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ABSTRACT Octane number is the most important indicator of reflecting the combustion performance, and a
great deal of research has been devoted to improving it. In this paper, a new analytical framework is proposed
to predict octane number, kernel principal component analysis (KPCA) is used to reduce the dimension of
the variables in the process of Fluid Catalytic Cracking (FCC), support vector regression (SVR) is used
to construct the gasoline octane number prediction model and the particle swarm optimization algorithm
(PSO) is used to select the optimal combination of parameters for the model. The experiments show that the
octane number can be improved under a given production environment with a guaranteed desulfurization
effect of gasoline products. Furthermore, several key attributes that have a significantly positive or negative
correlation with the improvement of gasoline product quality are identified through computing the feature
score. The findings can help engineers adjust operational variables to obtain a series of high-quality products.

INDEX TERMS Gasoline octane number, kernel principal component analysis, support vector regression,
particle swarm optimization.

I. INTRODUCTION
With the increasing awareness of environmental protection,
gasoline cleaning technologies have received close attention
from people all over the world. From the perspective of
the gasoline pool, Fluid Catalytic Cracking (FCC) has been
the main harmonic component of gasoline. To effectively
utilize the heavy oil resource, China has vigorously developed
the light-weight technology with FCC as the core, convert-
ing the heavy oil into gasoline, diesel oil, and low carbon
olefins. More than 70% of the gasoline is produced by FCC,
which brings approximately 95% of the sulfur and olefins
in the refined gasoline. Therefore, the main tendency is to
reduce the content of olefins and aromatics while keeping
sulfur content less than or equal to 10mg/kg [1]. Especially,
the major research institutions of the petroleum and petro-
chemical companies in the world have invested heavily in the
development and improvement of FCC technologies. Like-
wise, building on the full implementation of CHN IV in 2014,
China has brought forward the implementation of CHN V
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TABLE 1. The gasoline standard, which is organized from [1], [2].

from 1 January 2017 to 1 January 2018 and will implement
CHN VI-A and VI-B on 1 January 2019 and 1 January 2023,
respectively, which are presented in Table 1.

Octane number is the most influential indicator of the
combustion performance of gasoline, which is reduced in
the process of desulfurization and olefin reduction. Every
unit reduction in octane number is equivalent to the loss of
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about $22.38 per ton. Due to the constraints of measurement
technology and complex operating conditions, it is difficult to
obtain the octane number in real-time. Given this situation,
it is valuable to develop an accurate prediction model for
octane number in the gasoline refining process. There are
two main areas of research on measuring the octane number,
one is the quantitative structure-property correlation studies
on octane number of gasoline components, including group
contribution method, topological indices [2]. The other is to
carry out instrumental analysis of each gasoline component,
component absorbance, and content of each component, and
use the collected parameters to construct a predictive model
for gasoline octane number. Based on the different rela-
tionships between the attributes of the dataset, the methods
can be divided into linear and non-linear regression models.
For linear regression prediction methods, there are several
analytical techniques, including the combination of princi-
pal component regression and partial least square regression
[3], [4], infrared spectroscopy, near-infrared (NIR) spec-
troscopy analysis, Raman spectroscopy analysis, and nuclear
magnetic resonance spectroscopy analysis [5]–[8]. If the
operating variables have a high degree of nonlinearity and
coupling, non-linear functions can be introduced for non-
linear regression prediction, such as artificial neural network
(ANN) [9]–[13], support vector regression (SVR) [14], deep
learning (DL) [15] etc. They have strong capabilities of pro-
cessing non-linear systems and are widely implemented in
chemical engineering, biological sciences, image processing,
and other fields.

