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ABSTRACT Recognizing potentially hazardous objects is crucial in the field of transportation, especially
in assisted and unmanned driving. However, most existing studies do not focus on defensive driving as they
only identify accidents ahead of the vehicle in which they are not involved. In this paper, a driving assistance
system is proposed to predict the risk score of potential targets ahead of the vehicle and provide an early
warning, which relies on a deep architecture called Fusion-Residual Predictive Network (FRPN) that fused
multi-scale residual features and improved adversarial learning. This architecture provides an environment
for the generator to perform joint learning from ground-truth images and discriminators with gradient penalty
constraints. The deeper convolutional neural network can greatly improve the quality of the image by fusing
residual features. Several deep convolutional neural network models were used to evaluate the method on
various datasets; among them, the prediction model based on the VGG network, with peak signal-to-noise
ratio of 32.67 and structural similarity index of 0.921, respectively, yielded the best results. Subsequently,
we utilize the tracking model to design a risk score evaluation method based on the location of the target
and it have an improvement in ability to give early warning with 1.95s earlier in the best case. These results
prove that our method can effectively reduce the risk of traffic accidents.

INDEX TERMS Generative adversarial network, video prediction, recurrent neural network, convolution
neural network, object tracking, traffic warning, unsupervised learning, risk score assessment.

I. INTRODUCTION
Traffic accidents have caused unquantifiable damage to peo-
ple’s lives and property. Globally, countless people have lost
their lives annually due to traffic accidents. According to
statistics, 90 people die in traffic accidents in the United
States every day [1]. Figure 1 shows images of two types
of unsuccessful traffic accidents. As the occurrence of an
accident is so fast and critical that its prevention time must
be short and early. Thus, researchers are supposed to study
how to prevent an traffic accidents. Although Tesla and
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other companies have introduced driverless cars, it is still
difficult for the system to make appropriate decisions for
drivers in complicated traffic conditions, such as when ani-
mals or pedestrians are in front of the car or when unidentified
obstacles suddenly appear in front of the car. This is an impor-
tant research gap. When referring to advanced driver assis-
tance systems (ADAS), laser radar (LiDAR) is typically used
to emit laser beams to measure the relative distance between
the edge of the object in the field of view (FOV) and the
device for accurately capturing contour information to form a
point cloud and draw a 3D environment map. However, visual
information is also very important in assisted driving. Com-
pared with radar technology, dashcams and other cameras are
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FIGURE 1. Near-miss traffic incident scenes from Youtube. (A) Close to a
vehicle. (B) Close to a pedestrian.

inexpensive. In recent years, almost all new vehicles in China
have been equippedwith a driving recorder that can record the
traffic conditions in front of the car throughout the day. The
driving recorder, which has provided a large number of data
sources for this study, enables a model to learn more complex
situations. However, existing traffic databases, such as the
Karlsruhe Institute of Technology and Toyota Technologi-
cal Institute (KITTI) dataset [2] and the Dashcam Accident
Dataset (DAD) [3], record accidents involving vehicles ahead
of the car, which is not the focus of this study. Therefore, this
paper proposed a new dataset referred to as the self-accident
dataset (SAD), which will be described in detail in a later
section.

The key to avoid accidents is to forecast in advance.
The work of video prediction can be divided into the three
categories. The first structure uses autoencoders to reduce
dimensionality and generate videos. Yan et al. [4] proposed
a deep DynEncoder model that takes the original pixel image
as input, which is encoded into a hidden state variable by
the encoder. The DynPredictor is then used to dynamically
encode the time series. Xue et al. [5] proposed a model
based on a variational autoencoder and a cross-convolutional
network. However, although the model can generate possible
future frames from one image, it is not suitable for complex
scenes and has low accuracy. Ye et al. [6] proposed a pixel-
level future prediction approach, which implicitly predicts
future states of independent entities while reasoning about
their interactions, and composes future video frames using
these predicted states. Jasti et al. [7] proposed a model
based on temporal motion encodings to make it possible to
predict any arbitrary number of future frames. The second
structure for long-term video prediction is Recurrent Neural
Network. Shi et al. [8] proposed a convolutional long short-
termmemory (ConvLSTM) structure based on a combination
of convolutional neural networks (CNNs) and long short-term
memory (LSTM, proposed by Hochreiter et al. [9]) in 2015.
Lotter et al. [10] proposed PredNet, inspired by the concept of
‘‘predictive coding’’ in neuroscience, where each layer of the
architecture only performs partial prediction and transmits
residuals to the subsequent layers. Wu et al. [11] proposed
the MotionRNN framework based on transient variation and
the motion trend to make it adaptable to complex changes.
Wu et al. [12] proposed an approach to predict components of
the future scene by non-rigid deformation of the background

and affine transformation of moving object. Yan et al. [13]
proposed a method of separating foreground and background
images. The model has two encoder inputs, one of which is
the motion encoder. The difference in the image sequence is
received as the motion input, and LSTM is used to model the
motion dynamics. Another encoder receives the last frame
of the static image, combines the output of the LSTM with
the encoded output of the static image, and decodes it into
a predicted image using the decoder. This novel structure
makes neural network units originally used for text predic-
tion applicable to images. The third structure is facilitated
by the rapid development of the generative adversarial net-
work (GAN) proposed by Goodfellow et al. [14], which
has led to tremendous progress in image reconstruction.
Denton et al. [15] proposed a video representation decom-
position model that separates the video background content
and motion foreground. However, they trained the back-
ground content encoder, motion pose encoder, and decoder
by generating a confrontation network. Liang et al. [16] pro-
posed a dual-learning mechanism. The primal future-frame
prediction and dual future-flow prediction form a closed
loop, generating informative feedback signals for better video
prediction. Recently, Shouno et al. [17] proposed a model for
natural videos with rapidly changing frames, depth residuals,
and a hierarchical structure. Each layer predicts the future
state with a different spatial resolution and these predic-
tions from different layers are combined through top-down
connections to generate future frames. Lin et al. [18] pro-
posed amotion-aware feature enhancement network for video
prediction to produce realistic future frames and achieved
relatively long-term predictions. These models have been
shown to have certain advantages in traffic scene prediction.
However, larger structures tend to consume more resources
during prediction, thereby degrading the model performance.
Luc et al. [19] proposed a novel method to improve the per-
formance of the original model by updating the hidden state
of the generator loop unit.

