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ABSTRACT Minimum redundancy array (MRA) has the maximum aperture with continuous difference
co-array among various sparse arrays with same number of physical sensors, but it is hard to calculate the
sensor position ofMRA and realize array design by usingMRA. To solve those problem, generalizedMRA is
proposed with mutual coupling limitation and easy calculation method of sensor position. Based on proposed
array configuration, a high-precision underdetermined direction of arrival (DOA) estimation method is
proposed with reduced computational complexity. In this method, fast covariance matrix reconstruction
is achieved by trace norm minimization with more accurate covariance estimation. Based on the Toeplitz
property of covariance matrix in uniform array, a new sparse representation model is established with
reduced dimension of covariance vector and faster DOA estimation is achieved via convex optimization.
In addition, the proposed method can also be used for underdetermined DOA estimation of other sparse
arrays. Using simulation experiments, we demonstrate that the proposed sparse array configuration has
superiority over other sparse arrays and the proposed method can outperformmost existing methods in terms
of underdetermined DOA estimation accuracy and efficiency.

INDEX TERMS Underdetermined DOA estimation, sparse array, minimum redundancy array, matrix
reconstruction, sparse reconstruction.

I. INTRODUCTION
Recently, direction of arrival (DOA) estimation based on
sparse array has been widely studied in multiple input mul-
tiple output (MIMO) radar [1], [2] and underwater acoustic
scenarios [3], [4] for the reason that sparse array can achieve
DOA estimation with more signals than sensors. Although
minimum redundancy array (MRA) [5] is able to deal with
more sources than sensors, there is usually no corresponding
MRA structure under some aperture, so it is difficult to
realize the array design by using MRA. Lately, several new
sparse array structures with closed form expression were pro-
posed, such as the nested array (NA) [6], [7], coprime array
(CPA) [8]– [10], generalized coprime array (GCPA) [11],
super nested array (SNA) [12], generalized nested array
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(GNA) [13] and their combinations [14]. However, these
sparse arrays all have less consecutive virtual sensors in the
difference co-array [15]–[18] than the MRA under the same
number of physical sensors while the number of consecutive
virtual sensors is the main factor of underdetermined DOA
estimation performance. Hence, we extend the definition of
the MRA and propose a new array geometry of generalized
minimum redundancy array (GMRA) with high degrees of
freedom and low coupling effect. The proposed array is more
suitable for array designing than the MRA.

Underdetermined DOA estimation of sparse array can be
achieved by using sparsity-based methods. Based on the basis
pursuit de-noising and sparse recovery, Malioutov combined
singular value decomposition (SVD) with L1-norm function
to provide the new estimator called L1-SVD [19] and it can
reduce the computational burden via SVD. Based on [19],
Yin introduced the idea of sparse representation of array
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covariance vector (SRACV) and proposed a new method
called L1-SRACV [20]. Liu proposed a DOA estima-
tion method named covariance matrix sparse representa-
tion (CMSR) with L1-norm [21] by sparsely representing the
half elements of the vectorization of covariance matrix with
error constraint. Zhou proposed a sparsity-based DOA esti-
mator for sparse array by minimizing the difference between
the spatially smoothed covariance matrix and the sparsely
reconstructed covariance matrix [22]. Wu then proposed
another two DOA estimators for off-grid signals [23], [24].
Although plenty of sparsity-based estimators have also been
proposed above to improve the estimation accuracy, many of
them suffer from the inaccurate covariance matrix because of
limited number of snapshots. So we introduce the covariance
matrix reconstruction into the sparsity-based DOA estimator
to achieve more accurate DOA estimation in this paper.

Based on the difference co-array, spatial smoothing
MUSIC (SS-MUSIC) [25] has been carried out which is in
fact the reconstruction of elements in covariance matrix of
sparse array based on the Toeplitz characteristic of covari-
ance matrix in uniform array as explained in [26], [27].
Covariance matrix interpolation approach (CMIA) has also
been carried out with nuclear norm minimization by inter-
polating additional sensors to the discontinuous different co-
array [28]–[33] and make full use of all difference co-array
output while SS-MUSIC can only use the continuous part.
Covariance matrix reconstruction approach (CMRA) [34]–
[37] was proposed via low rank matrix de-noising frame-
work [38] with error constraint. All methods aforementioned
can achieve accurate covariance matrix estimation by nuclear
norm minimization. However, their computational burden
is much heavy, so we reduce the constraints and solve the
norm minimization problem by closed form solution. The-
oretical analysis and simulation experiments are carried out
to demonstrate the advantages of the proposed sparse array
configuration and algorithm.