Support vector machine (SVM) is based on the classic
theories of Vapnik-Chervonenkis (VC) dimension and struc-
tural risk minimization (SRM) principle. SVM works well
in tackling small sample problems, non-linear problems,
and high-dimensional pattern recognition problems [16].
The support vector regression is popularized by SVM
and used for regression prediction problems which have
the advantages of strong generalization ability, high pre-
diction accuracy, and prevention of overfitting [17], [18].
Moreover, it has been applied to a certain extent in chemo-
metrics and chemical analysis. By comparing SVR to par-
tial least square (PLS) for spectral regression applications,
U. Thissen et al. [19] concluded that SVR not only
outperforms PLS, but also is more robust to non-
linear effects induced by the external environment.
Roman Balabin et al. [13] raised and answered the question
of how far SVM-based technologies can replace ANN-based
approaches in real-world (industrial/scientific) applications.
The results demonstrated that SVR and LS-SVM are compa-
rable to neural networks in terms of prediction accuracy, but
the former has higher robustness. After processing the gaso-
line samples with principal component analysis (PCA) and
fuzzy C-means (FCM) algorithms, K. Brudzewski et al. [14]
introduced hybrid neural networks and support vector
machines to obtain the predicted octane numbers. With the
continuous exploration of SVR in chemometrics, many schol-
ars have focused on combining various feature processing

techniques and optimization algorithms with SVR [21]–[23],
[25], [26] to improve prediction accuracy and convergence
speed. For example, F. Melgani et al. [21] proposed a novel
classification approach based on particle swarm optimiza-
tion (PSO) to improve the accuracy and the generalization
performance of SVM. J.C.L. Alves et al. [22] applied SVM
to NIR spectroscopy data and introduced the new ideas for
optimizing SVR models based on genetic algorithm (GA).
Moreover, the cross-validation (CV) and grid search proce-
dure are used to tune the parameters of the SVR in [23].
Qiao et al. [24] proposed five models, namely MLP-based
hybrid models of IWO-MLP, DA-MLP, ES-MLP, GA-MLP,
and ICA-MLP, which can well recognize the local minima
help improving better prediction of monthly natural gas
consumption. Also, M.S. AL-Musaylh et al. [25] presented
the support vector regression based on the two-phase parti-
cle swarm and obtained high predictive utility. In addition,
a novel combination of the improved genetic algorithm (IGA)
and PSO was employed to select the optimal parameters of
the SVM discriminators for specifying the quality of Dian
Hong black tea in [26].

However, there is scarce research on the modeling and
analysis of operational variables and material properties
in FCC. Furthermore, it is incapable to obtain satisfac-
tory results from the traditional models because of its slow
response to process optimization. Therefore, KPCA-SVR
combining grid search and PSO algorithm to optimize param-
eters is proposed for the octane number prediction in this
paper. This study aims to predict the octane number in real-
time and identify the key attributes that can contribute to the
octane number, thereby helping the engineers adjust the oper-
ating variables to improve the octane number while maintain-
ing the desulfurization effect.

The paper is structured as follows. Part 2 briefly introduces
the background of KPCA and summarizes the basic theory
of SVR. The third part presents the grid search strategy
and the PSO optimization algorithm, which are applied to
acquire the optimal parameters of SVR. Part 4 reports the
experimental design and process in detail and gives the main
experimental results and analysis. Part 5 shows the main
conclusions and makes recommendations for future research
methods.

II. MATERIALS AND METHOD
A. KERNEL PRINCIPAL COMPONENT ANALYSIS
Kernel principal component analysis (KPCA) is a powerful
tool for extracting information from high-dimensional non-
linear datasets, which are readily performed for the pat-
tern recognition in [27]. By the implementation of ‘‘Kernel
Trick’’, the non-linear variables are mapped into a high-
dimensional feature space, and PCA is performed by using
iterative algorithms that estimate principal components in this
high-dimensional space.

Given a set of centered data,

X = (x1, . . . , xm)T , xi ∈ Rn, i = 1, . . . ,m. (1)
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where
∑m

i=1 xi = 0, 1
m

∑m
i (xi − x̄)2 = 1. Let us consider a

feature space H, related to the input domain by a map,

8 : Rn→ H , x 7→ X (2)

which is probably non-linear. Again,
∑m

i 8(xi) = 0,
the covariance matrix takes the form in H,

C =
1
m

m∑
i=1

8(xi)8(xi)T =
1
m
8(X )8(X )T (3)