A representative work on the topic of early event prediction
was conducted by Ryoo et al. [20], who proposed a method
for predicting human behavior. They represented motion as
integral histograms of spatio-temporal features, effectively
modeling how the distribution of features changes over time.
Cai et al. [21] established a model for pedestrian motion
trajectory prediction from far shot first-person perspective
video. In the field of transportation, traffic accident prediction
approaches are roughly divided into two categories, based on
statistical models and machine learning. In the first category,
Ren et al. [22] used different types of traffic-related data such
as traffic accidents, traffic flow, weather conditions, and air
pollution in the same city to build a complex system, and then
used recurrent neural networks to predict. However, these
results only indicate that accidents may occur under such con-
ditions, but cannot predict the real traffic flow. The other part
of the problem is to predict whether other vehicles will have
an accident, centered on the came camera. Chan et al. [3]
proposed the use of dynamic spatial attention and RNN to
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FIGURE 2. Flow of proposed algorithm (for formal unity in visualization, the third section of Part A is displayed in Part B). (A) is the separate encoding
and prediction of moving objects and background through a multi-scale residual feature fusion network, (B) is the image reconstruction and optimization
through an adversarial neural network with gradient penalty terms and real image constraints, and (C) is the final risk assessment through tracking the
target and calculating the risk score.

predict accidents in a dashcam video. Yu Yao et al. [23]
devised a method for providing early warning by detecting
objects and predicting their trajectories. Suzuki et al. [24]
predicted traffic accidents using adaptive loss and large-
scale event databases. Recently, Shouno et al. [17] proposed
a semi-supervised method using GAN trained on regular
sequences to predict future frames and compared these pre-
diction frames with real frames to determine whether an
abnormal event occurred. Although these works are similar
to ours, they mainly predict the collision of other vehicles in
front of the car with dashcam and cannot be used to assist
driving or provide early warning.

In this study, a novel early traffic accident predic-
tion method was developed, in addition to collecting new
traffic datasets. First, the Fusion-Residual Predictive Net-
work (FRPN) is used to predict the future location of objects
in the video from the previous images. Evenwhen there is sig-
nificant movement between the frames. This method can also
accurately predict realistic future frames of natural videos.
Then, the tracking model tracks these targets to assess the
risk score of them to our own vehicle. Finally, the proposed
algorithm with a preset threshold is evaluated to achieve an
early warning. The proposed model can be easily applied to
existing datasets. Furthermore, unsupervised learning saves a
large amount of manual labeling.

The remainder of this paper is organized as follows.
Section II introduces the theoretical basis of algorithm of
proposed model. The training details, experimental results,

and prediction results are presented in Section III. Finally,
Section IV concludes the paper.

II. METHOD
The proposed method of early warning of traffic accidents
relying on a dashcam in a vehicle to facilitate defensive
driving. It is composed of three steps: separated image encod-
ing and prediction using the embedded sequence prediction
module, generating clearer and objective images using an
improved GAN model, and locating and tracking suspicious
objects in view using an additional target detection model
with a confidence tracking algorithm. Finally, the trajectory
of object is predicted and analyzed. A schematic of this
method is presented in Fig. 2.

Before the algorithm, the size of the extracted image is
normalized. Several image sequences (including the current
image and previous frames) are then input into the corre-
sponding encoder networks to extract the differential and
global features, respectively. The difference between two
adjacent frames is input into the ConvLSTM network to
obtain the predictive state. However, for scene encoding,
only the current image is utilized. Subsequently, the resulting
predicted differential features and scene distribution cod-
ing are reconstructed through a combined network with a
multi-scale residual structure to obtain future frames. How-
ever, the resulting image become increasingly blurred as
the sequence become longer. Therefore, the discriminator
is deployed to perform adversarial learning to clarify the
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FIGURE 3. Multi-scale residual combination structure based on local
dynamic.

blurred image with incomplete information, which makes
more similar to the future frame image through constrained
learning. Through the above steps, a stable model is trained
to generate a future image. Finally, the model automatically
generated predictive pictures periodically to provide advance
warnings.

A. IMAGE ENCODING AND PREDICTION
Vehicles can move extremely quickly; therefore, determining
difference between frames is crucial. This model was inspired
by the MCNET framework proposed by Villegas et al. [25].
However, the network structure, which is not effective in very
complex scenarios, is improved to fit new problem. It will be
described in detail in the Experiment section. Each δ-frame
was input into the encoder as a sequence for image infor-
mation extraction, and separately input into the prediction
module for spatio-temporal prediction to obtain the predictive
feature representation. Finally, it was fused with the scene
distribution coding of the current frame and used as the input
of the decoder for image reconstruction. Let xt denote the
t-th frame in the input video. The goal of frame prediction is
to generate future frames x̂t+1, and even more future images
from the input xt−δ+1 : xt . The overall structure is illustrated
in Fig. 3.

1) SEPARATE IMAGE ENCODER
To achieve a more meaningful image reconstruction,
the region of interest and background content are calculated
separately, and the final image is synthesized through a com-
bination network.

For the proposed algorithm, the differential encoder
captures the dynamic scene composition by observing the
inter-frame difference sequence data cyclically input to the
network and through local dynamics outputs the motion fea-
ture of targets using the following formula:

[dt , ct ] = fdyn(xt − xt−1, dt−1, ct−1) (1)

where the memory unit ct is used to retain the dynamic
information in time and dt is the motion features. Further,
fdyn is a neural network that captures the local dynamics of

the frame image by element-wise subtraction between the two
adjacent inputs, the characteristics and dynamic information
of the last time node, thus minimizing redundant calculations.
The content of the forecasting work will be discussed in the
next section.

The differential image encoder observations of spatially
specific objects incorporate detailed cues of moving objects
that may be involved in accidents. However, the full-
frame content can capture important clues related to the
scene or movement of the camera. The scene encoder is
mainly aimed to obtain information such as the layout of the
scene and the position of the salient object from the sequence
input. Using the following equation, the characteristics of a
single frame can be obtained:

st = fsce(xt ) (2)

where st is the scene features of image background and fsce
is CNN focused on learning the content feature extraction
of the current single frame, where the pooling operation is
consistent with the differential encoder.

2) PREDICTION WITH CONVOLUTIONAL LSTM MODEL
The encoder employs CNN to extract the feature difference
between the current and previous frame images. It is also
necessary for the ConvLSTM unit which input the hidden
state vector output from the previous frame, and the last
LSTM unit outputs the prediction result [d∗t , ct ], where d

∗
t is

the dynamic feature captured by the encoder and ConvLSTM.
The encoded feature information, which can be regarded as
a spatio-temporal sequence, is used as the input variable of
the time series module to model the time dimension. The
corresponding variable is input into each time node, which
output the corresponding hidden information and cell state,
finally obtaining the structural information of the predicted
image.