The main contributions of this paper as follows.

1) We put forward a new sparse array configuration based
onminimum redundancy array, called generalizedmin-
imum redundancy array (GMRA) with high degrees of
freedom and low coupling effect.

2) We propose a fast and accurate covariance matrix esti-
mation method with closed-form expression based on
matrix reconstruction and linear equation system.

3) We introduce covariance matrix reconstruction into
sparsity-based DOA estimator for underdetermined
DOA estimation with high precision.

Notations: Through this paper, scalars, vectors, matrices,
and sets are denoted by lowercase letters, lowercase letters in
boldface, uppercase letters in boldface, and letters in black-
board, respectively. E[•] and vec(•) mean the expectation
and vectorization operator, respectively. The superscripts †,
*, T, and H denote the Pseudo inverse, conjugate, transpose,
and conjugate transpose, respectively. The symbol ⊗ repre-
sents Kronecker product. The rank norm, L1-norm, L2-norm,

nuclear norm, trace norm, and Frobenius norm are respec-
tively denoted by ‖‖0, ‖‖1, ‖‖2, ‖‖∗, ‖‖T , and ‖‖F .
The remainder of this paper is organized as follows.

In Section II, the generalized minimum redundancy array
is proposed. In Section III, original covariance matrix
reconstruction is solved with fast calculation method and
high-precision underdetermined DOA estimation is achieved
with the proposed original covariance vector sparse repre-
sentation (OCVSR). In Section IV, performance analysis is
carried out. In Section V, simulation experiments are carried
out to test the advantages of the proposed sparse array config-
uration and algorithm. We make conclusions in Section VI.

II. SPARSE ARRAY DESIGN
Sparse arrays can be regarded as the sparse selection of
uniform arrays, so there is a corresponding uniform arraywith
same aperture for each sparse array and the corresponding
uniform array is called as original uniform array.

A. SPARSE ARRAY MODEL
The locations of the original uniform array with M physical
sensors can be given as

PU = {ud, 0 ≤ u ≤ M − 1}

= {pu1, pu2, · · · , puM } (1)

where d = λ0/2 stands for the minimum spacing between
sensors and λ0 is the wavelength of carrier. Pui means the
position of the ith sensor in original uniform linear array.
With coprime integersM1 andM2, the sensors of CPA and

GCPA are positioned at

PCPA = {M1n2d, 0 ≤ n2 ≤ M2 − 1}

∪ {M2n1d, 1 ≤ n1 ≤ M1 − 1} (2)

PGCPA = {M1n2d, 0 ≤ n2 ≤ M2 − 1}

∪ {M2n1d, 1 ≤ n1 ≤ 2M1 − 1} (3)

Just like the descriptions in [12], NA and SNAwith integers
N1 and N2 are located at

PNA = {n1d, 0 ≤ n1 ≤ N1−1}

∪ {((N1 + 1) n2−1) d, 1 ≤ n2 ≤ N2} (4)

PSNA = P1 ∪ P2 ∪ P3 ∪ P4 ∪ {(N2 (N1 + 1)− 2) d}

∪ {(l (N1 + 1)−1) d, 2 ≤ l ≤ N2} (5)

where
P1 = {2ld, 0 ≤ l ≤ F1}

P2 = {(N1 − 2l − 1) d, 0 ≤ l ≤ F2}

P3 = {(N1 + 2+ 2l) d, 0 ≤ l ≤ F3}

P4 = {(2N1 − 2l − 1) d, 0 ≤ l ≤ F4}
F1
F2
F3
F4

 =

[r, r − 1, r − 1, r − 2] , N1 = 4r

[r, r − 1, r − 1, r − 1] , N1 = 4r + 1

[r + 1, r − 1, r, r − 2] , N1 = 4r + 2

[r, r, r, r − 1] , N1 = 4r + 3

(6)
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FIGURE 1. An Example for the sensors position of sparse array and corresponding original uniform array, difference
co-array, weight function, Including CPA, GCPA, NA, SNA, MRA and GMRA.

