribute.

Step 3: Stopping Criteria: For the q nodes, if∑|�s|
j=1

∑q
h=1Uhj = |�s| • q, there will not attributes be

introduced and the growth phase is terminated.

D. WEIGHTED DECISION-MAKING FOR IMBALANCED
DATA SETS
For the two-class case, if n training samples reach a node, of
which n+ and n− are positive (Minority Class) and negative
instances (Majority class), respectively. Generally, DT clas-
sifiers implicitly make decisions by comparing the number
of the instances, it risks introducing bias for imbalanced data
sets [22]. Here, we use the corrective sample size based on
prior probability to make the decision. Let N+ and N− are
the total number of positive class and negative class samples,
the number of corrective class samples are denoted as n

′

+ =

n+ ·
N++N−
2N+

and n
′

− = n− ·
N++N−
2N−

. For the test instance that

reaching this node, if n
′

+ > n
′

−
, it would be classified as being

positive, else as negative.
For multi-class data sets, One-vs-One (OVO) strategy [23]

was used to convert multi-class classification into binary
classification. In the OVO strategy, an m-class classification
problem is transformed into m(m−1)/2 binary classification
problems. Thenm(m−1)/2 binary CMDTmodel were trained
and used to respectively predict the test sample. The class
with the largest number in the prediction results was assigned
to the test sample.

E. DATA SETS
11 benchmark data sets with different scales were chosen
from UCI Machine Learning Repository [9] to evaluate the
CMDT algorithm. The data sets are involved in life sci-
ences, social sciences, and medical sciences. According to
the number of samples, the data sets were roughly divided
into two groups: 7 balanced data sets and 4 imbalanced data
sets. (Table 1) (Asterisked items are imbalanced data sets,
others are balanced data sets. The final reserved attributes
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TABLE 2. Comparison of testing performance among different models on the seven balanced data sets (%).

for each dataset by CMDT were listed in supplement table
(Table S1: https://github.com/chenyuan0510/CMDT/blob/
master/tableS1.xlsx)).

IV. RESULT
A. COMPARISON OF INDEPENDENT PREDICTION
ACCURACY AMONG DIFFERENT MODELS
We used 12 reference models, Classification and Regression
Trees (CART) by package of rpart for R [24], Chi-square
Automatic Interaction Detection (CHAID) by package of
party forR [25], Support VectorMachine (SVM) byLIBSVM
tools [26], Quadratic classifier (QUADRC) [27], Fisher’s
least square linear classifier (FISHERC) [28], [29], [30],
Logistic linear classifier (LOGLC) [29], [31], Nearest mean
scaled classifier (NMSC) [32], Quadratic bayes normal
classifier (QDC) [33], [29], k-nearest neighbor classifier
(KNNC) [34], Parzen classifier (PARZENC) [35], Naive
bayes classifier (NAIVEBC) [36], Back-propagation trained
feed-forward neural network classifier by back-propagation
(BPXNC) [37], to evaluate the performance of CMDT,

the latter nine methods were performed based on the
PRTools [38]. The Weighted Accuracy (WA) [39] was used
as the performance metric. The WA defined as follows:

WA =

∑C
i=1 AC i

C
(1)

Here, C is the number of classes. ACi denotes the accuracy of
the i-th class.

The test accuracy (AC) and WA for the seven balanced
datasets and four imbalanced datasets are listed in Table 2 and
Table 3 respectively. From Table 2, we can find that the
best models based on average WA are CMDT (86.74%),
QUADRC (83.87%), QDC (83.75%), KNNC (82.06%),
PARZENC (81.12%), and CHAID (81.00%). On the bal-
anced data sets, the WA of CMDT is slightly better than
that of QUADRC. However, in the comparison of three deci-
sion tree models (CMDT, CART, and CHAID), the proposed
CMDT method is superior to the CART and CHAID, as the
average WA of CMDT is 8.19% and 5.74% higher than
that of CART and neural CHAID (The p values of paired
t-test of CMDT-CART and CMDT-CHAID are 0.008 and
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FIGURE 2. The difference (%) between AC and WA for two groups data sets.

0.01 respectively). For paired t-test of CMDT and CART
about the WA on the 7 balanced data sets, there are seven
paired WA values for the 7 balanced data sets by the CMDT
and CART algorithms. The paired t-test is to test whether
there is a difference between the two algorithms on the per-
formance of classification. For the paired t-test of AC and
WA on 7 balanced data sets, we first calculated the average
of the WA scores and AC scores of all models on one data
set, then we could get 7 pairedWA vs. AC scores. This paired
t-test is to test whether there is a difference between the two
performances of metrics.

As described in Table 3, on imbalanced data sets,
the CMDT model outperforms other reference models dras-
tically, as the average WA is 77.14%, this value is 8.28%
and 14.44% higher than that of KNNC (the second-highest
model) and CHAID (the third-highest model). However,
the WA of CMDT is only 2.87% and 2.99% higher than that
of the second-highest and third-highest model on balanced
data sets. Furthermore, the standard deviations of averageWA
among all models on imbalanced and balanced data sets are
11.95% and 3.91% respectively. We can find that the CMDT

should perform better on imbalanced data sets compare to
balanced data sets.