The structure diagram of the LSTM, a special RNN struc-
ture, is shown in Fig. 4(A). The structure stores the state
to be memorized by introducing a cell state and adds three
gates to the original structure: the forget gate (ft , decides
to when to forget the previous state), input gate (it , decides
when to add the new state), and output gate (ot , decides when
to combine the cell state and input for output). Unlike the
traditional LSTM, the ConvLSTM can be modeled either
in time or in space, and the internal structure is shown
in Figs. 4(B) and 4(C). This function can be expressed using
the following formulae:

it = σ (wxi ∗ zt + whi ∗ ht−1 + wci ◦ ct−1 + bi) (3)

ft = σ (wxf ∗ zt + whf ∗ ht−1 + wcf ◦ ct−1 + bf ) (4)

c̄t = tanh(wxc ∗ zt + whc ∗ ht−1 + bc) (5)

ot = σ (wxo ∗ zt + who ∗ ht−1 + wco ◦ ct + bo) (6)

ct = ft ◦ ct−1 + it ◦ c̄t (7)

ht = tanh(ct ) ◦ ot (8)

where ‘‘∗’’ denotes the convolution operator and ‘‘◦’’ denotes
the Hadamard product.
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FIGURE 4. (A) LSTM internal unit structure diagram. (B) Transforming 2D image into 3D tensor. (C)Inner structure of ConvLSTM.

3) IMAGE DECODER WITH MUTLI-SCALE COMBINATION
To strengthen the network ability to adapt to images of dif-
ferent scales and provide more information to the decoder,
the features obtained before pooling are preserved between
operations at two different scales, and the retained residual
results are merged with the upsampling results prior to decod-
ing. This residual connection [26] connects the motion and
scene features of each scale. The residual features of layer l
are given as

r lt = fres([d lt , s
l
t ])

l (9)

where r lt is the residual feature output of layer l obtained by
scale layering, and fres is the residual function consisting of
a series of convolution layers and a final linear rectification
layer.

These high-dimensional feature representations combine
the feature information of motion and scene to obtain the
feature expression of the final predicted image, using the
following formula:

ot = fcomb(dt , st ) (10)

where dt and st are the high-dimensional features of motion
and scene respectively, and fcomb is a CNN with bottleneck
layer [27]. The original high-dimensional space contained
redundant and noisy information; therefore, the resultant
error generated through dimensionality reduction is reduced
to improve the decoding accuracy. The model projects both
dt and st onto a lower-dimensional embedding space and
returned them to their original size to build the combined
feature ot . Then the ot and rt are merged through a decoder to
obtain the pixel-level predicted image of the next frame using
the following formula:

x̂t+1 = fdec(ot , rt ) (11)

where fdec uses transposed convolution for upsampling. The
deconvolution network [28] has the same number of layers as
the foreground encoder. Each scale is corrected and unpooled
by adding a residual connection of the motion content after
each unpooling operation. The final output layer is passed
through a tanh(.) activation function. The formula is given as

tanh(x) =
ex − e−x

ex + e−x
(12)

B. RECONSTRUCTION AND OPTIMIZATION BY
WASSERSTEIN GAN WITH GRADIENT PENALTY
In this section, we combine the Wasserstein GAN with a gra-
dient penalty (WGAN-GP) proposed by Gulrajani et al. [29]
for adversarial learning. The network consists of two parts: a
generator, G, and a discriminator, D. These two parts have the
relationship of adversarial learning and parameter sharing.
G attempts to generate a predicted image, x, from the coding
sequence input, and D improves its discriminatory ability to
judge the authenticity of the predicted image. Through these
mutual relations, both parts conduct adversarial learning,
improve each other, and generate a clearer and more ideal
predicted image. In addition, the training detail of whole
video prediction is shown in Algorithm 1.

1) WASSERSTEIN DISTANCE
The predicted image generated by the decoder has certain
limitations, such as image blur and inconsistent generation.
Therefore, the Wasserstein algorithm is added to further opti-
mize the generated image. Instead of the Jensen-Shannon
(JS) divergence [30], the earth mover’s distance (EMD) [31]
is used to measure the distance between the distribution of
the real and generated samples, which can solve the GAN
training instability. Even when the overlap between the real
and generated distributions is nonexistent or extremely small,
there is no gradient disappearance due to that the JS diver-
gence is constant.

EMD is also known as the Wasserstein distance. This
WGANmodel uses the simplifiedWasserstein distance equa-
tion of the Kantorovich–Rubinstein duality [32] to obtain
the minimum cost of transmission quality when the actual
distribution Pr is converted to the generated distribution, Pg,
by the Wasserstein distance. The formula is as follows:

W (Pr ,Pg) = sup
||f ||L≤1

Ex∼Pr[f (x)]− Ex∼Pg[f (x)] (13)

where sup is the minimum upper limit, and a deep network
is used to learn an optimal function 1- Lipschitz, to optimize
the Wasserstein distance.

2) DISCRIMINATOR
To generate higher-quality images, in addition to taking the
original picture as the learning target, the discriminator is
also used to make the model more robust. Although the

69104 VOLUME 9, 2021



Y.-F. Zhou et al.: Efficient Traffic Accident Warning Based on Unsupervised Prediction Framework

Algorithm 1 Training Detail of Prediction Model
Require: Input samples I > 2, Preditive results P > 0.
1: Initialize the parameters of the ConvLSTM, Generator G,
and Discriminator D
2: Samples {x1, . . . , xn} from the training set
3: for i = 1 to I do
4: Obtain the coding of motion (dt ) and multi-scale

residual results (d lt )
5: Predict the state of the motion (d∗t ) via ConvLSTM
6: for p = 1 to P do
7: Compose predictive frames and previous frames into

a new sequence as training samples
8: Obtain the coding of scene (st ) and multi-scale

residual results (slt )
9: Combine predictive motion features (d∗t ), scene

features (st ) and residual results (d lt ), (s
l
t )

10: Generate the predictive frame by deconvolution
11: for number of training iterations do
12: for number of steps to app1y to the D do
13: Update D by ascending:
14: LD(x, x∗) = − Ex,x∗∼Pr (D(x,x∗)) + Ex∼Pg

[D(x,G(x))]+ λd Ex̂∼Penalty (D(x, x∗)) [(||∇x̂D(x̂)||2−1)2]
15: Update G by descending:
16: LG(x, y) = −λdEx∼Pr [D(x,G(x))]+ λimgLimg

discriminator is similar to the GAN model, noise is not as
an input. The task of training the discriminator ceases to
be a binary classification task. However, the gradient of the
discriminator is used to optimize the network parameters to
approximate the Wasserstein distance, which is a regression
task. Therefore, the sigmoid function is canceled in the last
layer of the network. As long as the difference exists, the
model will continue to learn until the difference as small
as possible, while maximizing the discriminator objective
through iterative optimization.