There is one example for the four sparse array above with
N1 = N2 = 5 and M1 = 5, M2 = 6 or M2 = 3 as illustrated
in Fig.1.

The sensor positions of sparse linear array with S physical
sensors are

PS = {ps1 = 0, ps2, · · · , psS} (7)

Definition 1 (Difference Co-Array): For a sparse array, its
difference co-array PD is defined as

PD =
{
psi − psj=md

}
, ∀i, j = 1, 2, · · · S (8)

Closed-form expressions for mutual coupling matrix CS
in [39], [40]

Cij =

{
c|i−j| |i− j| ≤ mmax

0 |i− j| > mmax
(9)

where i, j ∈ {1, 2, · · · , S} and mutual coupling coefficients
c0, c1, · · · , cmmax satisfy 1 = |c0| > |c1| > · · · >

∣∣cmmax

∣∣.
mmax is the max sensor spacing with coupling effect.

The difference co-array set which contains all pairs(
psi, psj

)
contributing to the difference co-array is

M(m) =
{(
psi, psj

)
∈ P2

S |psi − psj = md
}

(10)

Definition 2 (Weight Function): The weight function is
defined as the number of sensor pairs that lead to difference
co-array index m, which is exactly the cardinality ofM (m)

w (m) = |M (m)| , md ∈ PD (11)

The illustration of corresponding difference co-array and
weight function of sparse array are also illustrated in Fig.1.

The aperture of original uniform array is equal to the
aperture of sparse array, that means psS=puM .
Based on the sensors position of sparse array and cor-

responding original uniform array, we can get the selective
matrix 0 ∈ RS×M whose row can be calculated as follows,

0{:,i} =

{
0S×1 pui /∈ PS
ρj pui ∈ PS

(12)

where ρj is unit vector in which the jth element is 1 if
pui = psj.

B. GENERALIZED MINIMUM REDUNDANCY ARRAY
As illustrated in Fig.1, NA, SNA and MRA are fully aug-
mentable array (FAA) [41] which are hole-free in difference
co-array, while there are some holes in difference co-array
of partially augmentable arrays (PAA) [42], like CPA and
GCPA.

For a given number of elements, the sensor locations of
MRA are chosen such that the covariance matrix will contain
entries with minimum redundancy which means minimum
possible repeatable entries. The redundancy of sparse array
is

Re =
S (S − 1) /2

ρmax
(13)

where ρmax is the ratio of aperture to unit spacing d . There are
no holes in difference co-array of MRA and the redundancy
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TABLE 1. Aperture of MRAs under different number of sensors.

of MRA is minimum under the same number of physical
sensors.

The DOA estimation accuracy and degrees of free-
dom (DOFs) mainly depend on the array aperture, so we
need to design the array configuration under a given aperture.
However the aperture of MRA is discontinuous as illustrated
in Table 1 and there are no MRA structure under many
aperture, so it is hard to apply the structure of MRA in
array design. To find the sparse linear arrays with minimum
redundancy of arbitrary aperture, we extend the definition
of MRA and propose the concept of generalized minimum
redundancy criterion.
Definition 3 (Generalized Minimum Redundancy Array):

Generalized Minimum Redundancy Array (GMRA) is the
FAA with minimum redundancy and the least mutual cou-
pling effect under the same aperture.

Based on the formula (9), the mutual coupling of sen-
sors mainly depends on the physical element spacing and
decreases sharply with the increase of the element spacing.
So we can compare the mutual coupling effect of different
sparse arrays by comparing their weight function.

The calculation steps of sensor position in GMRA under
arbitrary apertureMd are described as Table 2.

TABLE 2. The calculation steps of sensor position in GMRA under
arbitrary aperture.

