
Received March 16, 2021, accepted April 21, 2021, date of publication May 3, 2021, date of current version May 18, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3077070

Improving the Performance of Convolutional
Neural Networks by Fusing Low-Level Features
With Different Scales in the Preceding Stage
XIAOHONG YU , WEI LONG , YANYAN LI , XIAOQIU SHI , AND LIN GAO , (Member, IEEE)
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China

Corresponding author: Yanyan Li (yyl_scu@163.com)

This work was supported by the Science and Technology Department of Sichuan Province under Grant 2020JDRC0026.

ABSTRACT The width of convolutional neural networks (CNNs) is crucial for improving performance.
Many wide CNNs use a convolutional layer to fuse multiscale features or fuse the preceding features
to subsequent features. However, these CNNs rarely use blocks, which consist of a series of successive
convolutional layers, to fuse multiscale features. In this paper, we propose an approach for improving
performance by fusing the low-level features extracted from different blocks. We utilize five different
convolutions, including 3×3, 5×5, 7×7, 5×3∪ 3×5 and 7×3∪ 3×7, to generate five low-level features, and
we design two fusion strategies: low-level feature fusion (L-Fusion) and high-level feature fusion (H-Fusion).
Experimental results show that the L-Fusion is more helpful for improving the performance of CNNs, and the
5× 5 convolution is more suitable for multiscale feature fusion. We summarize the conclusion as a strategy
that fuses multiscale features in the preceding stage of CNNs. Furthermore, we propose a new architecture to
perceive the input of CNNs by using two self-governed blocks based on the strategy. Finally, we modify five
off-the-shelf networks, DenseNet-BC (depth = 40), ALL-CNN-C (depth = 9), Darknet 19 (depth = 19),
Resnet 18 (depth = 18) and Resnet 50 (depth = 50), by utilizing the proposed architecture to verify the
conclusion, and these updated networks provide more competitive results.

INDEX TERMS Convolutional neural networks, performance, multi-scale features fusion.

I. INTRODUCTION
CNNs (convolutional neural networks) [1] were first
presented in 1989, and they have demonstrated excel-
lent performance in many visual tasks such as semantic
segmentation [2], [3], image classification [4], and object
detection [5], [6]. In particular, as hardware has developed,
the performance of CNNs has increased dramatically due
to the higher computational capacity of the hardware. How-
ever, most CNNs are still not as accurate as a human visual
system. In recent years, many efforts have been made to
improve the performance of CNNs by regularizing param-
eters [7], exploiting superior loss functions [8], modifying
pooling operations [9], and designing more meaningful net-
work architectures [10].

Some classic models have validated that the depth of a
CNN is pivotal for its performance [11], [4]. Furthermore,
many visual recognition tasks have benefitted from very

The associate editor coordinating the review of this manuscript and

approving it for publication was Jan Chorowski .

deep networks [12], [13]. In many cases, a considerably
deeper network indeed achieves better results than a shal-
lower network, and we can easily obtain a higher-quality
model by increasing the depth. However, a very deep CNN
has many disadvantages. First, a deeper network will result
in vanishing or exploding gradients [14], which can lead
to a disconvergence of the results. In addition, a deeper
network is associated with more parameters. In particular,
in the late stages of networks, the number of parameters
massively increases as the convolution channels increase,
which increases the additional computational costs for these
massive numbers of parameters. Moreover, more stacked
layers hamper the performance of networks due to overfit-
ting. Specifically, the model has a lower training error, but
it has a higher testing error. Additionally, as the network
depth increases, the accuracy becomes saturated and degrades
rapidly [12].

To solve the problems caused by depth, [11] introduced
an ‘‘inception module’’ to increase the width of a CNN and
considered that visual information should be abstracted at

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 70273

https://orcid.org/0000-0001-8982-0328
https://orcid.org/0000-0003-4215-6575
https://orcid.org/0000-0002-4449-4773
https://orcid.org/0000-0002-3962-8810
https://orcid.org/0000-0002-5722-6225
https://orcid.org/0000-0002-1570-7610

X. Yu et al.: Improving Performance of Convolutional Neural Networks by Fusing Low-Level Features

various scales to obtain multiscale features. The ‘‘inception
module’’ is computationally less expensive because it can
utilize a set of small-scale convolutions to replace a larger-
scale convolution in a layer. In a wide dense block [13],
the features of all preceding layers are used as inputs into all
subsequent layers. In some sense, increasing the width can be
regarded as feature fusion since it fuses both the previous and
posterior features of some blocks in stages. In a wide residual
block [12], the inputs of a subsequent layer are extracted from
not only its preceding layer but also from other layers preced-
ing that layer by using shortcut connections. The two types
of blocks increase their width and fuse the preceding features
to their subsequent features, which dramatically enhances the
performance of their respective networks. In object detection,
some high-performance object detection architectures [40]
harness high-resolution features with small scales, and some
larger-scale features are extracted from a shallow layer. Due
to leveraging the better localization properties of low-level
features, these architectures markedly improve the location
accuracy and recall rate.

Based on the merits of increasing the width of CNNs,
we propose a novel method that adds an auxiliary block to the
different blocks of a CNN to increase the width. The auxiliary
block can extract different scale low-level features, which are
concatenated with the different level features extracted from
different blocks of the CNN. Our method can be summarized
as feature fusion between different scale low-level features
and different level features. Based on the feature fusion
form, we design two fusion strategies—low-level feature
fusion (L-Fusion) and high-level feature fusion (H-Fusion)—
and five scale low-level features, which are implemented
by two CNNs (Net 1 and VGG-16-V). We assess the per-
formance of these networks on CIFAR10 and CIFAR100.
Finally, we validate our conclusions on DenseNet-BC [13]
(depth = 40), ALL-CNN-C [15] (depth = 9), Darknet
19 [42] (depth = 19), Resnet 18 [12] (depth = 18) and
Resnet 50 [12] (depth = 50).
The contributions of this paper can be summarized as

follows.
1) L-Fusion, which concatenates the low-level features

extracted from Auxi-Block with the low-level features
extracted from BaseNet, can efficiently enhance the
performance of networks, regardless of whether
the low-level features extracted from Auxi-Block are
the same scale as the low-level features extracted from
BaseNet.

2) In terms of feature fusion, the nonsquare convolutions
5×3∪3×5 and 7×3∪3×7 are not remarkably better
than the square convolutions 3× 3, 5× 5 and 7× 7.