The WGAN-GP resolves the gradient explosion and dis-
appearance that occurred during training to a great extent.
After each update of the parameters of the discriminator,
it is extremely unscientific to truncate their absolute values
within a fixed constant range. However, when most of the
values crossed this limit, the values are clustered at−c and c.
Therefore, an additional gradient penalty term is set in the
original discriminator loss function such that the gradient of
the discriminator does not exceed K , which avoids truncating
the parameter of Lipschitz constraint leading to their values
go to the extreme and limiting the discriminatory ability of
D, and deteriorates the quality of G. Based on the above
description, the final loss function is as follows:

LD(x, x∗) = −Ex,x∗∼Pr (D(x, x
∗))+ Ex∼Pg [D(x,G(x))]

+ λdEx̂∼Ppenalty [(||∇x̂D(x̂)||2 − 1)2] (14)

where x∗ is the future real sample of input frame x, λd is
the penalty coefficient to control the gradient penalty, and
Ppenalty represents the area between the real and generated

distributions. Therefore, real and generated samples, xr and
xg are chosen, and a gradient penalty sample xp is selected on
the line between them.

3) GENERATOR
The result predicted by the LSTM may not be ideal, adding
the comparison with the real image in the loss function can
constrain the final generated image to be close to reality.
When training the generator, the weights of the discriminator
trained in the previous stage are fixed, and through a series
of deconvolution operations, complete future video frames
separated by a period of time were generated. Further, it is
necessary for generator to learn how to generate accurate
images and to keep learning to deceive discriminator, gen-
erate a matrix similar to the real image data, attempt to
shorten the Wasserstein distance between the samples, and
minimize the generator objective function through iterative
optimization.

However, the predicted and real sample images are often
dissimilar and blurry. Inspired by Mathieu et al. [33], a loss
function is developed that combined adversarial loss and Limg
into the generator. By adding this additional loss function to
compel the distribution of the predicted image to be consistent
with the actual image distribution, the formula for Limg, a loss
in the image space, is as follows:

Limg = Lp(x, x∗)+ Lgdl(x, x∗) (15)

Lp(x, x∗) = (
n∑
l=1

|x l − (x∗)l |p)
1
p (16)

Lgdl(x, x∗) =
∑
i,j

|(|xi,j − xi−1,j| − |x∗i,j − x
∗

i−1,j|)|
α

+ |(|xi,j−1 − xi,j| − |x∗i,j−1 − x
∗
i,j|)|

α (17)

where x∗ is the future real sample of the generated frame, x.
Limg makes the network generate the correct sequence

through input, Lp is controlled by hyperparameter p to
directly guide the network to approximate real images, and
Lgdl is set based on hyperparameter α, to sharpen the pre-
dicted image following the gradient difference loss.

Combining the above losses, the final following objective
function was obtained:

LG(x, y) = −λgEx∼Pr [D(x,G(x))]+ λimgLimg (18)

As the learning object of the generator, the optimal loss
function can be adjusted using λg and λimg.

C. FINAL TRACKING PREDICTION
In this section, a traffic hazard assessment system based on
a driving recorder is introduced. A score is assigned to every
suspicious object that appeared in the FOV, and a predeter-
mined threshold is used for advanced judgment.

1) MULTI-OBJECT TRACKER WITH IDentity POOL
It is necessary to detect each object and give them a unique
identity by performing data association. The joint detection
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and embedding (JDE) model proposed by Wang et al. [34]
has achieved good results in multi-target tracking. Similar
to most structures, it sequentially performs detection and
association. It adopts a feature pyramid network [35] for
multi-scale prediction, combines detection and embedding
learning, extracts an embedding vector from the feature map,
adopts the automatic balance loss to obtain the best loss
weight, and adds a triplet loss similar to cross entropy as
the goal of embedding learning. This is represented by the
following equation:

LCE = − log
exp(f T g+)

exp(f T g+)+
∑

i exp(f T g
−

i )
(19)

where f T is a sample of the mini-batch selected as the anchor,
and g+ and g−i are the class-wise weights of the positive and
negative classes, respectively.

The JDE model processes the predicted frame and outputs
the bounding box and the corresponding appearance embed-
ding. The target in the FOVwill be added to the identity pool,
and theHungarian algorithm is used for associationmatching,
which is limited by the Kalman filter to obtain a higher
match rate. At each time step, update the observed tracker
and initialize a new identity when a new object is detected.
If the target disappeared from the FOV, it was marked as
‘‘lost’’(denoted as ‘0’, otherwise ‘1’). If the target was lost
for more than a given temporal threshold, it was deleted from
the current identity pool or re-acquired in the allocation step.

2) DEFINE RISK SCORE FOR OBJECT
Traffic conditions are always complex and changeable; there-
fore, judgments based on the simple target detection tend to
be inaccurate and dangerous. We performed batch analysis
on the key frames of traffic accidents using the D2-City
dataset [36] and Dashcam Accident Dataset (DAD) [3], and
established a risk assessment system from three aspects based
on the FOV of the front dashcam: the size variation in the
frame, movement of the center of gravity, and angle of the
center of the high-risk area. Our subsequent model evaluation
is based on predicting the trajectory of the object to assess the
degree of danger posed by its current position.

The size of the video produced by different dashcam con-
figurations various, so this algorithm uses the proportion cal-
culation method to avoid errors caused by the uniqueness of
the parameters. The upper-left corner of the frame is defined
as the origin of the coordinates, andWf as well asHf stand for
the width and height of frames respectively. Further,1s is the
area size change of the target between two adjacent frames,
p is the position of the center of gravity of the target in the
FOV, and θ is the angle between the target line and the lower
horizontal coordinate axis, where the target line is the line
connecting the crosshair (Hf , Wf / 2) and the target point.
The calculation formulae for these parameters are as follows:

1s = Sn − Sn−1

p = 1−

√
(Wf /2− xn)2 + (Hf − yn − Hbox/2)2

(Wf /2)2 + H2
f

θ = arctan
(

Hf − yn
Wf /2− xn

)
(20)

where Sn is the current area of the target, and its area in the
last frame is Sn−1. (xn, yn) is the center of mass of current
position of the target. Hbox is the height of the target box.
In the dashcam, a distant vehicle is always in an upper

position of images. As the vehicle approaches, its area grad-
ually increases and its position gradually moves to the lower
part of the image. Subsequently, it disappears in the lower
left or right corner of the FOV. Vehicles with abnormally
behaviour, which is potential to cause accidents, tend to move
to the lower center of the image. At this time, the risk score
gradually increases. When the vehicle is stationary or moves
at a steady speed, the relative area and position of the target in
the image remain unchanged. Therefore, three hyperparame-
ters are defined to calculate the risk score by weighting based
on the following formula:

r = αg(1s)+ βh(p)+ γ j(θ ) (21)

here, g(1s) is the function of area change, h(p) is the
function of location change (degree of danger), j(θ ) is the
function of angle change, and r is the risk index between
[0, 1]. Further, α, β, and γ are the proportion parameters
that control the three risk scores. Seven road conditions are
comprehensively analyzed: normal vehicle from the oppo-
site direction (NVOD), abnormal vehicle from the opposite
direction (AVOD), vehicle crossing from the left or right
(VCFLoR), vehicle stopped in front (VSF), normal vehicle
from the same direction (NVSD), similar-speed following
vehicle (SSFV), and normal overtaking vehicle (NOverV),
as shown in Table 1.