Based on Table 2, we can get the sensors position of
GMRA with aperture less than 40d . As illustrated in Fig.2,
it is easy to find an GMRA under arbitrary aperture less than
40d . The DOFs and corresponding sensor number are also
shown in Fig.2. GMRA owns least physical sensors under
the same aperture compared with other sparse arrays. So the
GMRA is most economic and can achieve the same DOA
estimation performance as other sparse linear arrays with less
sensors.

As illustrated in Fig.2 and Fig.3, some MRAs are also
GMRAs.

FIGURE 2. DOFs and corresponding sensor number of GMRA when
aperture is no more than 40d.

FIGURE 3. The relationship of GMRA and MRA.

C. SIGNAL MODEL
Assume K uncorrelated narrowband sources from directions
of −π/2 < θk < π/2 for k = 1, . . . ,K impinge on the
original uniform array. Then, the output of original uniform
array is given by,

x(t) =
K∑
k=1

a(θk )sk (t)+ n(t) = As(t)+ n(t) (14)

where A=
[
a(θ1) · · · a(θK )

]
denotes the array manifold

matrix and θk is azimuth angle of the kth source. a(θk ) denotes
the spatial steering vector and can be expressed as

a(θk ) = [e
−j(2πpu1 sin θk )

λ0 , · · · , e
−j(2πpuM sin θk )

λ0 ]T (15)

s(t) = [s1(t), · · · , sk (t)]T (16)

where signal vector s(t) and additive noise vector n(t)
are zero-mean uncorrelated random vectors satisfying
E
[
s(t)s(t)H

]
= Rs and E

[
n(t)n(t)H

]
= δn, respectively. Rs

and δn denotes the signal power matrix and the noise power
matrix, respectively. j is an imaginary number.
Under the assumption that the source and the noise are

uncorrelated spatially and temporally, the original covariance
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matrix Rxx and de-noising original covariance matrix T xx of
the original uniform array can be obtained as

Rxx = E[x(t)xH (t)] =
K∑
k=1

δka(θk )aH (θk )+ δnIM

= ARsAH + δnIM = T xx + δnIM (17)

where Rs = diag
(
δ1 · · · δk · · · δK

)
and δk is the power of

kth source. IM isM dimensional identity matrix. Rxx and T xx
are both Toeplitz and Hermitian matrices as described in [12].

The sparse array output vector can be expressed as

y (t) =
K∑
k=1

aS (θk )sk (t)+ ns(t) = Ass (t)+ ns (t)

= 0As (t)+ 0n (t) = 0 (As (t)+ n (t))

= 0x(t) (18)

aS (θk ) = [e
−j(2πps1 sin θk )

λ0 , · · · , e
−j(2πpsS sin θk )

λ0 ]T (19)

where aS (θk )is the spatial steering vector of sparse array.
The covariance matrix of sparse array output is derived as

Ryy = 0ARsAH0H + δnIS = 0Rxx0H + δnIS (20)

where IS is S dimensional identity matrix and covariance
matrix of sparse array can be approximated with L snapshots
as

R̂yy =
1
L

L∑
i=1

y(ti)yH (ti) (21)

where δn is equal to the minimum eigenvalue of R̂yy.

III. THE PROPOSED ALGORITHM
In this section, we will carry out the fast calculation of orig-
inal covariance matrix and then provide a sparse represen-
tation model based on estimated covariance vector. Finally,
underdetermined DOA estimation is achieved by proposed
original covariance vector sparse representation (OCVSR).

A. ORIGINAL COVARIANCE MATRIX RECONSTRUCTION
The estimation error between Ryy and R̂yy is defined as
E = R̂yy − Ryy. Based on the law of large numbers, we can
get that the vectorization of estimation error obeys normal
distribution as follows.

vec(E)∼ AsN (0,W ) (22)

where Ŵ = 1
L R̂

T
yy ⊗ R̂yy.

Then we can derive the following properties,∥∥∥∥Ŵ− 1
2 vec(E)

∥∥∥∥2
2
∼ Asχ2

(
|S|2

)
(23)

where Asχ2
(
|S|2

)
denotes the asymptotic chi-square distri-

bution with |S|2 degrees of freedom. So we can get a limita-
tion for the estimation error as follows∥∥∥∥Ŵ− 1

2 vec(E)
∥∥∥∥2
2
≤ η2 (24)

where regularization parameter η can be calculated by
using MATLAB routine ’’chi2inv(1-w,|S|2)’’ and we set
w = 0.001 as described in [20].
Then we can estimate T xx by solving the following norm

minimization problem.

min
Txx∈CM×M

‖T xx‖0

s.t.