3) Owing to the fewer parameters of the 5 × 5 convo-
lution comparing the 7 × 7 convolution or a larger
size convolution, we select the 5 × 5 convolution to
extract different scale features for L-Fusion. Using
L-Fusion, wemodify the architectures of DenseNet-BC
(40), ALL-CNN-C (9), Darknet (19), Resnet (18) and
Resnet (50) to verify our conclusions. The experimental

results show that the performances of the five modified
networks are more competitive.

4) Only for our method does channelwise concatenation
perform better than elementwise summation. Further-
more, the Concatenation + CR operations are more
applicable.

The remainder of this paper is organized as follows: In
section 2, we provide an overview of the related works, focus-
ing on different modalities for improving the performance of
CNNs. In section 3, we present the details of our proposed
methods. In section 4, we provide the details of our experi-
mental procedures, results and analysis. Section 5 concludes
this paper.

II. RELATED WORK
Currently, CNNs have a typical structure: stacked convolu-
tional layers are followed by one or more fully connected
layers. More precisely, before going across a convolutional
layer, the input parameters will implement two consecutive
operations: batch normalization [7] followed by linear activa-
tion (ReLU) [16]. To reduce the dimensionality and decrease
the overfitting of a large network, downsampling will be
necessarily employed after a linear activation layer. Because
of the typical structure in conjunction with the principle
of backward propagation, there are three principal research
directions to enhance the performance of deep CNNs:

1) optimizing the convolution operation and pooling oper-
ation, 2) modifying the activation function and loss function,
and 3) increasing the depth and width.

A. OPTIMIZING THE POOLING OPERATION AND
CONVOLUTION OPERATION
In CNNs, convolution is the most basic operation, and a
pooling layer always follows a certain convolutional layer.
These layers are very important to extract semantic features
and reduce the parameters of the model. Based on the spar-
sity of the activations in a pooling region, [9] proposed a
sparsity-based stochastic pooling mechanism that integrated
the advantages of max pooling, average pooling, and stochas-
tic pooling for CNNs to improve the recognition accuracy.
According to the observation that a ranking list was invariant
when the activation operation changed the values of a pooling
region, [17] compared three new pooling methods, including
rank-based average pooling, rank-based weighted pooling
and rank-based stochastic pooling, with the conventional
pooling operation on four benchmark image datasets, and
the results showed that rank-based pooling outperformed the
existing pooling methods in classification performance. Due
to the existence of redundancy in a standard convolution,
which can be divided into spatial and channel domains, [18]
achieved superior performance by relaxing the sparsity of
the convolution in the spatial domains and reducing the
redundancy in the channel domains. Replacing the conven-
tional convolutional layer with a multilayer perceptron, [19]
designed a novel deep network by stacking multiple per-
ceptrons and a global average pooling layer. Reference [20]

70274 VOLUME 9, 2021

X. Yu et al.: Improving Performance of Convolutional Neural Networks by Fusing Low-Level Features

proposed replacing the dense shallow multilayer perceptron
with a sparse shallow multilayer perceptron to decrease the
number of parameters and extract local features in channel
domains and in spatial domains. To make full use of the
spatial features and temporal features for video action recog-
nition, [44] designed trajectory pooling and line pooling to
fuse spatial and temporal information.

B. MODIFYING THE ACTIVATION FUNCTION AND LOSS
FUNCTION
The activation function is crucial for a neural network since it
determines whether a neuron works, and the loss between the
output value of the network and the label value is very impor-
tant for backpropagation. Many research efforts have been
made in these two respects to improve network performance.
Reference [21] improved the fine-grained image classifica-
tion accuracy by applying a generalized large-margin loss to
AlexNet, GoogLeNet and VGG. Reference [22] proposed a
deep CNN with an associated objective function that con-
sisted of a max-margin objective, a max-correlation objec-
tive and a correntropy loss for a minimum score of positive
labels, a latent semantic space and a minimal training loss.
To eliminate the requirement of carefully tuning the learning
rate to prevent exploding gradients, [23] designed a multitask
loss function to conduct joint training for classification and
a bounding box regression. Reference [24] designed a fast
exponentially linear unit with a rectified linear unit (ReLU)
and an exponential linear unit (ELU). It used the ELU on
the negative part and the ReLU on the positive part to accel-
erate the calculation speed and improve the robustness of
the network. Reference [25] employed different activation
functions, including the rectified linear unit (ReLU), leaky
ReLU (LReLU), parametric ReLU (PReLU) and exponential
linear unit (ELU), in different convolutional layers to extract
better information.

C. INCREASING THE DEPTH AND WIDTH
In 2012, researchers began to study the importance of the
depth (the number of layers) of CNNs. By using an ablation
study and occlusion experiment, [26] demonstrated that the
depth of networks, rather than any individual section, was
vital to their performance. Reference [27] increased the depth
by using a set of subnetworks to extract complementary
features and the same number of classifiers based on random
projections.

The width (the number of units of each layer) is as impor-
tant as the depth for the performance of CNNs. Reference [10]
introduced a novel network form by stacking a series of
‘‘inception modules’’, which consisted of a group of different
scale convolutions in one layer. This approach increased both
the depth and the width of the network, which improved
the classification performance. Subsequently, an increasing
number of researchers have studied how the width of a net-
work influences network performance, and the ‘‘inception
module’’ has been continuously upgraded. By factorizing
convolutions of the original ‘‘inception module’’ [10] and

adding batch normalization to diminish the computational
cost, [52] proposed two modified architectures: Inception v2
and Inception v3. Reference [53] constructed the Inception
v4 architecture by simplifying the architecture of Inception
v3 and adding more ‘‘inception modules’’.

Reference [12] added a skip connection that bypassed the
nonlinear transformation with an identity shortcut: Xl =
H (Xl−1) + Xl−1. Reference [13] introduced a dense con-
nection that connected any layer to all subsequent layers:
Xl = H ([X0,X1, . . . ,Xl−1]), where Xl denotes the features
extracted from the `th layer (or the input feature if the layer
is input layer); H (·) represents the output of a composite
function of some consecutive operations, such as batch nor-
malization, ReLU, and convolution; and [X0,X1, . . . ,Xl−1]
represents the concatenation of the features abstracted by
layers 0, 1, . . . , l − 1. To improve the adaptation of the
inception architectures to new tasks, [48] exploited a split–
transform–merge strategy to design a new module. The mod-
ule divided the channels of a residual unit [12] into a number
of channel sets with the same topology and then summed
the outputs of these sets. Reference [49] designed a ‘‘res2net
module’’ that replaced the 3 × 3 filters of a residual unit
with smaller filter groups. The receptive fields of these
filter groups were different; hence, the ‘‘res2net module’’
could obtain multiscale representations. Reference [50] pro-
posed a squeeze-and-excitation (SE) block that selectively
emphasized informative features and suppressed fewer useful
features by using a feature recalibration mechanism. The
mechanism obtained the channelwise weights of the input of
an SE block by using global average pooling and a gating
mechanism and then output features by using channelwise
multiplication between the input and the weights. To dispose
of the difficulties caused by increasing the depth and width
of CNNs, [51] designed a family of ‘‘polyinceptions’’ to
improve the performance from the perspective of explor-
ing structural diversity. These ‘‘polyinceptions’’ replaced a
residual unit [12] with a polynomial inception unit. Further-
more, [51] introduced two ‘‘inception-resnet units’’ by com-
bining the inception architecture with residual connections.