Prior to experiment, these parameters are predetermined
and used to evaluate the risk generated by the trajectory
change using the following state function:

g(1s) =

{
1, 1s > 1ST
0, 1s ≤ 1ST

h(p) =

{
1, p = pworst
0, p = pbest

j(θ ) =

{
1, θ = θmax

0, θ = θmin
(22)

where 1ST is the area size change threshold and pbest is the
safest position in the FOV, that is, the upper left and right
corners of the image. At this point, the dangerous state func-
tion value is zero, meaning that pworst , the dangerous state
function value, is one. It should be noted that this function is
not a discrete integer function, but its value is of type float.
Furthermore, the formulae indicate only extreme cases.

III. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the algorithm system is introduced in detail
through the experimental parameters and procedures. The
entire experiment is divided into three steps. First, we provide
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TABLE 1. The changing trend of the state function in different situations.

the model quality used by the evaluation metrics for quanti-
tative verification and basic experimental settings. We then
determine the key experimental parameters during the train-
ing process. Finally, these evaluation metrics were used to
evaluate the results of video-based accident risk prediction.
The framework described in this section is illustrated in
Fig. 5.

A. EXPERIMENTAL CRITERION
In the following experiment, the results of the experiment
were evaluated based on three aspects of the video predic-
tion evaluation criteria: similarity, clarity, and accuracy. The
similarity was comprehensively evaluated from two aspects:
peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM). The real frame is defined as Y , and
the predicted frame is defined as Ŷ . These standards are
calculated using the following formulae:

PSNR(Y , Ŷ ) = 10 log10
max2

Ŷ

1
N

N∑
i=0

(Yi − Ŷi)2
(23)

where max2
Ŷ
is the maximum possible value of pixels in the

predicted frame. The larger the PSNR value is, the less the
distortion effect of the image is.

SSIM (Y , Ŷ ) =
(2µYµŶ + c1 )(2σY Ŷ + c2)

(µ2
Y + µ

2
Ŷ
+ c1 )(σ

2
Y + σ

2
Ŷ
+ c2)

(24)

where (µY , µŶ ) and (σY , σŶ ) are the mean and variance of
Y and Ŷ respectively; σY Ŷ is the covariance of Y Ŷ , c1 =
(0.01L)2; c2 = (0.03L)2; and L is the dynamic range of the
pixel values in the picture frame. The larger the SSIM value
is, the greater the similarity of the images is.

The accuracy was obtained using the confusion matrix,
which was used to quantitatively evaluate the final accident
risk prediction algorithm. These formulae are as follows:

Accuracy(%) =
TP+ TN

TP+ TN + FP+ FN
(25)

Recall(%) =
TP

TP+ FN
(26)

Precision(%) =
TP

TP+ FP
(27)

Here, TP, TN, FP, and FN are the probabilities of true pos-
itive, true negative, false positive and false negative in the

confusion matrix, respectively. The detailed divisions are
listed in Table2.

FIGURE 5. Overview of experimental results and discussion. Experimental
criterion is divided into three parts and discussed separately
(A) Experimental setting (B) Training details (C) Experimental result and
analysis.

Several indicators are employed in the standard
CLEAR-MOT metric [37] to evaluate the tracking accuracy
of the entire MOT system.

The ECT can be regarded as the overall response capacity
of the model. If the time of the accident was noted as Ti, and
our model provides a collision warning at time Tj, the time
interval is the earlywarning capability for accidents. The ECT
is calculated as follows:

ECT (s) = Ti − Tj (28)

B. EXPERIMENTAL SETTING
1) DATABASE INTRODUCTION
KITTI. The more complex video prediction dataset KITTI
[2] was used to objectively evaluate our model. The dataset
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Algorithm 2 Traffic Accident Warning System
Require: Video clip v1 from the test set.
1: Initialize the parameters of the traffic accident warning
system
2: {x1, . . . , xn} ← v1
3: Generate predictive frames sequence {Xn+1, . . . ,Xt }
through prediction model

4: while not end of Xt do
5: Track these targets {T1, . . . ,Tn} in this frame via JDE
6: while not end of Tn do
7: if(lable = ‘0’ and lost time < continuous threshold )

or lable = ‘1’ then
8: Keep its ID in the identity pool
9: Update its risk score by:
10: r = αg(1s)+ βh(p)+ γ j(θ )
11: if r >= risk threshold then
12: Alert
13: else
14: Delete this target from current identity pool

TABLE 2. Division of four different results in confusion matrix.

was created by the Karlsruhe Institute of Technology (KIT)
and Toyota Technological Institute at Chicago in 2012 and
updated in 2015. It was captured by a car-mounted camera on
a car driving in an urban environment inGermany. The dataset
includes three categories: city, residential and road. Each
category contains 57 videos. These frames were randomly
divided into training, validation and testing sections. The
training, validation and test sets consist of 40,678, 458 and
1,246 frames, respectively.

D2-City Dataset.The D2-City dataset [36] dataset was
collected from Didi operating vehicles operating in five cities
in China. It covers a total of 12 types of driving and road-
related target categories, different weather, roads, and traffic
conditions, especially extremely complex and diverse traffic.
It is composed of a total of 1000 videos recorded by the
driving recorder, the original data provided were stored as
short 30-s videos with a frame rate of 25fps, and every frame
in the dataset was annotated. There were 700 videos for
training, 100 for validation, and 200 for testing.

SAD.To evaluate the proposed method in realistic traffic
scenarios, a new dataset SAD was compiled. The dashcam is
an inexpensive aftermarket camera that can be installed in a
vehicle to record occurrences in front of the vehicle from the
driver’s perspective.We selected some datasets from theDAD
and obtained videos from the YouTube channel and other
online channels. Our dataset is composed of cyclists, pedes-
trians, and vehicles, and reflects various weather conditions

(e.g., sunny, rain, and snow) and locations (e.g., city, and
country), in circumstances which forced our vehicles to
stop. It consisted of 458 positive-sample accident videos and
1137 negative-sample normal videos, of which 1145 videos
were used for training (343 positive and 802 negative videos)
and 450 videos for evaluation(115 positive and 335 negative
videos).