∥∥∥∥Ŵ− 1
2 vec(E)

∥∥∥∥2
2
≤ η2, T xx ≥ 0 (25)

which is then relaxed into the following convex optimiza-
tion model by replacing the rank norm with the trace norm.
Because the estimated covariance matrix is positive semidefi-
nite in large probability [43] when the number of snapshots is
more than three times of the number of sensors, the constraint
of positive semidefinite is eliminated.

min
Txx∈CM×M

‖T xx‖T

s.t.

∥∥∥∥Ŵ− 1
2 vec(E)

∥∥∥∥2
2
≤ η2 (26)

Then we can solve the trace norm minimization problem
by approximate solution of linear equation instead of CMRA
and CMIA with heavy computational burden.

B. FAST IMPLEMENTATION
We can transform the trace norm minimization problem
in (26) into the LASSO problem with Lagrange form just
like [36]

min
Txx∈CM×M

λ‖T xx‖T +
1
2

∥∥∥∥Ŵ− 1
2 vec(E)

∥∥∥∥2
2

= min
Txx∈CM×M

‖(λI − C)T xx‖T +
1
2
‖T xxCT xxC‖T (27)

where C = 0T R̂
−1
yy 0.

According to the Karush-Kuhn-Tucker(KKT) condition
in convex optimization theory in [44], the optimal solution
of (27) satisfying

T [λI − C] = T [CTxxC] (28)

where T [•] is Toeplitz operation and the diagonal elements
at all levels are averaged to form a new vector.

The formula (28) is actually a linear equation system with
2M − 1 variables. To solve it, we transform the left side as

T [CTxxC] =


8∗M ,:
...

8∗2,:
8


︸ ︷︷ ︸

H


t
t∗1
...

t∗M−1

 (29)

8 =


T T

[
J :,1:MJ1:M ,:

]
T T

[
J :,1:M−1J2:M ,:

]
...

T T
[
J :,1JM ,:

]
 (30)

where t =
[
tM−1 · · · t1 t0

]T .
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To transform the whole matrix H into block matrix,
we insert a zero vector into theMth column of the matrix and
we can get

T [CTxxC] =
[
H1 H2

] [ t
t∗

]
(31)

It is obvious that (30) is complex linear equation system,
so we transform it to real linear equation system. Assume q =
T [CT xxC], then we can get[
R (q)
I (q)

]
︸ ︷︷ ︸

qr

=

[
R (H1+H2) I (H2−H1)

I (H1+H2) R (H1−H2)

]
︸ ︷︷ ︸

Hr

[
R (t)
I (t)

]
︸ ︷︷ ︸

tr

(32)

whereR (•)means real part and I (•)means imaginary part.
Then we can get tr = H†

rqr and the de-nosing original
covariance matrix as follows

T xx =


t0 t∗1 · · · t∗M−1
t1 t0 · · · t∗M−2
...

...
. . .

...

tM−1 tM−2 · · · t0

 (33)

Based on the Toeplitz property of de-nosing original
covariance matrix above, we can find there are onlyM unique
elements in T xx withM2 elements and the covariance vector t
withM elements contain all the information of the de-noising
original covariance matrix. So we can just apply the sparse
reconstruction of M elements instead of S2/2 elements in
CMSR.

In next subsection, we will sparsely represent the original
covariance vector estimated above and achieve underdeter-
mined DOA estimation by proposed OCVSR.

C. ORIGINAL COVARIANCE VECTOR SPARSE
REPRESENTATION
According to the formula (17) and (32), the element of t can
be derived as

ti =
K∑
k=1

δke−jπ i sin θk , 0 ≤ i ≤ M − 1 (34)

We can flip the covariance vector t upside down and obtain
a new covariance vector t f =

[
t0 · · · tM−2 tM−1

]T , which is
named as original covariance vector and can be represented
as

t f =


1 · · · 1

e−jπ sin θ1 · · · e−jπ sin θK

...
. . .