Let H be an infinite-dimensional feature space, and we
think of 8(xi)8(xi)T as the linear operator in H which maps
X ∈ H to8(xi)(8(xi) ·X ). Then, we have to find eigenvalues
λ ≥ 0, and eigenvectors V ∈ H satisfying,

λV = CV (4)

where all solutions V with λ 6= 0 lie in the span of
8(x1), . . . ,
8(xm). We can get the set of equations,

λ8(xi)TV = 8(xi)TCV , i = 1, . . . ,m (5)

and there exist coefficients αi,

V =
m∑
i

αi8(xi) = 8(x)α, i = 1, . . . ,m (6)

Let λi, αi, i = 1, . . . ,m denote the eigenvalues of K and
the corresponding complete set of eigenvectors, respectively,
with λj being the first nonzero eigenvalue. We normalize
αj, . . . , αm by requiring that the corresponding vectors in H
be normalized.

V T
p Vp = 1, p = j, . . . ,m. (7)

1 = αT8(x)T8(x)α = αTKα = λpαTα (8)

For the aims of principal component extraction, we need
to compute the projections onto the eigenvectors Vp in H
(p = j, . . . ,m). Let x be a test point, with an image 8(x)
in H, then,

8(xi)TVp =
m∑

i,j=1

αpi8(xi)T8(xj) =
m∑
i=1

αpiK (9)

can be called its non-linear principal components. In particu-
lar, the first principal component is obtained by solving,

argmin
α

m∑
i=1

‖αiK‖2, ‖λ1αTα‖ = 1 (10)

Certainly, the amount of retained principal components
is always confirmed by the cumulative percentage variance
(CPV), which is defined as,

CPV(p) = (
p∑
i=1

λi)/(
m∑
i=1

λi)× 100% (11)

and the scores [28] can be calculated as,

Sp =
1√
3p

V T
p K (12)

where Sp can be called the principal component scores.

B. SUPPORT VECTOR REGRESSION
Support vector regression is an extension of the support vec-
tor machine, which applies the support vectors to regression
functions for solving non-linear regression problems [29].
The target of SVR is to obtain a hyperplane for fittingmultidi-
mensional input vectors to output values. And the outcome is
used to predict the unknown output values. Given a set of data
(xi, yi), xi ∈ Rn, yi ∈ R, i = 1, . . . , l, the decision function f
is defined in (13).

f (x) = wT8(x)+ b (13)

where 8 represents non-linear mapping, and x is mapped
into a high-dimensional feature space from low-dimensional
space, while w, b are slope and intercept of the hyperplane,
respectively. By introducing an ε-insensitive region around
the function, called the ε-tube and shown in (14),

|yi − (wT8(xi)+ b)| 6 ε (14)

the sparsity of SVM can be preserved, which means a small
number of support vectors can respresent the decision func-
tion f . The ε-insensitive loss function is formally defined in
(15), where ε > 0.When the difference between the observed
value y and the predicted value f (x) at the sample point x does
not exceed a given ε, the predicted value is considered to be
void of loss. In other words, the loss is 0 when x in the ε-tube,
whereas a loss occurs only when x is outside this tube.

c(x, y, f (x)) = max{0, |y− f (x)| − ε} (15)

By introducing the penalty parameter C and the slack
variables ξ (∗) = (ξ1, ξ∗1 , . . . , ξl, ξ

∗
l )
T , the following convex

quadratic programming problem is obtained.

R(w, ξ (∗)) =
1
2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i ) (16)

subject to,

(wT8(xi)+ b)− yi ≤ ε + ξi, i = 1, 2, . . . , l, (17)

yi − (wT8(xi)+ b) ≤ ε + ξ∗i , i = 1, 2, . . . , l, (18)

ξ
(∗)
i ≥ 0, i = 1, 2, . . . , l (19)

To obtain the solution of (17)-(19), the Lagrange function
is introduced first, and the problem is transformed into the
following dual problem (20), (21) which is convenient to
solve.