As shown in Fig. 2, We further compare the difference of
WA and AC on the two group data sets. For the balanced
data sets, there is a slight variation between AC and WA of
all models. The average difference between AC and WA of
all models on balanced data sets is only 1.40±1.7%. The p-
value of paired t-test between average AC and averageWA is
0.1810. This indicates that there is no significant difference
between the two metrics on balanced data sets. Such as the
‘‘Segment’’ dataset (each class with 30 samples in the training
dataset), the AC is the same score as the WA for all models.
In contrast, there is a distinct variation between AC and WA
for the whole models on imbalanced data sets except the
CMDT model, and in most cases, there are AC score greater
than the WA score. The average difference between AC and
WA for these 12 models on imbalanced data sets is up to
16.27±15.78%, the p-value of paired t-test between average
AC and average WA is 0.0028. This indicates that the two
metrics are significantly different for these 12 models on
imbalanced data. Such as the AC of the FISHERC model
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TABLE 3. Comparison of testing performance among different models on the four imbalanced data sets (%).

on the ‘PageBlocks’ dataset is 66.45% greater than the WA.
However, unlike these 12 reference models, there is a slight
difference between average AC (78.45%) and average WA
(77.14%) for CMDT on imbalanced data sets, the p-value of
paired t-test between AC andWA on the four imbalanced data
sets is 0.5609.

To sum up, on imbalanced data sets, these 12 reference
models have the higher AC but lower WA, the performance
bias occurs in the imbalance data. However, the CMDT
method performs well on both two metrics

B. CONVERTING BALANCED DATA INTO IMBALANCED
DATA
Compare to balanced data sets, we can find that the CMDT
indeed performs better on imbalanced data sets. Here we
further convert the balanced data sets into imbalanced data
set to verify this conclusion. For the seven balanced data sets,
the ‘‘Wine’’, ‘‘Vehicle’’ and ‘‘Forest Types’’ have a lesser
number of samples. Therefore, ‘‘Waveform+noise (WN)’’,
‘‘Gas Sensor (GS)’’, ‘‘Sat Image (SI)’’ and ‘‘Segment (SE)’’
are selected for further evaluation. For each data set, we first

merge the training and test samples, and then randomly sam-
ple some classes as the majority class, the other classes as the
minority class. We use three imbalance ratios in the training
set (2:1, 5:1, and 10:1). The training samples and test samples
in a 3:1 ratio.

Each experiment is repeated 10 times, and the average
results are shown in Table 4. For the average WA of each
method for three ratios on four datasets, the CMDT method
performs best, as it is 88.21%. As illustrated in Figure 3, there
is a slight variation betweenAC andWA of the CMDTmethod
on all three ratios. However, most methods have high AC , but
lowWA, especially in the case of a serious imbalance (10:1).
Although the WA of NAIVEBC, PARZENC, and NMSC
are higher than the AC of them, these methods worse than
the CMDT method, as they have lower average WA scores
(76.47%, 76.16%, and 73.87%). Figure 4 illustrates the differ-
ences betweenAC andWA of all methods for a ratio of 10:1 on
four data sets. Except for NAIVEBC, PARZENC, and NMSC
methods, the CMDT method has the lowest difference (the
average difference is 3.1%). The average differences for the
CART, CHAID, SVM, QUADRC, FISHERC, QDC, KNNC,

VOLUME 9, 2021 78967



J. Ye et al.: Chi-MIC Based Adaptive Multi-Branch Decision Tree

FIGURE 3. The average WA and AC of each models for three ratios.

FIGURE 4. The differences between AC and WA (%) on ratio of 10:1.

BPXNC are all higher than 10%. For example, the difference
of CMDT on ‘‘WN’’ is only 0.68%, but differences of FISH-
ERC, KNNC, CART, QDC, and QUADRC on this dataset are
48.75%, 25.58%, 24.00%, 21.85%, and 21.83%, respectively.
The LOGLC method has a slight variation between AC and
WA in a ratio of 10:1 but has a lower WA score (average WA
is 71.46%).

V. DISCUSSIONS
A. COMPARISON FOR PERFORMANCE METRICS
AC as a common measure for determining the performance
of prediction methods is sensitive to the class distribution
of the data set. It will prefer to the majority class, and we
should determine with caution whether higher AC means a
better global accuracy [40].MatthewsCorrelation Coefficient
(MCC) [41] and G-mean [42] are independent of the class

FIGURE 5. The performance of MCC , WA and AC on ratio of 10:1.

distribution in the data set, but theMCC only for binary clas-
sification, and theG-mean tend to be zerowhile all samples of
one minority class are misclassified. Here, we compared the
performance of AC and WA on simulated binary datasets by
referring toMCC . For the simulated binary datasets, the sen-
sitivity (accuracy of positive class) is fixed to 1.0 (100%), the
specificity (accuracy of negative class) is set to three levels
(sp = 0, 0.25, and 0.5).