Inspired by the human retina mechanism, [28] suggested
a coupled convolutional layer that consisted of a set of
mutually constrained convolutions. Reference [29] used a
fully convolutional two-stream fusion network to extract deep
features from input images and user interactions individu-
ally, which achieved better image segmentation performance.
Instead of using large-scale convolutions to construct a deep
CNN directly, [30] proposed a series of cascaded subpatch
convolutions that included a small-scale convolution and a
1× 1 convolution, and the new architecture was more robust
for classification due to the merits of the cascaded subpatch
convolutions. Reference [31] proposed a wide multiscale
contrast network that was composed of three networks with
identical structures and three subnetworks to extract mul-
tiscale and multilevel features for salient object detection.
Reference [32] used two 1 × 1 convolutions with different
channels to generate two different channel-domain features,

VOLUME 9, 2021 70275

X. Yu et al.: Improving Performance of Convolutional Neural Networks by Fusing Low-Level Features

FIGURE 1. We build BaseNet and AuxiNet for multiscale feature fusion. BaseNet consists of 4 blocks, and each block has many stacked
convolution layers without downsampling. Namely, the features generated by every convolution layer in a block have the same size.
AuxiNet consists of only one block, which is exploited to extract the low-level features at different scales. We define two feature fusion
strategies, L-Fusion and H-Fusion, which fuse the low-level features extracted from AuxiNet to the low-level features and the high-level
features extracted from BaseNet, respectively.

and then the two features were propagated to multiply spatial
selective modules to obtain different spatial-domain infor-
mation. Based on the relevance of multiple modalities, [41]
extracted multiple features at several different convolutional
layers from different modality-specific CNNs by exploiting
modality-dedicated embedding layers, and thenweighted fea-
ture fusion was employed for biometric identification. Refer-
ence [43] constructed a deep multitask learning framework
by fusing certain intermediate layers of an off-the-shelf CNN
to optimize a multitask learning algorithm, and the fused
network performed better than an individual learning net-
work without feature fusion. To maintain a spatially more
accurate heatmap, [54] proposed a new architecture called
a high-resolution network (HRNet) by combining a set of
high-to-low subnetworks with different resolutions in paral-
lel. Between these subnetworks, different resolution informa-
tion could be fused repeatedly; inside each subnetwork, every
convolutional layer had the same resolution.

III. PROPOSED METHOD
To decrease the number of network parameters, the cur-
rent prevailing design of CNNs implements a downsampling
operation (such as max pooling and average pooling) after
some convolutional layers to obtain downsampled features.
We divide a CNN into different blocks on the basis of down-
sampling. If we use downsampling at an early or a late
stage of the network, we will obtain a shallow feature (low-
level) or deep feature (high-level), respectively. As shown
in Fig. 1, BaseNet consists of 4 blocks.We treat the features in
a block, which is a series of stacked consecutive convolutional
layers, without downsampling as the same size; we regard
the features as the same scale if they are extracted from the
same scale convolutions. The features extracted by Block 1

or Block 2 are the shallow features (low-level), and the fea-
tures extracted by Block 3 or Block 4 are the deep features
(high-level).

A. DIFFERENT FEATURE FUSION STRATEGIES
To some extent, increasing the width of the network can
be regarded as feature fusion because the features extracted
by many different convolutions in one layer or by multiple
parallel subnetworks will finally be fused. The level features
are important for classification tasks. In every block of a
network, the features produced by preceding convolutional
layers can be fused to the features extracted from the sub-
sequent layers to improve the robustness of the network,
which has been verified by [12] and [13]. To study the influ-
ence of fusing low-level features with high-level features,
we design four different feature fusion strategies, which are
shown in Fig. 1. We add another block that can generate
different scale low-level features using different scale con-
volutions. For the sake of clarity, we call the adding block
Auxi-Block, which is shown in Fig. 1. Auxi-Block has the
same number of convolution layers as Block 1, which is
employed to extract low-level features, but the scale of the
convolution in each layer of Auxi-Block is different from
Block 1. Hence, as shown in Fig. 1, we can fuse the features
extracted fromAuxi-Block to the low-level features and high-
level features extracted from Block 1, Block 2, Block 3 and
Block 4. We call the four aforementioned fusions L-Fusion 1,
L-Fusion 2, H-Fusion 1, and H-Fusion 2. These four fusion
strategies not only increase the width of the network but
also use multiscale features, which intuitively enhance the
performance of CNNs.

We define an input feature X ∈ RW×H×D, where W
represents the width,H represents the height andD represents

70276 VOLUME 9, 2021

X. Yu et al.: Improving Performance of Convolutional Neural Networks by Fusing Low-Level Features

the channels of the feature. We define the filter of the first
convolution in a block as K1 ∈ R(K×K×D)×C , and we define
the remaining filters of the block asKl ∈ R(K×K×C)×C , where
l ∈ 2, 3, . . . , n represent the layers, C represent the channels
and K represents the kernel size. When X passes through a
block (a sequence of convolution layers), the output of every
layer can be computed by∣∣∣∣∣∣∣∣

X1 = F[Conv2d (X ∗ K1)+ b1] ∈ RW×H×C

X2 = F[Conv2d (X1 ∗ K2)+ b2] ∈ RW×H×C

.

Xl = F[Conv2d (Xl−1 ∗ Kl)+ bl] ∈ RW×H×C

∣∣∣∣∣∣∣∣ (1)

When Xl passes through a downsampling layer with
stride = S, the output is X ′l ∈ RC×(W×H)/S . In Fig. 1,
the output of Block i isOi ∈ R

Wi×H
i ×Ci, where i ∈ 1, 2, 3, 4.