...

e−jπ(M−1) sin θ1 · · · e−jπ(M−1) sin θK


 δ1...
δK


= Aδ (35)

where δ is the set of the signal power estimates and t f can be
deviated from the combination of array responding matrix A
and δ with the perturbation ε = t f − Aδ.

Original covariance vector t f can be represented on an
over-complete spatial dictionary just like follows.

t f = AGδG + ε

=
[
a (θG1) · · · a

(
θGg

) ] δS1...
δSg

+
 ε1
...

εM

 (36)

where ε is the perturbation derived from finite-length snap-
shots andAG is an over-complete dictionary formed by a (θGi)
with

{
a (θ1) · · · a (θK )

}
⊂
{
a (θG1) · · · a

(
θGg

) }
.

The estimation of original covariance vector is
perturbation-contaminated due to finite sampling, so we can
derive the following convex optimization problem based on
L1-norm. Then we can get the DOA θk by solving convex
optimization problem.

min
δG∈Cg×1

‖δG‖1

s.t.
∥∥t̂ f − AGδG∥∥22 ≤ β2 (37)

while threshold β is calculated based on the perturbation of
the original covariance vector and aims to restrict the fitting
error between the practical and hypothetical models. And it
can be estimated as following.

β = µ× (MVar (ε1))
1
2 (38)

PROOF See Appendix A.
DOAs can be retrieved by solving above optimization

and this estimator is named as original ovariance vector
sparse representation (OCVSR). The procedure of OCVSR
is described in Table 3.

TABLE 3. Procedure of DOA estimation for GMRA based on OCVSR.

IV. PERFORMANCE ANALYSIS
In this section, a brief performance analysis is given to have
more quantitative analysis of the proposed OCVSR compared
with existing algorithms.

A. COMPLEXITY ANALYSIS
The proposed OCVSR has low computational complexity
compared to the existing approaches CMIA [30], CMRA [36]
and CMSR [21], respectively. Here, a more detailed compari-
son on the number of multipliers will be made to demonstrate
the computational saving.

CMRA with nuclear norm needs O
(
M6
)

operations,
CMIA with nuclear norm need O

(
3M6

)
operations, but the
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covariance matrix reconstruction in OCVSR needs O
(
M3
)

operations by contrast.
The Eigen-decomposition in MUSIC requires O

(
M3
)

operations. The sparse reconstruction for the array covariance
vector in CMSR needs O

(
M3
(
S2/2

)3)
operations, while

the sparse reconstruction of original covariance vector in
OCVSR only requires O

(
M6
)
operations.

TABLE 4. Computational complexity of different DOA estimators.

B. ALGORITHMS COMPARISON
Compared with the CMSR, the number of the variables
which needs to sparsely represent in OCVSR is reduced
which means reduced computational complexity. CMRA
with MUSIC and CMIA with MUSIC have higher estimation
accuracy than CMSR and can handle more sources for more
precise original covariance matrix estimation.

However, CMIA and CMRA which combined with
MUSIC requires the extra process of signal number detection,
while there is no need to know the prior knowledge of signal
number in CMSR and OCVSR. The inaccurate estimation of
the signals number has a great impact on the DOA estimation
performance and could lead to a significant decrease in the
estimation performance.

V. SIMULATION RESULTS
In this section, the performance of the proposed GMRA
is compared with the advanced CPA, GCPA, NA under
same aperture and the performance of the proposed method
OCVSR for underdetermined DOA estimation with compari-
son to CMIA, CMRA and CMSR is evaluated. We choose the
four sparse arrays as illustrated as Fig.1. The interval of the
over-complete sparse representation grids and space search
interval of MUSIC are all set to be 0.1◦.
There are K equal-power uncorrelated far-field narrow-

band signals which are assumed to be uniformly distributed
in [−53.02◦, 53.02◦] unless otherwise stated, and DOAs are
not restricted to lie on the pre-defined grids so signals are
in off-grid model just like [45]. It should be noted that all
experiments in this paper are in underdetermined cases which
means K > S. When K = 11 > S, we achieve underde-
termined DOA estimation. When K = 21 > 2S, it means
that the number of signals which the estimators can handle
exceeds twice number of sensors.