W (α, α∗) =
1
2

l∑
i,j=1

(α∗i − αi)(α
∗
j − αj)K (xi, xj)

+ε

l∑
i=1

(αi + α∗i )−
l∑
i=1

yi(α∗i − αi) (20)

subject to,

l∑
i=1

(α∗i − αi) = 0, 0 ≤ αi, α∗i ≤ C (21)
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If the optimal solution to the problem is ᾱ = (ᾱ1, ᾱ∗1 , . . . ,
ᾱl, ᾱ

∗
l )
T , the decision function is constructed,

f (x) =
l∑
i=1

(ᾱ∗i − ᾱi)K (xi, xj)+ b̄ (22)

where the calculation method of b̄ is to select ᾱj or ᾱ∗k . If ᾱj
is selected, the result b̄ is,

b̄ = yj −
l∑
i=1

(ᾱ∗i − ᾱi)K (xi, xj)+ ε (23)

or ᾱ∗k is selected, the result b̄ is,

b̄ = yk −
l∑
i=1

(ᾱ∗i − ᾱi)K (xi, xk )− ε (24)

Here, three common kernel functions K (xi, xj) are given
in this paper. Generally speaking, functions satisfying the
Mercer theorem can be used as kernel functions. where γ =
1/σ 2, r is a constant, d is a positive integer. In Table 2, γ , r ,
d are all built-in parameters of these kernels.

TABLE 2. Overview of common kernel functions.

III. PARAMETER OPTIMIZATION
Since there are hyper-parameters in the SVR model, we need
to optimize the parameters.

A. PARTICLE SWARM OPTIMIZATION ALGORITHM
Particle swarm optimization (PSO) is an effective global
search algorithm, which is based on the theory of swarm
intelligence and was first introduced by [30]. PSO can be
described as: let the particle swarm fly in an n-dimensional
searching space, a population composed of m particles
Z = {z1, . . . , zm}, the position of each particle Zi =
{zi1, zi2, . . . , zin} represents a potential solution to an opti-
mization question. Every particle can search for a new solu-
tion by constantly adjusting its position, and remember its
optimal position pgd . Besides, each particle has its velocity
Vi = {vi1, vi2, . . . , vin} and updates its velocity by (25), (26).

v(t+1)id = wv(t)id + c1r1(p
(t)
id − x

(t)
id )+ c2r2(p

(t)
gd − x

(t)
gd ) (25)

z(t+1)id = z(t)id + v
(t+1)
id (26)

where w is the inertia weight, and the ability to search for
better solutions will be deprived when w = 0. r1, r2 are
uniform random numbers in the interval (0,1). c1 is called
the ‘‘cognitive factor’’ since it stores in its best solution, and
c2 is called the ‘‘social factor’’ since it takes into account

the global behavior [31]. When c1 = 0, the rate of conver-
gence accelerates, cognitive performance declines, and there
is a tendency to fall into local extremes. Similarly, when
c2 = 0, the particles are in an independent relationship with
each other, which makes it challenging to find the optimal
solution. Therefore, we set the coefficients to the same value
c1 = c2 = 1.5.
The selection of parameters has an essential influence on

the performance and efficiency of the algorithm. In recent
years, many scholars have proposed different strategies for
the adjustment of inertia weight. For instance: Random
Inertia Weight; Sigmoid Increasing Inertia Weight; Sigmoid
Increasing Inertia Weight; Linear Decreasing Inertia Weight;
Simulated Annealing Inertia Weight [31]–[34]. Since the
linearly decreasing inertial weighting algorithm allows PSO
to converge quickly and the performance is not sensitive to
population size, we will choose this strategy to tune w.

wg = wmax −
wmax − wmin

itermax
× g (27)

where g represents the latest generation index of evolutionary
generations,itermax donates a predefined maximum number
of allowable iterations, and wmax, wmin are the greatest and
least values of the inertia weight, which are usually set to
0.9 and 0.4, respectively.