As the showed in Figure 5, there is a slight increase inMCC
values as the degree of imbalance increases. As expected,
the AC values increase rapidly and converge to 100% with
an increasing negative sample size. On the contrary, the WA
values can hold constant as imbalance is growing. So, in this
paper, theWA is used as the main evaluation measure for each
model. The results regarding the classification accuracy also
confirm that higher AC does not mean better global accuracy
in the case of the imbalance.
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TABLE 4. The average WA and AC of each models for three ratios on the four datasets (%).

B. SPLITTING CRITERIA BASED ON MIC
For the DT algorithm to be successful, accurate characteriza-
tion of the attribute is necessary. Binarization of numerical
data simplifies the growing of trees and provides simple
logical functions explaining the role of attributes. However,
binarization might lead to the loss of information for mul-
tiple complicated nonlinear associations in real-world data.
As shown in Figure 6, the first feature of ‘‘Forest Types’’
is a typical example for binarization (Figure 6A), on the
contrary, quadripartition of the tenth feature of ‘‘Segment’’
is necessary to distinguish Class 1 from Class 7 (Figure 6B).
CMDT algorithm usesMIC algorithm as the splitting criteria,
can capture both linear and non-linear associations illustrated
in Figure 6.

C. WEIGHTED DECISION-MAKING TABLE
In real-world applications, a class imbalance problem usually
occurs. The classifier is usually biased toward the major-
ity class. However, the minority class usually is the class
of interest and more important. Existing methods such as
data-level [43], algorithmic-level [44],. and cost-sensitive

FIGURE 6. Examples of scatter plots of discretization for numerical data.

learning [45], [46] have been proposed to address this prob-
lem. In the CMDT method, the weighted decision-making
table, a cost-sensitive-like method, is used to reduce the
biased performance toward majority class examples. For the
decision-making table that comes from the child nodes of DT,
we generally assume an equal weight for training samples of
minority and majority class. This should take some respon-
sibility for the bias in classification. Here, we weighted the
sample as described in section 2.4, and making a prediction
based on the weighted decision-making table. Taking the
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TABLE 5. Comparison of AC among raw decision-making table and weighted decision-making table.

FIGURE 7. Test153 weighted before and after comparison.

classification of Class 1 and Class 4 in PageBlocks dataset
as an example, the Test153 should be misclassified belong to
Class 1 by the raw decision-making table (Figure 7). After
these training samples were weighted, the Test153 could be
classified belong to Class 4 correctly (Figure 7). For the
entire dataset of PageBlocks, while the predictor is based on
the raw decision-making table, the WA and AC are 85.73%
and 96.93%, respectively, while the predictor is based on
the weighted decision-making table the WA and AC are
92.92% and 95.95%, respectively. The prediction accuracy
for each category is listed in Table 5. Obviously, the pre-
dictor suffers from performance bias toward the majority
class (Class 1) when using the raw decision-making table,
it has a high AC (96.93%), but low WA (85.73%). The
weighted decision-making table can avoid performance bias
(WA = 92.92%). It’s worth mentioning that the CMDT can
also reduce bias better in classification compare to the refer-
ence models, even if based on the raw decision-making table.
As shown in Table 3, for the 12 reference models, the highest
WA is only 82.43% (QDC), but the lowest WA is as low as
24.19% (FISHERC).

VI. CONCLUSION
Machine learning technology has been evolving over time
from so-called conventional methods to the recent deep
learning methods, and many studies have shown that deep
learning (DL) can be more accurate and robust than the
conventional machine learning approaches in many appli-
cations. However, the black box-like prediction from deep
learning makes it weak in comprehensibility. Sometimes, the

stronger comprehensibility of machine learning is critical
to interpret the output and correlate it with the attributes.
Decision trees are comprehensible, but at the cost of relatively
lower prediction accuracy compared to DL methods. In this
study, we proposed a Chi-MIC-based adaptive multi-branch
decision tree to improve their classification performance,
which can also handle mixed-type attributes by introducing
the unequal interval optimization for node splitting, as well
as the local chi-square test for tree pruning. The outstanding
simulation results show that CMDT can be more reliable
than the twelve comparative approaches, especially for imbal-
anced datasets.

It is important to note that, the CMDT algorithm evaluates
attributes by optimizing the splitting points for each attribute
based on the MIC approach. However, the MIC is a typical
computationally intensive method. It will lead to the lim-
ited practicality of the algorithm in the case of big-sample
and multi-attribute situations. Therefore, developing parallel
algorithms, or faster MIC approximation algorithms may
be helpful for handling a wider range of domain problems.
In addition, inmost applications, random forests integrated by
decision trees can achieve better performance than decision
tree itself. It is a significant and urgent problem that develop-
ing a random forest algorithmwith higher prediction accuracy
and strong interpretability based on the CMDT algorithm.
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