2) EXPERIMENTAL PLATFORM
In this study, all experiments were carried out on a platform
with a Windows 10 operating system, an NVIDIA GeForce
RTX 2080Ti with 11 GB graphics memory, and Intel Core
i9-9900K with 16 GB memory. The software platform was
Python 3.5.9 and the Tensorflow 1.12.0 framework.

C. TRAINING DETAILS
1) IMAGE ENCODER AND PREDICTION
Before the implementation of the algorithm, the frames
extracted from the video were resized for preprocessing.
Owing to hardware limitations, the minimum batch size was
set to 4 or 8, to fully exploit the GPU hardware acceleration.
Considering the complexity of the scene content, the features
from the image content were extracted by using various rep-
resentative models and different unit numbers as the global
feature extractor.

The inception structure used was proposed by Google
[38]. The number of filters in each inception block can be
expressed by the following equation: 2block−1 × 64. After all
the convolutional layers, we performed batch normalization,
followed by the implementation of a parameterized rectified
linear unit [39]. This parameter is a linear function defined
in pieces that can produce good results and stable gradients.
After several inception blocks, a fixed 1024-dimension fea-
ture vector and a container that retained the scene convolution
results of several scales from each frame were obtained.
In addition, VGG16 [40] and ResNet50 [26] were trained
separately to obtain the best model. The differential encoder
was similar to the ResNet network; however, only shortcut
connection thoughts were selected. The filter size of all the
convolution operations was 3 × 3 and obtained an output
of the same size as before and a container that retained the
foreground convolution results on three scales. The combined
layer consisted of three consecutive 3 × 3 convolutions with
1024, 512, and 1024 channels. This layer was responsible for
combining the encoded content of the differential and scene
content. The multi-scale residuals were composed of two
consecutive 3 × 3 convolutions, connecting the convolution
results of two containers of different scales. The ConvLSTM
combined convolutional layers, instead of fully connected
layers or LSTM units.

2) IMAGE RECONSTRUCTION AND OPTIMIZATION
The decoder used for image reconstruction doubly upsam-
pled the image fused by the encoder on the original multi-
scale structure and deconvoluted the residual results through
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TABLE 3. Evaluation of the quality of multi-step predictions on 20% test set on KITTI Dataset with the different models.

FIGURE 6. Qualitative results of multi-step video prediction on KITTI
database(Inc means InceptionNet, VGG means VGGNet and Res means
ResNet).

element addition, performed thrice, twice, and once. The
convolution and filter sizes were all 3× 3, and the result was
obtained using the hyperbolic tangent tanh(.).

For all experiments, the Adam optimizer was used in the
loss function of the generator with a fixed learning rate
of 1e-4, β_1 = 0.5, α = 1, λimg = 1, λg = 0.02, and p =
2 as the limiting score. In the loss function of the discrim-
inant, the Adam optimizer with a learning rate of 1e-4 and
β_1 = 0., β_2 = 0.999, epsilon = 1e-8, the last two param-
eters from the exploration of Kingma et al. [37]. In addition,
the penalty coefficient λd was set to 10, and 100,000 itera-
tions of training were performed using the aforementioned
parameters.

3) MOT WITH IDENTITY POOL
The model was trained on the D2-City dataset to detect
suspicious targets in predicted frames {cyclists, pedestrians,

TABLE 4. Experimental results of JDE model on SAD, KITTI and D2-City
Datasets in terms of MOT Metric.

vehicles} using the CSPDarknet53 [42] as the backbone
network; the set class was 3. The model was trained for
100 epochs using a standard stochastic gradient descent opti-
mizer, and the initial learning rate was 1e-2, which decreased
by 0.1 at the 50th and 75th epochs.

D. EXPERIMENTAL RESULT AND ANALYSIS
1) ASSESSMENT OF THE PREDICTIVE PERFORMANCE OF
FRPN
The quality of video prediction determines the efficiency of
the driving assistance method. We compare FRPN with the
VGG-GAN model proposed by Shouno et al. [17] and the
PredNet model proposed by Villegas et al. [25], as well as
the FRPN model trained with three different global feature
extractors. The results are presented in Table 3.

It can be observed from the comparison results in the
table that, compared with the PredNet structure proposed by
Villeagas et al., the deeper convolutional structure provides
more feature representations of complex scenes. In the loss
function, the constraint of the real image is added, and the
experimental results intuitively show that this method can
minimize the difference from the real image and significantly
improve the SSIM of the image. However, Other models have
a good effect on the results of the single-step prediction. the
effect after multiple time steps is not good. It is difficult to
address our follow-up early accident warning task. Therefore,
the FRPN based on VGGNet is selected as the supporting
plate for the multi-target tracking experiment.

2) PARTIAL RESULTS DISPLAY
Fig. 6 shows some examples of sequence images generated
by the trained generator and several ground truths, which
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FIGURE 7. Positive examples of our method when the threshold was set to 0.8. The horizontal axis represents the number of video frames,
the vertical axis represents the risk score (Rs) of the identified target in the field of view, and the red arrow refers to the risk factor of the target in
the frame. (A) is the single-target score calculation of the video frame under real situation, (B) is the multi-target score calculation of the video frame
under real situation, and (C) is the single-target score calculation of the video frame under prediction situation.

are the same frames obtained from the video. As can be
observed, these models could make certain predictions for
future pictures in future time steps without exception. How-
ever, owing to uncertainty, entities with a large range of
motion will spread, and the image will gradually become
blurred. Nevertheless, despite distortion, our model provided
more refined and accurate results. The other sequence models

clearly suffered from the disappearance of gradients and
explosions. Furthermore, the previous methods were unable
to adapt when the frame changed significantly. To prevent the
gradient explosion in the experiment, a gradient penalty was
adopted for the discriminator training. The qualitative results
proved that our method avoided these phenomena by adopt-
ing a multi-scale fusion structure for adversarial training.
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TABLE 5. Experimental results of the early warning capability on SAD Dataset with evaluation system (ES) based on different models.

3) ASSESSMENT OF THE FINAL RESULT
As shown in Table 4, the CLEAR-MOT metric [37] was used
to evaluate the trained JDE model on three different datasets
(where MOTA means Multiple Object Tracking Accuracy,
MOTPmeansMultiple Object Tracking Precision,MTmeans
Mostly Tracked targets, ML means Mostly Lost targets, and
IDF1 means ID F1 Score. The indicators of MOTA, MOTP,
MT, and IDF1 in the table are better for higher values, and
the ML is better for lower values). The results indicate that
the detection-trackingmodel achieved relatively stable results
in different environments, in spite of with some subtle dif-
ferences. In relatively simple dataset KITTI, the trained JDE
model can reach a normal level with the value of MOTA up
to 63.5 and the value of MT up to 31.5%.