B. KPCA-SVR OPTIMIZED BY GRID SEARCH AND PSO
From the above descriptions, it is abundantly apparent that,
although PSO has a great advantage in local search capability,
it is prone to local convergence to the extent that it lacks the
ability to optimize globally. In contrast, the grid search has a
high probability of finding the global optimum with a large
search range and a small step size. But its computational com-
plexity is expensive due to the utilization of cross-validation.
Therefore, we propose an improved method for combining
grid search strategy and PSO, and (25) is restructed as,

v(t+1)id = wv(t)id + (c1r1 + c2r2)(p
(t)
id − x

(t)
id ) (28)

where p(t)gd = p(t)id , x
(t)
gd = x(t)id . with this adjustment, the search-

ing speed of particles will be accelerated, the searching range
will be increased, and the probability of finding the optimal
solution will be higher. Fig. 1 illustrates the detailed process
of KPCA-based SVR with grid search and PSO algorithm.

IV. EXPERIMENT DESIGN
In this section, a brief experiment design is presented, includ-
ing data collection and analysis, feature selection, perfor-
mance metrics, and the detailed analytical framework.

A. DATA COLLECTION AND ANALYSIS
The experiments are based on historical data accumulated
over 4 years (2017.04-2020.05) from the desulfurization unit
of an FCC gasoline plant in China. This dataset has the
following attributes: 7 feedstock properties; 2 raw adsorbent
properties; 2 regenerated adsorbent properties; 2 product
properties; and 354 operating variables, which are strongly
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FIGURE 1. The flowchart of KPCA-SVR with grid search and PSO.

FIGURE 2. FCC unit.

non-linear and coupled. As we can see from Fig. 2, the FCC
unit is committed to converting the heavy oil into gasoline,
diesel oil, and low carbon olefins.

Data cleaning is the premise of data processing, includ-
ing data formatting, anomaly detection and elimination, etc.
We use Z-score ( x−µx

σx
) method to standardize the original

dataset. and then box chart is used for visualization, so that
the outliers could be found intuitively.

Aswe can see fromFig. 3, the outliers are the circles, which
will be removed directly.

There are many possible reasons for missing values, such
as equipment failure, power outage, parts damage, etc. The
treatment of missing values is very important for model build-
ing, and the general treatment methods are usually, direct
deletion, mean filling, regression filling, expert prediction,
etc [35]. For the case of serious missing features (such as
more than 60% missing rate), we choose to delete directly,
and for the case of less missing features, we choose to use the
mean fill method. The detailed distribtion of missing values
is presented in Fig. 4.

B. FEATURE SELECTION
As a consequence of the complexity of the heavy oil crack-
ing process and the diversity of equipment, the operational

FIGURE 3. Box chart of the first 50 features, where the Y-axis is the
Z-score value, the orange lines in the box are the mean value, and the
circles are defined as the abnormal points.

FIGURE 4. The distribution of missing values. By computing the missing
rate, we can easily decide between direct deletion and the mean fill
method.

variables in the production process are non-linear and
strongly coupled. Therefore, kernel principal compo-
nent analysis is used to select the important variables.
Fig. 5 demonstrates the ratio of explained variance for the
first principal component of PCA and KPCA are 42.29%,
28.47%, respectively. However, the variance contribution
rate of the latter principle components is lower, expressing
that the first principal feature occupies key information.
Furthermore, the number of exceeding 5% in Fig. 5(b) is
more than Fig. 5(a), which indicates that KPCA requiresmore
principal components to acquire key characteristics [28]. The
total ratio of the variance is 96.05% in PCA, which explains
that 13 principle components can embody the primary infor-
mation of 367 attributes. Also, 95.51% in KPCA implies that
20 principal components represent the principal information
of all the attributes. Especially, it is worth exploring whether
the performance of the model can be improved by increasing
the number of principal components. Experimentally, we find
that the performance metrics of the model are not signif-
icantly improved when increasing the number of principal
components of PCA, whereas the performance metrics of
the model can be improved when the number of principal
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FIGURE 5. The ratio of the explained variance and the eigenvalue of the
covariance matrix in PCA and KPCA.

components of KPCA is set to 20. Finally, the number of
principal components is set to 13 and 20, respectively.