In addition, the output of Auxi-Block is Oa ∈ RWa×Ha×Ca .
L-Fusion and H-Fusion refer to the concatenation of the
features produced by different blocks. We can implement
L-Fusion 1 directly as the same size features, but we must
construct a translation layer including a 1 × 1 convolution
and S × S pooling to translate the size and channels of the
low-level features for concatenation. Therefore, the output
of L-fusion and H-fusion can be expressed as Equation (2),
where cat in the four formulas implies concatenation.∣∣∣∣∣∣∣∣

OL−Fusion1 = cat (Oa,O1) ∈ RW1×H1×(Ca+C1)

OL−Fusion2 = cat (Oa,O2) ∈ RW2×H2×(Ca+C2)

OH−Fusion1 = cat (Oa,O3) ∈ RW3×H3×(Ca+C3)

OH−Fusion2 = cat (Oa,O4) ∈ RW4×H4×(Ca+C4)

∣∣∣∣∣∣∣∣ (2)

Take L-Fusion 1 as an example. We hypothesize that Auxi-
Block and Block 1 have L > 1 layers, from the 1st layer to
the Lth layer. Forward propagation can be computed in (3),
as shown at the bottom of the page.

When the outputs of Auxi-Block and Block 1 are concate-
nated, the fusion feature can be computed by Equation (4).
Concatenation means that one weight matrix is stacked on
another weight matrix; therefore, the loss of backward prop-
agation influences XL and X ′L independently. Namely, the loss
is propagated back to the input in two pipelines, and the input
is perceived by two self-governed blocks rather than a single
block.

Fusion = F
[
cat(XL ,X ′L) ∗ w+ b

]
(4)

B. MULTISCALE FEATURES
The convolution operation is a crucial element of deep learn-
ing structures since a number of filters slide across the input

image [33]; hence, the filters are pivotal for the convolution
operation. The larger a scale filter is, the larger the receptive
field is. In some cases, increasing the scale of the convolu-
tion filter indeed improves the classification accuracy. For
instance, many CNNs use a large filter, such as 11×11 [4] and
7×7 [5], in the first convolutional layer to increase the recep-
tive field. However, the large scale means more parameters.
For example, a single 7×7 convolution requires 72C2

= 49C2

parameters, whereas a single 3× 3 convolution requires only
32C2

= 9C2 parameters, where C is the number of channels
of the convolution. Additionally, [11] considered that a stack
of two 3× 3 convolutional layers (without spatial pooling in
between) has an effective receptive field of 5 × 5, and three
3×3 convolutional layers have an effective receptive field of
7 × 7. Hence, the 3 × 3 convolution is better than the 7 × 7
convolution or a larger scale convolution, and it is the most
common convolution in CNNs.

There are few networks that consist of a set of larger scale
convolutional layers entirely, such as 7×7 and 9×9. However,
visual information with various scales helps improve the
performance of CNNs. Therefore, we cannot discard large-
scale convolutions. We select 5 convolution scales, including
3 × 3, 5 × 5, 7 × 7, 5 × 3 ∪ 3 × 5 and 7 × 3 ∪ 3 × 7,
to extract the different scale features. We use the nonsquare
convolutions 5× 3∪ 3× 5 and 7× 3∪ 3× 7, where ∪means
implementing the 3× 5 convolution and 5× 3 convolution in
parallel, based on the observation that the objects in an image
can be rectangular.

Due to the small number of convolutional layers and the
few channels in each convolutional layer in the preceding
stages or blocks before the first downsampling, we stack
a series of convolutional layers with a large-scale filter to
construct a block rather than utilizing a single large-scale con-
volutional layer. The block not only ensures that we extract
different scale features but also adds fewer parameters, which
makes it the most different from other methods.

IV. EXPERIMENTAL RESULTS
In the first stage, according to the aforementioned definitions
in section 3, we design two networks, Net 1 and VGG-16-V,
based on the architectures of [13] and [11], respectively,
to address the two important problems: 1) whether the
fusion of multiscale features achieves better performance and
2) which scale feature is more effective. The configurations
of the two networks and the feature fusion strategies are
shown in Fig. 2 and Fig. 3, respectively. There are four

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X1 = F [Conv2d (X ∗ K1)+ b1]
... X ′1 = F

[
Conv2d

(
X ∗ K ′1

)
+ b′1

]
X2 = F [Conv2d (X1 ∗ K2)+ b2]

... X ′2 = F
[
Conv2d

(
X ′1∗
′

2

)
+ b′2

]
...

...
...

XL = F [Conv2d (XL−1 ∗ KL)+ bL]
... X ′L = F

[
Conv2d

(
X ′L−1 ∗ K

′
L

)
+ b′L

]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3)

VOLUME 9, 2021 70277

X. Yu et al.: Improving Performance of Convolutional Neural Networks by Fusing Low-Level Features

FIGURE 2. Feature fusion strategies for Net 1. We select Auxi-Blocks 1, 2, 3, 4 and 5 in turn to extract five different scale
features. Then, we use every feature to implement four feature fusion strategies. We ignore the first convolution layer of Net
1 and Auxi-Block.

FIGURE 3. Architecture of VGG-16-V, which is a variant of VGG-16. We also design the same features with different scales and the same
fusion strategies as Net 1. Note that the ‘‘Conv2d’’ layer shown in the figure corresponds to the sequence BN-ReLU-Conv2d.

feature fusion strategies at every scale, as shown in Fig. 1.
Hence, there are 20 feature fusion experiments in total for
a network. In the second stage, we select five networks,
DenseNet-BC (depth = 40), ALL-CNN-C (depth = 9),
Darknet 19 (depth = 19), Resnet 18 (depth = 18) and Resnet
50 (depth = 50), to verify the conclusions generated in the
first stage.

A. DATASETS
We evaluate the proposed fusion strategies in the first stage
on two standard benchmark datasets [36]: CIFAR10 and
CIFAR100. These datasets both contain 50K training images
and 10K test images, but they consist of 10 categories and
100 categories, respectively. We use all the 50K training

images for training without validation during the training
stage, and the 10K test images are used for testing during
the testing stage. We normalize the data using the channel
means and standard deviations as in [46]. During training,
we adopt a data augmentation scheme with random crop-
ping, random horizontal flips and normalization [47], which
has been widely used for the two datasets [11], [12], [19]
to obtain two augmented datasets that we call CIFAR10+
and CIFAR100+, respectively. During testing, we only nor-
malize the data by using the channel means and standard
deviations [47].