The final early warning capabilities of the different
backbones under good tracking conditions are presented
in Table 5. It can be seen that the different models and
the complex scenes do cause the increase of the response
time of the early warning system to issue warnings, but the
proposed method has clear advantages over the other meth-
ods. In the best case, there is a 15.7% increase in accuracy.
GAN-VGGproposed by Shouno et al. [17] has achieved good
results in advance warning time, but in more complex scenes,
the accuracy is lower. Compared with different global feature
extraction models, ResNet achieved better results in terms of
recognition the accuracy was 70.3%, but the complexity of
its network and so many parameters cause scene prediction
delays. The structure of InceptionNet significantly reduced
the amount of calculation. However, in complex scenarios,
the feature extraction capability is still lacked, and the accu-
racy of its risk score is only higher than that of PredNet,
which has the simplest structure. Although the model based
on VGGNet was not the most accurate, it could issue a
warning a long time in advance, which is a compromise
choice. Therefore, this method itself has limitations, with two
extreme cases existing. The more complex the scene is, the
more GPU resources will be consumed, and the harder it was
to issue a warning in advance. However, in reality, drivers
always pay attention to traffic conditions ahead. Therefore,
the proposed method can only be used as an auxiliary means

to effectively predict accidents, specifically providing notice
to drivers to brake, thereby avoiding accidents.

Fig. 7 shows the example results of our best method
in some cases on the SAD dataset, where the threshold
represents the lowest value judged to be dangerous. The
assessment of the degree of risk depends on the accurate
prediction and tracking of the target location. In the case of
roughly the same predictive performance, accurate tracking
determines the continuity of the risk score. The increase in
the area of the target in the FOV implies that it is approaching
the vehicle, and its risk score will increase, but the loss of the
target cannot be ruled out. As shown in Figure 7(C), the target
was lost due to occlusion, and its risk score was temporarily
lost; therefore, this limitation cannot be ignored. Evidently,
the proposed algorithm can more accurately calculate the risk
value generated by the position of the vehicle in the front view
and can allow the system to perform the earliest from when
traffic accidents are expected.

IV. CONCLUSION AND FUTURE WORK
In this study, an unsupervised deep learning framework FRPN
for traffic accident video prediction based on first-person is
established, and a risk scoring evaluation method is proposed.
This video prediction model fuses multi-scale residual fea-
tures, and combines improved adversarial learning with real
image constraints and gradient penalty as training targets.
Then via this multi-target tracking model JDE, FRPN can
predict the trajectory of abnormal targets in front of the
vehicle accurately. Subsequently, in order to avoid the occur-
rence of accidents or reduce the damage caused by accidents,
it calculates risk scores based on the position to provide
early warning while targets have reached the risk threshold.
The experiments indicate that the proposed model can be
adapted to more complex environments on different datasets
and achieved a high performance in the new dataset SAD.

In recent research, the application of 2D images has grad-
ually become more mature, and the prediction of video
sequences containing time information is developing rapidly.
Video prediction is crucial in many fields, such as traffic
accident prediction, fire prediction, typhoons, and rainfall.
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Although unmanned driving provides automatic operation for
the driver, assisted driving still has considerable research sig-
nificance, especially in sudden abnormal conditions, which
could substantially reduce the degree of damage and issue
rescue notifications immediately. Limited by the network
scale and hardware equipment, video prediction still has
a large room for development. We hope to achieve more
accurate and long-term forecasting results and better tracking
results. Although our final evaluation algorithm cannot make
a completely accurate risk judgment, our overall framework
can still be widely used to reduce the risk as much as possible.

ACKNOWLEDGMENT
(Yun-Feng Zhou, Kai Xie, and Xin-Yu Zhang contributed
equally to this work.)

V. AUTHOR CONTRIBUTIONS
Yun-Feng Zhou conceived the algorithms, and designed the
experiments; Kai Xie reviewed the paper; Xin-Yu Zhang
checked the spelling and made suggestions; Chang Wen con-
ducted the comparative experiment on images; Jian-Biao He
is responsible for data collection.

REFERENCES
[1] 2012Motor Vehicle Crashes: Overview, Nat. Highway Traffic Saf. Admin.,

Washington, DC, USA, 2013.
[2] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, ‘‘Vision meets robotics:

The KITTI dataset,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
Sep. 2013.

[3] F. H. Chan, Y. T. Chen, Y. Xiang, and M. Sun, ‘‘Anticipating accidents in
dashcam videos,’’ in Proc. Asian Conf. Comput. Vis. Cham, Switzerland:
Springer, 2016, pp. 136–153.

[4] X. Yan, H. Chang, S. Shan, and X. Chen, ‘‘Modeling video dynamics with
deep dynencoder,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, 2014, pp. 215–230.

[5] T. Xue, J. Wu, K. L. Bouman, and W. T. Freeman, ‘‘Visual dynamics:
Probabilistic future frame synthesis via cross convolutional networks,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, pp. 2236–2250, 2016.

[6] Y. Ye, M. Singh, A. Gupta, and S. Tulsiani, ‘‘Compositional video pre-
diction,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 10353–10362.

[7] R. Jasti, ‘‘Multi-frame video prediction with learnable temporal motion
encodings,’’ Univ. California, Merced, CA, USA, 2020. [Online]. Avail-
able: https://escholarship.org/uc/item/1n3761rc

[8] X. Shi, Z. Chen, H. Wang, and D. Y. Yeung, ‘‘Convolutional LSTM
network: A machine learning approach for precipitation nowcasting,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 802–810.

[9] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[10] W. Lotter, G. Kreiman, and D. Cox, ‘‘Deep predictive coding networks
for video prediction and unsupervised learning,’’ 2016, arXiv:1605.08104.
[Online]. Available: http://arxiv.org/abs/1605.08104

[11] H. Wu, Z. Yao, M. Long, and J. Wang, ‘‘MotionRNN: A flexible
model for video prediction with spacetime-varying motions,’’ 2021,
arXiv:2103.02243. [Online]. Available: http://arxiv.org/abs/2103.02243

[12] Y. Wu, R. Gao, J. Park, and Q. Chen, ‘‘Future video synthesis with
object motion prediction,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 5539–5548.

[13] X. Yan, J. Yang, K. Sohn, and H. Lee, ‘‘Attribute2image: Conditional
image generation from visual attributes,’’ in Proc. Eur. Conf. Comput. Vis.
Cham Springer, 2016, pp. 776–791.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Algorithms, 2014, pp. 2672–2680.

[15] E. Denton and V. Birodkar, ‘‘Unsupervised learning of disentangled repre-
sentations from video,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017.

[16] X. Liang, L. Lee, W. Dai, and E. P. Xing, ‘‘Dual motion GAN for future-
flow embedded video prediction,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 1744–1752.