C. PERFORMANCE METRICS
R-squared (R2) is donated as the coefficient of determination,
which is always smaller than 1 and usually larger than 0. (29)
describes the correlation between predictive variables and
response variables. If R-squared approaches 0, it expresses
all the dependent variables can not account for the predictive
variables. Root Mean Square Error (RMSE) is calculated
in (30), which measures the deviation between the values
observed and the values estimated. Mean Absolute Percent-
age Error (MAPE) [36] is always employed as a loss function
for regression models since it can interpret the relative error
intuitively, and in the interval [0,+∞], defined in (31). The
objective of GS-PSO is to improve the prediction accuracy
and the generalization performance of the regressor. There-
fore, RMSE is used as the fitness function.

R2 = 1−

∑
i(ŷi − yi)

2∑
i(ȳ− yi)2

(29)

RMSE =

√
1
n

∑
i

(yi − ŷi)2 (30)

MAPE =
100%
n

∑
i

∣∣∣∣yi − ŷiyi

∣∣∣∣ (31)

FIGURE 6. Schematic illustration of grid search and particle swarm
optimization combined with SVR octane number prediction.

D. ANALYTICAL FRAMEWORK
As shown in Fig. 6, Numerical experiments will be carried
out in the following aspects:

i. Training SVR with linear, polynomial, and RBF kernel
functions.

ii. Performing PCA and KPCA dimensionality reduction
techniques for preprocessing the raw data.

iii. Making a comparison between PCA-based SVR and
KPCA-based SVR regarding the forecasting result.

iv. Optimizing the parameter set of KPCA-based SVRwith
RBF kernel function by the implementation of the hybrid of
grid search and PSO.

v. Comparing KPCA-SVR (RBF) optimized by grid search
and PSO with other non-linear regression methods, including
ridge regression, PLS, Adaboost, BP neural network, and
Long Short-Term Memory (LSTM) [15], [37].

All programs are processed in python 3.7 and run on Win-
dows10, 8G memory, Intelr Core i5-8500CPU@ 3.00GHz.
Note that the datasets can be found in http://dx.doi.org/
10.17632/ y2hp539ww3.1, and the code of these experiments
can be found in https://github.com/daishu-li/Predictive-
analytics-for-octane-number.

V. RESULTS AND DISCUSSIONS
This numerical experiment starts with randomly splitting the
raw data set into an 80% training set and a 20% test set.
Subsequently, the default parameters provided by the scikit-
learn 0.23. (C = 1, d = 3 and γ is calculated by (32)) are
applied to construct the model [38].

γ =
1

mσ 2 (32)

where m is the number of features, and σ 2 is the variance of
samples.

A. MODEL TRAINING
The first step of model training is to select appropriate kernel
parameters. We can see the esult of SVR with linear, polyno-
mial, and RBF in Fig. 7.

66536 VOLUME 9, 2021



B. Li, C. Qin: Predictive Analytics for Octane Number: Novel Hybrid Approach of KPCA and GS-PSO-SVR Model

FIGURE 7. Comparison of predicted and observed octane number by
introducing linear, polynomial, and RBF kernel functions to SVR,
respectively.

We can see the comparison of predicted and observed
octane number. In the first subgraph, the green circles are
always outside or inside the red triangle, which indicates a
large gap between the fitted and observed values, and the
same goes for Fig. 7(b). Unlike the first two, Fig. 7(c) presents
a smaller gap between the green circles and the red triangles.
More specifically, Table 3 demonstrates that SVR with the
RBF kernel achieves such best performance as the aver-
age deviation between the observed and fitted value is only
0.4212, and the minimal forecasting error compared with the
other approaches. The underlying reason is its capability of
achieving non-linear mapping.

TABLE 3. The results of each model with default parameters.

By comparing the two feature extraction techniques,
we can determine which method has a higher feature extrac-
tion capability, thus improving the model prediction perfor-
mance. Concerning the data after dimension reduction with
PCA, the performances of SVR with RBF kernel are the
most remarkable than linear and polynomial kernel functions,
as shown in Table 4 and Fig. 8. It is apparent that this
conclusion is consistent with the analysis in Table 3.