We adopt the ILSVRC 2012 classification dataset [45],
which consists of 1.2 million images for training and
50,000 for validation from 1,000 classes, to further validate

70278 VOLUME 9, 2021

X. Yu et al.: Improving Performance of Convolutional Neural Networks by Fusing Low-Level Features

TABLE 1. Configurations of Net 1, Net 2 and Net 3. Note that the ‘‘Conv2d’’ layer shown in the table corresponds to the sequence BN-ReLU-Conv2d except
for the first convolutional layer. We build Net 2 and Net 3 to determine whether the large scale of the feature itself or the fusion strategy of multiscale
features attains better performance. We only modify the first convolutional layer and the structure of Block 1 to construct Net 2 and Net 3. With the
application of a large-scale convolution, the receptive fields of Net 2 and Net 3 are larger than that of Net 1.

the effectiveness of our proposed method. We use the training
set during the training stage and report the classification
errors on the validation set. During training, we randomly
crop the size of the training images to 224 × 224 and
exploit random horizontal flips and normalization (mean =
[0.485,0.456,0.406], std = [0.229,0.224,0.225]). We do not
leverage scale augmentation and standard color augmenta-
tion. During testing, we adopt standard single-crop testing
and apply a center crop to resize the validation images to
224× 224 only.

B. TRAINING
We implement these proposed networks on the PyTorch
framework and two NVIDIA GeForce RTX 2080 GPUs. The
weight initialization strategy is also introduced in [37]. For
CIFAR10 and CIFAR100, all the networks are trained using
stochastic gradient descent (SGD), cross-entropy loss and the
ReLU. The weight decay, momentum and initial learning rate
are set to 0.0001, 0.9 and 0.1, respectively. All the models
are trained for 300 epochs, the learning rate is divided by
10 at the 150th and 225th epochs, and the batch size is
256. Based on Darknet 19 [42], Resnet 18 [12] and Resnet
50 [12], we implement a fusion operation on the ILSVRC
2012 classification dataset and train the three networks and
their correspondingly modified networks only for 90 epochs
with stochastic gradient descent (SGD), cross-entropy loss
and ReLU. For Darknet 19 [42], leaky ReLU (negative slope
equals 0.1) replaces ReLU. The initial learning rate is set
to 0.1 and is divided by 10 at the 30th, 60th and 75th epochs.
The weight decay and momentum are set to 0.0001 and
0.9, respectively. Due to the limitation of the GPU memory,
the batch size is set to 64.

TABLE 2. Classification error (%) and parameters (M) for CIFAR10+ and
CIFAR100+ using Net 1, Net 2 and Net 3. Because of employing a larger
scale convolution, Net 2 and Net 3 have more parameters than Net 1, but
Net 2 and Net 3 have lower classification accuracy. Hence, for the CIFAR
dataset, a larger scale convolution is not necessary for improving the
performance of CNNs.

C. CLASSIFICATION RESULTS OF NET 1 AND VGG-16-V
We construct two CNNs, Net 1 and VGG-16-V, to implement
the feature fusion strategies. The input image size is 32× 32
and is RGB, which is the same as the images of CIFAR10 and
CIFAR100.

Net 1, which is inspired by the architecture of [19], consists
of 45 convolutional layers, and we build its variants Net 2
and Net 3. One of our purposes of this paper is to study
the advantage of multiscale feature fusion, but we also seek
to answer whether large-scale feature or multiscale feature
fusion increases performance more. Therefore, we construct
Net 2 and Net 3 to observe the performance of the large fea-
tures. Their configurations are shown in Table 1. Except for
the different convolutions in the first block, the other settings
are the same in Net 1, Net 2 and Net 3. The convolutions of
the first block are 3 × 3, 5 × 5 and 7 × 7, respectively. The
results are shown in Table 2.

We construct another network based on VGG-16 [11],
which is a famous network that has been widely utilized for

VOLUME 9, 2021 70279

X. Yu et al.: Improving Performance of Convolutional Neural Networks by Fusing Low-Level Features

TABLE 3. Parameters (M) on CIFAR10+ and CIFAR100+. Based on Net 1, we compare the four fusion strategies with the five features extracted from
different Auxi-Blocks. Fusing Auxi-Block into Net 1 does not dramatically increase the number of parameters, even if Auxi-Block uses a larger scale
convolution: 7× 7 convolution.

TABLE 4. Classification error (%) on CIFAR10+ and CIFAR100+. The results that are better than those of Net 1 are in blue and bolded. All L-Fusions
improve the performance of Net 1. However, most H-Fusions decrease the classification accuracy of Net 1.

TABLE 5. Parameters (M) on CIFAR10+ and CIFAR100+. Using VGG-16-V, we compare the four fusion strategies with five types of features. We find that
H-Fusion has more parameters than L-Fusion, and the increase in parameters is more obvious as the number of channels increases.

other CNNs, such as in [34] and [35]. Because of its good
classification performance, we chose VGG-16 to implement
the proposed methods. We use only one fully connected layer
rather than three fully connected layers, and we call this
VGG-16 variant VGG-16-V, as shown in Fig. 3.

Based on the Net 1 and VGG-16-V architectures,
we design four fusion strategies, and each strategy lever-
ages five features at five scales. The details of the two net-
works and configurations are shown in Fig. 2 and Fig. 3,
respectively. We select the 3 × 3 convolution; two larger
size convolutions, 5 × 5 and 7 × 7; and two unconven-
tional convolutions, 5 × 3 ∪ 3 × 5 and 7 × 3 ∪ 3 × 7.
We do not use much larger convolutions, such as 9 × 9 and
11× 11, due to the considerable increases in the numbers of
parameters.

Table 4 shows the classification errors of the four
fusion strategies when the features extracted from different
Auxi-Blocks are concatenated with the features generated
from the different blocks of Net 1. Comparing the second
column and the fourth column of Table 2, we find that
all L-Fusion strategies improve the performance for both
CIFRA10+ and CIFRA100+. On CIFAR10+, the best result
shows that we reduce the error by 1.12% by adding the
5×5 convolution. On CIFRA100+, we improve the accuracy
by 2.79% compared to the best result by using the 5 × 5

convolution. However, in terms of most H-Fusion strate-
gies, multiscale feature fusion has no effect. Furthermore,
the H-Fusion strategies lead to much worse results.

For VGG-16-V, the results of the experiments are shown
in Table 6. Similarly, we find that all L-Fusion strate-
gies can improve the performance for both CIFRA10+ and
CIFRA100+. Furthermore, most H-Fusion strategies lead to
poor performance. In terms of the best result, on CIFRA10+,
we reduce the error by 1.59% by using the 7 × 3 ∪ 3 × 7
convolution. In addition, on CIFRA100+, we improve the
accuracy by 3.3% compared to the best result by adding the
7× 3 ∪ 3× 7 convolution.

D. FUSION OPERATION
From Table 4 and Table 6, we find that all L-Fusion strategies
result in better performance. Specifically, multiscale low-
level feature fusion can remarkably improve the performance
of CNNs. We consider these results to have very important
statistical meaning. Moreover, we do not find that the non-
square convolutions, 5 × 3 ∪ 3 × 5 and 7 × 3 ∪ 3 × 7, are
notably better than the square convolutions, 3× 3, 5× 5 and
7 × 7. To take advantage of multiscale feature fusion and to
keep as few parameters as possible, we select only the 5× 5
convolution to extract different low-level features for feature
fusion.