[17] O. Shouno, ‘‘Photo-realistic video prediction on natural videos of
largely changing frames,’’ 2020, arXiv:2003.08635. [Online]. Available:
http://arxiv.org/abs/2003.08635

[18] X. Lin, Q. Zou, X. Xu, Y. Huang, and Y. Tian, ‘‘Motion-aware feature
enhancement network for video prediction,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 31, no. 2, pp. 688–700, Feb. 2021.

[19] P. Luc, A. Clark, S. Dieleman, D. de Las Casas, Y. Doron,
A. Cassirer, and K. Simonyan, ‘‘Transformation-based adversarial
video prediction on large-scale data,’’ 2020, arXiv:2003.04035. [Online].
Available: http://arxiv.org/abs/2003.04035

[20] M. S. Ryoo, ‘‘Human activity prediction: Early recognition of ongo-
ing activities from streaming videos,’’ in Proc. Int. Conf. Comput. Vis.,
Nov. 2011, pp. 1036–1043.

[21] Y. Cai, L. Dai, H. Wang, L. Chen, Y. Li, M. A. Sotelo, and Z. Li, ‘‘Pedes-
trian motion trajectory prediction in intelligent driving from far shot first-
person perspective video,’’ IEEE Trans. Intell. Transp. Syst., early access,
Jan. 28, 2021.

[22] H. Ren, Y. Song, J. Wang, Y. Hu, and J. Lei, ‘‘A deep learning approach to
the citywide traffic accident risk prediction,’’ in Proc. 21st Int. Conf. Intell.
Transp. Syst. (ITSC), Nov. 2018, pp. 3346–3351.

[23] Y. Yao, M. Xu, Y. Wang, D. J. Crandall, and E. M. Atkins, ‘‘Unsupervised
traffic accident detection in first-person videos,’’ 2019, arXiv:1903.00618.
[Online]. Available: http://arxiv.org/abs/1903.00618

[24] T. Suzuki, H. Kataoka, Y. Aoki, and Y. Satoh, ‘‘Anticipating traffic acci-
dents with adaptive loss and large-scale incident DB,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3521–3529.

[25] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee, ‘‘Decompos-
ing motion and content for natural video sequence prediction,’’ 2017,
arXiv:1706.08033. [Online]. Available: http://arxiv.org/abs/1706.08033

[26] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[27] G. E. Hinton, ‘‘Reducing the dimensionality of data with neural networks,’’
Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006.

[28] M. D. Zeiler, G. W. Taylor, and R. Fergus, ‘‘Adaptive deconvolutional
networks for mid and high level feature learning,’’ in Proc. Int. Conf.
Comput. Vis., Nov. 2011, pp. 2018–2025.

[29] I. Gulrajani, F. Ahmed,M. Arjovsky, andV. Dumoulin, ‘‘Improved training
of Wasserstein GANs,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst.
(NIPS), 2017, pp. 5769–5779.

[30] B. Fuglede and F. Topsoe, ‘‘Jensen-Shannon divergence and Hilbert space
embedding,’’ in Proc. Int. Symp. onInformation Theory,. ISIT. Proceed-
ings., 2004.

[31] Y. Rubner, C. Tomasi, and L. J. Guibas, ‘‘The earth mover’s distance as a
metric for image retrieval,’’ Int. J. Comput. Vis., vol. 40, no. 2, pp. 99–121,
Nov. 2000.

[32] C. Villani, Optimal Transport: Old and New, vol. 338. Berlin, Germany:
Springer, 2008.

[33] M.Mathieu, C. Couprie, andY. LeCun, ‘‘Deepmulti-scale video prediction
beyond mean square error,’’ 2015, arXiv:1511.05440. [Online]. Available:
http://arxiv.org/abs/1511.05440

[34] Z. Wang, L. Zheng, Y. Liu, Y. Li, and S. Wang, ‘‘Towards real-
time multi-object tracking,’’ 2019, arXiv:1909.12605. [Online]. Available:
http://arxiv.org/abs/1909.12605

[35] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2117–2125.

[36] Z. Che, G. Li, T. Li, B. Jiang, X. Shi, X. Zhang, Y. Lu, G. Wu,
Y. Liu, and J. Ye, ‘‘D2-City: A large-scale dashcam video dataset of
diverse traffic scenarios,’’ 2019, arXiv:1904.01975. [Online]. Available:
https://arxiv.org/abs/1904.01975

[37] K. Bernardin and R. Stiefelhagen, ‘‘Evaluating multiple object tracking
performance: The CLEAR MOT metrics,’’ EURASIP J. Image Video Pro-
cess., vol. 2008, pp. 1–10, Mar. 2008.

[38] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[39] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ inProc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

69112 VOLUME 9, 2021



Y.-F. Zhou et al.: Efficient Traffic Accident Warning Based on Unsupervised Prediction Framework

[40] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

[41] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
arXiv:1412.6980. [Online]. Available: https://arxiv.org/abs/1412.6980

[42] A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao, ‘‘YOLOv4: Opti-
mal speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.
[Online]. Available: http://arxiv.org/abs/2004.10934

YUN-FENG ZHOU was born in Hubei, China,
in 2000. He joined the National Demonstration
Center for Experimental Electrical and Electronic
Education, in 2019, with the intent to research
machine learning and image processing. He is
currently an Assistant Researcher with Yangtze
University, Jingzhou, China. His research interests
include image processing, software development,
and machine learning.

KAI XIE received the M.S. degree in elec-
tronic engineering from the National University of
Defense Technology, Changsha, China, in 2003,
and the Ph.D. degree in pattern recognition and
intelligent system from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2006. He is currently
a Professor with the School of Electronic Infor-
mation, Yangtze University, Jingzhou, China. His
current research interests include image process-
ing and signal processing.

XIN-YU ZHANG was born in Sichuan, China,
in 2001. She is currently an Assistant Researcher
with Yangtze University, Jingzhou, China. Her
research interests include image processing and
artificial intelligence. She joined Laboratory with
the intent to research deep learning and image pro-
cessing. She has been conducting research projects
on image recognition and video prediction.

CHANG WEN received the B.S. degree in com-
puter science from the Naval University of Engi-
neering, Wuhan, China, in 2002, and the M.S.
degree in computer science from Yangtze Univer-
sity, Jingzhou, China, in 2008. She is currently
an Assistant Professor with the School of Com-
puter Science of Yangtze University. Her current
research interests include image processing and
signal processing.

JIAN-BIAO HE received the B.S. and M.S.
degrees from the Huazhong University of Science
and Technology, Wuhan, China, in 1986 and 1989,
respectively. He is currently an Associate Profes-
sor with the School of Computer Science and Engi-
neering, Central South University. His research
interests include artificial intelligence, the Internet
of Things, pattern recognition, mobile robots, and
cloud computing.

VOLUME 9, 2021 69113