Similarly, KPCA-based SVR with RBF kernel has the
most accurate forecasting capability compared to other ker-
nel functions. Comparing all models above, KPCA-based
SVR with RBF kernel performs best. The reason lies in the
fact that KPCA has the characteristics of computing non-
linear principal features by mapping the original input data to
high-dimensional feature space, while PCA lacks the capa-
bility of handling non-linear features. In view of this case,
we are dedicated to optimizing the parameters of KPCA-SVR
by the implementation of the hybrid grid search and PSO
algorithm.

TABLE 4. The performance metrics of PCA-SVR and KPCA-SVR with linear,
polynomial, and RBF kernel functions.

FIGURE 8. The comparison of PCA-SVR and KPCA-SVR with linear,
polynomial and RBF kernel functions on the capability of forecasting.

TABLE 5. The parameters setting of grid search and PSO.

B. MODEL OPTIMIZATION
At the beginning of this experiment, it is worth suitably set-
ting the initial parameters of PSO. Table 5 shows the detailed
parameters setting of GS and PSO. And the result is presented
in Fig. 9.

The first two sub-charts illustrate the forecasting result,
where Fig. 9(a) is the predicted outputs of the model in the
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FIGURE 9. R-squared, RMSE, and MAPE of KPCA-SVR (RBF) optimized by the hybrid of the grid search strategy and particle swarm
algorithm. And the trajectory of particle swarm in the parameters space composed by C and γ in subgraph (c). Moreover, the fitness
value of each iteration number is presented in (d) and (e).

training dataset, and Fig. 9(b) is the prediction result of the
test set. We can see that the predicted and true values almost
coincide with each other in the during the training. As we can
see from Fig. 9(c), the particle swarm (50 particles) moves
quickly along the γ -axis with a slight adjustment along the
C-axis. Subsequently, they turn to move along the C-axis in
a leaping manner. Finally, through mutual information trans-
mission [31], they obtain the best-fit parameter set at a much
faster rate, which verifies that the hybrid of the grid search
strategy and particle swarm algorithm is highly convergent.

As we can see from Fig. 9(d), PSO-KPCA-SVRwith linear
kernel function keeps stable during iteration. Note that we use
the mean squared error as the fitness value. This demonstrates
that linear function fails to handle nonlinear data. On the
contrary, polynomial function and RBF function are capable
of dealing with the nonlinear and coupled data. After the
twentieth iteration, the RBF achieves the best fitness value.
As we can see from Fig. 9(e), With each iteration, the particle
swarm is searching for the optimal value, and by applying
the adaptive weight acceleration factor, the particle swarm is
more capable of jumping out of the local optimum.Moreover,
the global search ability of the particle swarm is significantly
enhanced after grid search.

To investigate the superiority of this novel proposed inte-
grated strategy, the-state-of-the-art regressors are used for
comparison, namely ridge regression, PLS (partial least
square), Adaboost (adaptive boost), BP neural network,

LSTM, and random forest. Also, before building these mod-
els, KPCA is performed to extract the main features.

Table 6 presents the performance metrics of the above
models, which can be grouped into two categories. One of
them is themodels withweak generalization ability, including
KPCA-Adaboost, KPCA-BP neural network, LSTM, KPCA-
LSTM, and KPCA-Random Forest. Although the forecasting
accuracy is higher when processing the training set, the capa-
bility of handling the unknown data or test sets will decline.
Conversely, the remaining models have strong generalization
abilities since the prediction accuracy will increase when pro-
cessing the test set. On a comparative basis, PSO-KPCA-SVR
has the best performances (R2 = 0.8838, RMSE = 0.3084,
MAPE= 0.2852) and the strongest generalization capability.
Moreover, the performance metrics of PSO-KPCA-SVRwith
RBF kernel are best among the above models by adopting the
optimal parameter combination.

VI. THE PROJECTED OCTANE AND THE
CRITICAL ATTRIBUTES
The parameters of the model are always being tuned in order
to improve the prediction accuracy. Nonetheless, there is
an interesting phenomenon that the mean projected octane
number from this model is always greater than the prod-
uct octane number, which implies that the product octane
number in this petrochemical enterprise can be upgraded in
a larger room. Here, we give the forecasting octane number
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TABLE 6. Comparison results of multiple models. To avoid contingency, we conducted 20 experiments for each algorithm. The left side of ± is the average
value and the right side is the variance.