70280 VOLUME 9, 2021

X. Yu et al.: Improving Performance of Convolutional Neural Networks by Fusing Low-Level Features

TABLE 6. Classification error (%) on CIFAR10+ and CIFAR100+. The results that are better than those of VGG-16-V are in blue and bolded. The results
show the same pattern as Table 4. All L-Fusions are beneficial for performance, but most H-Fusions hinder performance.

TABLE 7. CR denotes a nonlinear activation operation, Conv2d (1× 1)-ReLU; Sum represents an elementwise summation and Cat means a channelwise
concatenation. All the results are implemented in the VGG-16-V and L-Fusion 1 architectures discussed in subsection C.

As we discussed above, feature fusion is very important
for enhancing the performance of CNNs. In all the aforemen-
tioned experiments, we apply channelwise concatenation to
perform the feature fusion operation. Nevertheless, there is
another principal fusion operation: channelwise summation.
In this study, we harness the two operations to research
which style is more suitable for the method we proposed
and implement the two operations in VGG-16-V. Simultane-
ously, we emulated amultilayer perceptron (MLP) introduced
by [19]. Following two fusion operations, we also implement
a nonlinear activation operation: a 1 × 1 convolutional layer
followed by a ReLU function. The results of the experiments
are shown in Table 7.

As depicted in Table 7, by integrating the CR operation,
concatenation and summation were observed to improve per-
formance. This result illustrated that the CR operation is
helpful for improving performance. Moreover, the concate-
nation outperforms the elementwise summation, especially
on CIFAR100+. We considered that the features extracted by
different blocks are discriminative and independent. Elemen-
twise summation will mutually disturb features, while con-
catenation can maintain the independence between features.
Hence, we suggest using Concatenation + CR fusion oper-
ations and implementing these operations on the subsequent
verification networks.

E. CLASSIFICATION RESULTS OF FIVE VERIFICATION
NETWORKS
To further support our hypotheses, we verify the fusion strat-
egy on DenseNet-BC (depth = 40) [13] and ALL-CNN-C
(depth = 9) [15] due to their different depths and high
classification accuracy. We select the CIFAR dataset to eval-
uate the classification performance. The configurations of

TABLE 8. We modify the architectures of DenseNet-BC (depth = 40) and
ALL-CNN-C (depth = 9) by adding the same number of convolutional
layers (the bold parts) in the first stage of the two networks. We select the
5× 5 convolution to obtain large-scale features and then implement the
L-Fusion strategy. We concatenate the features generated by Block 1 and
Auxi-Block and then implement Concatenation + CR fusion operations.

the two verification networks are shown in Table 8, and the
results are shown in Table 9. Because the transition layer of
Block 1 of DenseNet-BC has the same function as Concate-
nation + CR fusion operations, we delete it.
From Table 9, we find that the approach we proposed

significantly improves the performance of DenseNet-BC
and ALL-CNN-C. On CIFAR10+, we improve the accu-
racy of DenseNet-BC and ALL-CNN-C by 0.76% and
1.15%, respectively. On CIFRA100+, we reduce the error
of DenseNet-BC and ALL-CNN-C by 2.25% and 4.68%,
respectively. Although the number of parameters has
increased greatly, the computational cost is very low.

We select the ILSVRC 2012 classification dataset to
observe the applicability of the proposed approach to a larger

VOLUME 9, 2021 70281

X. Yu et al.: Improving Performance of Convolutional Neural Networks by Fusing Low-Level Features

TABLE 9. Error rates (%) and parameters (M) on the CIFAR datasets. The results show that fusing different scale low-level features in the preceding stage
of the two networks can dramatically improve the performance. The classification accuracy of the modified DenseNet-BC (40) outperforms the
classification accuracy of ResNet-110 but with fewer convolutional layers and parameters.

TABLE 10. Parameters (M) and error (%, single-crop testing) on ImageNet validation. During the training stage, the input size of these six networks is
224× 224. During the testing stage, we only adopt single-crop testing and obtain the classification errors at a single size: 224× 224. The bold black parts
show the structures added for feature fusion. Because of the simple parallel structure added, Darknet-19-Fusion has better results than Darknet 19.
Similarly, by appending a parallel block in the preceding stage, Resnet-18-Fusion and Resnet-50-Fusion have significantly better results than Resnet
18 and Resnet 50.

dataset. Darknet 19 [42], Resnet 18 [12] and Resnet 50 [12]
have good performance on the ILSVRC 2012 classifica-
tion dataset and have different numbers of convolutional
layers. Based on the L-Fusion 1 architecture, we append
an Auxi-Block to the three networks to construct Darknet-
19-Fusion, Resnet-18-Fusion and Resnet-50-Fusion, and the
specific structures are shown in Table 10. We only show the
changes brought to these three networks by the proposed
method, and the remaining architectures of these three net-
works remain unchanged. We append two parallel 5 × 5
convolutional layers to form Darknet-19-Fusion, and we add
one parallel block that replaces the 7× 7 convolutional layer
and all 3 × 3 convolutional layers with a 5 × 5 convolu-
tional layer to form Resnet-18-Fusion and Resnet-50-Fusion.
The classification results are shown in Table 10. We find
that the performance of Darknet 19 has been slightly

improved by only adding two parallel convolutional lay-
ers and concatenation + CR fusion operations. Similarly,
by appending a parallel block in the preceding stage, Resnet-
18-Fusion and Resnet-50-Fusion have significantly better
results than Resnet 18 and Resnet 50. For Resnet-18-Fusion,
we improve the top-1 accuracy and top-5 accuracy by 1.59%
and 0.96%, respectively. In terms of Resnet-50-Fusion,
we reduce the top-1 error and top-5 error by 0.4% and 0.6%,
respectively.

F. APPLICABILITY
The residual block [38], dense block [13] and inception
module [11] are fundamental components used to construct
high-performing architectures, especially the first design.
These three layouts fuse features on a layer basis. The residual

70282 VOLUME 9, 2021

X. Yu et al.: Improving Performance of Convolutional Neural Networks by Fusing Low-Level Features

block and dense block integrate the features extracted from a
certain layer in front with the features extracted from the lay-
ers behind, and the inception module exploits multiple filters
in a layer to represent the features. Nevertheless, we consider
fusing the features extracted from different blocks, and the
fusing operation is only used in the preceding stages of CNNs.
This approach provides the most discrimination between the
state-of-the-art method and our method.

In this paper, one of the intentions is to study whether the
fusion of low-level features at different scales into different
stages of a CNN improves its performance. The experimen-
tal results show that L-Fusion is helpful for enhancing the
performance of CNNs. Moreover, by applying the L-Fusion
1 structure, which is shown in Fig. 1, to five verification
networks, we further verify our conclusions. The Auxi-Block
shown in Fig. 4 is easy to build and only adds a small
overhead over themodel parameters and computation. Hence,
our method can update some off-the-shelf networks by elab-
orately designing the structure we proposed. We suggest
building an Auxi-Block according to the structure of the first
block of a CNN; however, we cannot ensure that our approach
will work when the first block has too many convolutional
layers.

FIGURE 4. Proposed architecture. Auxi-Block and Block 1 are two parallel
blocks. In terms of an off-the-shelf network, we can improve its
performance simply by adding an Auxi-Block that has the same
architecture as Block 1, except for a different scale convolution. The
fusion operation coincides with the human retina mechanism introduced
in [28], which considered that there are two types of ganglion cells with
respect to the receptive field.

G. RESULTS ANALYSIS
CNNs can learn a hierarchy of features [39]. CNNs represent
the low-level features that are visually recognizable in the
preceding stage and represent the high-level features that are
semantically recognizable in subsequent stages. L-Fusion can
lead CNNs to learn low-level features with different scales.
Extracting multiscale low-level features is why L-Fusion can
enhance performance. The results shown in Tables 4, 6, 9 and
10 confirm this conclusion. Additionally, the effect of dense
connectivity [13] is another reason that L-Fusion improves
performance.

High-level features are gradually learned from low-level
features [30]. According to the high-level features, the net-
work can determine the object in an image. We consider that
the semantically recognizable features will be turbulent if
we fuse the low-level features with the high-level features
for inference. Namely, the fused high-level features include
strong andweak semantic features simultaneously. Therefore,
H-Fusion will result in poor performance, and its results are
shown in Table 4 and Table 6.

V. CONCLUSION
In this paper, we divide a CNN into different blocks according
to the size of the features to obtain low-level and high-level
features for feature fusion. We design two fusion strategies,
L-Fusion and H-Fusion, to assess the influence of feature
fusion at different stages. We select five low-level features
with different scales to determine the advantage of multiscale
feature fusion. L-Fusion, which fuses a low-level feature with
different scales extracted from an auxiliary block to the low-
level features extracted by a CNN, is observed to improve
performance. The auxiliary block can be built according to
the structure of the first block of a CNN. We validate the
conclusion on five CNNs with high classification accuracy,
and the experimental results show that our method achieves
state-of-the-art performance. Simultaneously, the proposed
architecture will not substantially increase the parameter of
a CNN because the fusion operation takes place in the pre-
ceding stage.

1 https://github.com/KaimingHe/deep-residual-networks/
blob/master/README.md#results

2 https://github.com/facebookarchive/fb.resnet.torch

REFERENCES
[1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,

W. Hubbard, and L. D. Jackel, ‘‘Backpropagation applied to handwrit-
ten zip code recognition,’’ Neural Comput., vol. 1, no. 4, pp. 541–551,
Dec. 1989.

[2] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[3] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, ‘‘Fully convolutional instance-
aware semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 4438–4446.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[5] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
‘‘OverFeat: Integrated recognition, localization and detection using con-
volutional networks,’’ in Proc. Comput. Vis. Pattern Recognit., 2013,
pp. 1–16.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[7] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[9] Z. Song, Y. Liu, R. Song, Z. Chen, J. Yang, C. Zhang, and Q. Jiang,
‘‘A sparsity-based stochastic pooling mechanism for deep convolutional
neural networks,’’ Neural Netw., vol. 105, pp. 340–345, Sep. 2018.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[11] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks
for large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online].
Available: https://arxiv.org/abs/1409.1556

[12] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[13] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

VOLUME 9, 2021 70283

X. Yu et al.: Improving Performance of Convolutional Neural Networks by Fusing Low-Level Features

[14] Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies
with gradient descent is difficult,’’ IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157–166, Mar. 1994.

[15] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, ‘‘Striv-
ing for simplicity: The all convolutional net,’’ 2014, arXiv:1412.6806.
[Online]. Available: http://arxiv.org/abs/1412.6806

[16] X. Glorot, A. Bordes, and Y. Bengio, ‘‘Deep sparse rectifier neural net-
works,’’ in Proc. 14th Int. Conf. Artif. Intell. Statist. (AISTATS), vol. 15,
2011, pp. 315–323.

[17] Z. Shi, Y. Ye, and Y. Wu, ‘‘Rank-based pooling for deep convolutional
neural networks,’’ Neural Netw., vol. 83, pp. 21–31, Nov. 2016.

[18] G. Xie, K. Yang, T. Zhang, J. Wang, and J. Lai, ‘‘Balanced decoupled
spatial convolution for CNNs,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 11, pp. 3419–3432, Nov. 2019.

[19] M. Lin, Q. Chen, and S. Yan, ‘‘Network in network,’’
2013, arXiv:1312.4400. [Online]. Available: https://arxiv.
org/abs/arXiv:1312.4400

[20] Y. Pang, M. Sun, X. Jiang, and X. Li, ‘‘Convolution in convolution for
network in network,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 5,
pp. 1587–1597, May 2018.

[21] W. Shi, Y. Gong, X. Tao, D. Cheng, and N. Zheng, ‘‘Fine-grained image
classification using modified DCNNs trained by cascaded softmax and
generalized large-margin losses,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 3, pp. 683–694, Mar. 2019.

[22] W. Shi, Y. Gong, X. Tao, and N. Zheng, ‘‘Training DCNN by combining
max-margin, max-correlation objectives, and correntropy loss for multil-
abel image classification,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29,
no. 7, pp. 2896–2908, Jul. 2018.

[23] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448.

[24] Z. Qiumei, T. Dan, and W. Fenghua, ‘‘Improved convolutional neural
network based on fast exponentially linear unit activation function,’’ IEEE
Access, vol. 7, pp. 151359–151367, 2019.

[25] X. Zou, Z. Wang, Q. Li, and W. Sheng, ‘‘Integration of residual network
and convolutional neural network along with various activation func-
tions and global pooling for time series classification,’’ Neurocomputing,
vol. 367, pp. 39–45, Nov. 2019.

[26] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolutional
networks,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 818–833.

[27] J. Zheng, X. Cao, B. Zhang, X. Zhen, and X. Su, ‘‘Deep ensemble machine
for video classification,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 2, pp. 553–565, Feb. 2019.