FIGURE 10. The mean of the fitted result from PSO-KPCA-SVR (RBF) is
88.6988, while the mean of the original octane from the testing data set
is 88.4136 in (a). Moreover, the comparison of the original loss of the
octane number and projected loss of the octane number in (b).

and the loss of octane number of PSO-KPCA-SVR with RBF
kernel.

As we can see from Fig. 10(b), most of the red stars are
underneath the green squares, which implies that the loss of
the projected octane number is less than the original octane.
Under the premise of ensuring the desulfurization effect of
gasoline products (The sulfur content should not be greater
than 10µg/g in EUR VI and CHN VI standards, but to leave
room for the operation of desulphurization unit, the sulfur
content of the product is required to be less than 5µg/g), it is
necessary to minimize the loss of gasoline octane as much as
possible to 30% or more. The loss reduction and the sulfur
content of projected octane are presented in Fig. 11(a).

Interestingly, although the locations of the original data
sets are scrambled during data processing, their indices are
not changed. Hence, it is more likely to confirm the sam-
ple numbers which are presented in Table 7. The following
assignment is to identify the key attributes by analyzing the
principal components of the KPCA again. Fig. 5(b) illustrated
that the explained variance and eigenvalue of the first princi-
pal component is largest than that of the remaining principal
components, which means that the main information of the
original dataset can be obtained by only analyzing the first
principal component. Since the variables correlated with the
principal components can be represented by the score matrix

TABLE 7. These sample numbers meet the requirements for the sulphur
content of less than 5µg/g and a loss reduction of more than 30%.

TABLE 8. 25 key attributes out of 367 raw attributes and their scores.

calculated in (12), the ultimate goal is to obtain the score
vector of the first principal component.

As shown in Fig. 11(b), the scores which are not in the
range [-0.6, 0.6] are highlighted in red. Clearly, 25 critical
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FIGURE 11. The mean of the fitted result from PSO-KPCA-SVR (RBF) is 88.6988, while the mean of the original octane from the testing data
set is 88.4136 in (a). Moreover, the comparison of the original loss of the octane number and projected loss of the octane number in (b).

attributes or features can be confirmed from the original
367 attributes of the dataset, and they have a positive or nega-
tive effect on the first principal component. The scores corre-
sponding to these 25 key attributes are presented in Table 8.

VII. CONCLUSION & FUTURE WORK
This study was committed to finding the key attributes that
intuitively affect the gasoline octane number refined by FCC.
we proposed a novel approach of combining grid search
and PSO to optimize the KPCA-SVR model for the loss
of octane number prediction. In the first phase, KPCA was
implemented to extract 20 non-linear principal components
of the historical dataset gathered by the FCC gasoline refining
process. Next, the strategy of combining grid search and
PSO was applied to acquire the optimal parameter set. Mean-
while, five-fold cross-validation was implemented in the grid
search to avoid overfitting. The results demonstrated that this
model not only improved the prediction accuracy but also
displayed the strong capabilities of non-linear mapping and
generalization.

Furthermore, the projected results indicated that the mean
loss of the predicted octane number was less than that of the
original octane number. Therefore, it was sufficient to make
the following comparisons, including the fitted and observed
octane number, projected and original octane number loss,
reduction in predicted loss, and the sulfur content. After these
comparisons, we obtained the sample numbers that met the
requirements. Additionally, 25 critical attributes of the dataset
were detected by analyzing the score vectors of KPCA.

For future research, there are several interesting directions
to work. First, how to further improve the performance in
the fitting of SVR. Second, how to reduce the computational
complexity of KCPA-SVR [25], and process large-scale data
set. Finally, with the convince of the applications of SVR
is the tip of the iceberg, we will try to combine SVR with
different intelligent optimization algorithms (e.g., wavelet
transform [15]), and implement it in practical industrial
productions.
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