[28] K. Uchida, M. Tanaka, and M. Okutomi, ‘‘Coupled convolution layer
for convolutional neural network,’’ Neural Netw., vol. 105, pp. 197–205,
Sep. 2018.

[29] Y. Hu, A. Soltoggio, R. Lock, and S. Carter, ‘‘A fully convolutional two-
stream fusion network for interactive image segmentation,’’ Neural Netw.,
vol. 109, pp. 31–42, Jan. 2019.

[30] X. Jiang, Y. Pang, M. Sun, and X. Li, ‘‘Cascaded subpatch networks for
effective CNNs,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7,
pp. 2684–2694, Jul. 2018.

[31] H. Wang, L. Dai, Y. Cai, X. Sun, and L. Chen, ‘‘Salient object detec-
tion based on multi-scale contrast,’’ Neural Netw., vol. 101, pp. 47–56,
May 2018.

[32] C. Xu, X. Wang, and Y. Yang, ‘‘Selective multi-scale feature learn-
ing by discriminative local representation,’’ IEEE Access, vol. 7,
pp. 127327–127338, 2019.

[33] M. Sarıgül, B. M. Ozyildirim, and M. Avci, ‘‘Differential con-
volutional neural network,’’ Neural Netw., vol. 116, pp. 279–287,
Aug. 2019.

[34] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[35] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer, 2016,
pp. 21–37.

[36] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
Univ. Toronto, Toronto, ON, Canada, 2012, pp. 54–57.

[37] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Dec. 2015,
pp. 1026–1034.

[38] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Identity mappings in deep residual
networks,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2016, pp. 630–645.

[39] T. Nitta, ‘‘Resolution of singularities introduced by hierarchical structure
in deep neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 28,
no. 10, pp. 2282–2293, Oct. 2017.

[40] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2999–3007.

[41] S. Soleymani, A. Dabouei, H. Kazemi, J. Dawson, and N. M. Nasrabadi,
‘‘Multi-level feature abstraction from convolutional neural networks for
multimodal biometric identification,’’ in Proc. 24th Int. Conf. Pattern
Recognit. (ICPR), Aug. 2018, pp. 3469–3476.

[42] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6517–6525.

[43] R. Ranjan, V. M. Patel, and R. Chellappa, ‘‘HyperFace: A deep multi-
task learning framework for face detection, landmark localization, pose
estimation, and gender recognition,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 1, pp. 121–135, Jan. 2019.

[44] S. Zhao, Y. Liu, Y. Han, R. Hong, Q. Hu, and Q. Tian, ‘‘Pooling the
convolutional layers in deep ConvNets for video action recognition,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 8, pp. 1839–1849,
Aug. 2018.

[45] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ‘‘Ima-
geNet large scale visual recognition challenge,’’ 2014, arXiv:1409.0575.
[Online]. Available: https://arxiv.org/abs/1409.0575

[46] R. K. Srivastava, K. Greff, and J. Schmidhuber, ‘‘Training very deep
networks,’’ 2015, arXiv:1507.06228. [Online]. Available: https://arxiv.org/
abs/1507.06228

[47] G. Pleiss, D. Chen, G. Huang, T. Li, L. van der Maaten,
and K. Q. Weinberger, ‘‘Memory-efficient implementation of
DenseNets,’’ 2017, arXiv:1707.06990. [Online]. Available:
http://arxiv.org/abs/1707.06990

[48] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, ‘‘Aggregated residual
transformations for deep neural networks,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5987–5995.

[49] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P. Torr,
‘‘Res2Net: A newmulti-scale backbone architecture,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 43, no. 2, pp. 652–662, Feb. 2021.

[50] J. Hu, L. Shen, G. Sun, and S. Albanie, ‘‘Squeeze-and-excitation net-
works,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit. (CVPR), 2018,
pp. 7132–7141.

[51] X. Zhang, Z. Li, C. C. Loy, and D. Lin, ‘‘PolyNet: A pursuit of structural
diversity in very deep networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 3900–3908.

[52] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[53] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,
inception-ResNet and the impact of residual connections on learning,’’ in
Proc. AAAI Conf. Artif. Intell., 2017, pp. 1–7.

[54] K. Sun, B. Xiao, D. Liu, and J.Wang, ‘‘Deep high-resolution representation
learning for human pose estimation,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 5686–5696.

XIAOHONG YU received the B.S. degree in power
machinery and engineering from the Hebei Uni-
versity of Technology, Tianjin, China, in 2015.
He is currently pursuing the Ph.D. degree with
Sichuan University, Chengdu, China. His research
interests include machine vision, vehicle/traffic
intelligence technology, deep learning manufac-
turing logistics, and planning control.

70284 VOLUME 9, 2021

X. Yu et al.: Improving Performance of Convolutional Neural Networks by Fusing Low-Level Features

WEI LONG received the B.S. and M.S. degrees
in aeroengine control engineering from North-
western Polytechnical University, and the Ph.D.
degree in mechanical manufacturing and automa-
tion from Sichuan University, Chengdu, China,
in 1998. He is currently a Professor with Sichuan
University. He has published about 130 articles
in domestic and international journals and con-
ferences. He has presided over or participated in
more than 50 scientific research projects, pub-

lished eight academic works, and obtained five invention patents. His
research interests include industrial equipment automation and numerical
control technology, mechanical equipment safety evaluation and reliability
analysis, enterprise information control, vehicle/traffic intelligence technol-
ogy, manufacturing logistics, and planning control.

YANYAN LI received the Ph.D. degree from
Sichuan University. She has published about
16 articles in intelligence transportation system
and obtained five invention patents. Her research
interests include machine vision, vehicle/traffic
intelligence technology, deep learning manufac-
turing logistics, and planning control.

XIAOQIU SHI received the B.S. and M.S. degrees
from the School of Manufacturing Science and
Engineering, Southwest University of Science and
Technology, Mianyang, China, in 2010 and 2015,
respectively. He is currently pursuing the Ph.D.
degree with Sichuan University, Chengdu, China.
His research interests include intelligent algorithm
and complex networks.

LIN GAO (Member, IEEE) received the B.S.
degree in material forming and control engineer-
ing from the Huazhong University of Science and
Technology, Wuhan, China, in 2002, and the M.S.
degree in control engineering from the Wuhan
University of Technology, Wuhan, in 2007. He is
currently pursuing the Ph.D. degree with Sichuan
University, Chengdu, China. He is currently an
Associate Professor with Hubei Minzu University,
Enshi, China. His research interests include digital

image processing, deep learning, and embedded systems.

VOLUME 9, 2021 70285