A. UNDERDETERMINED ESTIMATION PERFORMANCE
We first carry out a simple simulation with normalized spa-
tial spectrum by SS-MUSIC to compare the performance
of different sparse arrays under mutual coupling effect with
c1 = 0.5 − 0.4i and mmax = 1. CPA, GCPA and NA with
S = 10 are compared to GMRA with S = 9. The spatial

FIGURE 4. Spatial spectrum of different sparse array by SS-MUSIC with
SNR=10dB and L=500 under mutual coupling effect.

spectrums of the four sparse arrays with K = 10 estimable
signals are described as below.

As depicted in Fig.4, GMRA has the best DOA estimation
performance under mutual coupling.

We then carry out a simple simulation with normalized
spatial spectrum by OCVSR to illustrate the underdetermined
DOA estimation performance of different sparse arrays. The
spatial spectrums of the four sparse arrays with maximum
number of estimable signals are described as below.

FIGURE 5. Spatial spectrum of different sparse array by OCVSR with
SNR=10dB and L=500.

As depicted in Fig.5, the number of signals are all exceeds
the number of sensors, so OCVSR has strong adaptability
to underdetermined DOA estimation with different sparse
arrays. As we can see, although signals are in off-grid situ-
ation, OCVSR can alleviate the effect of basis mismatch to a
certain extent.

It is clear from Fig.5 that NA and GMRA can achieve
underdetermined DOA estimation with greater number of
signals than CPA and GCPA, so it can be concluded that the
larger aperture of the sparse arrays means higher precision
as well as more DOFs. GMRA can address even greater
number of signals with less sensors than NA. The estimation
performance of OCVSR based on GMRA is compared with
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existing methods and spatial spectrums of experiment are
presented in Fig.6.

FIGURE 6. Spatial spectrum of GMRA by different methods with K=21,
SNR=10dB and L=200.

For DOA estimation of FAA, CMIA with MUSIC is equal
to SS-MUSIC. It is observed from Fig.6 that CMIA and
CMRA can achieve more accurate DOA estimation than
CMSR but the signal power estimation is poor compared with
the true value of signal power. There are some fakepeaks in
CMSR and the number of signals is not estimated correctly.
Compared with CMIA and CMRA, OCVSR achieve more
accurate signal power estimation with nearly the same accu-
rate DOA estimation.

B. ESTIMATION ACCURACY ANALYSIS
In order to test the performance of DOA estimators bet-
ter, the Monte-Carlo trials are carried out. The number of
Monte-Carlo trials is set to be I = 500 for each experiment.
The definition of root mean square error (RMSE) is

RMSE =

√√√√ 1
IK

I∑
i=1

K∑
k=1

(
θ̂k (i)− θk

)2
(39)

In the second subsection, the accuracy estimation capa-
bility of the proposed OCVSR is examined by calculating
RMSE versus different number of snapshots or SNR by using
proposed GMRA. We set SNR=10dB while L varying from
50 to 550 and L = 500 when SNR varying from −10dB to
10dB.

From Fig.7, we can see that OCVSR can achieve much
more accurate DOA estimation with lower RMSE than
CMSR under different conditions. So it can be concluded
than the covariance matrix is helpful for the improvement of
estimation accuracy of sparsity-based DOA estimator. It can
also be seen that OCVSR can achieve little lower RMSE than
CMRA in most cases.

As depicted in Fig.7, CMIA and CMSR suffer obvious
performance degradation when L < 300, while CMRA and
proposed OCVSR achieve nearly the same RMSE when L >
100. It means OCVSR is more robust to few snapshot.

FIGURE 7. RMSE for GMRA via different methods with different SNR or
snapshots.

The accuracy estimation capability of OCVSR is also illus-
trated with different number of signals varying from 3 to
23 and angle interval varying form 4◦ to 8◦ when there
are more sources than sensors. The simulation results of
Monte-Carlo trials are illustrated in Fig.8.

FIGURE 8. RMSE for GMRA via different methods with different signal
number or angle separation.

As depicted in Fig.8, The estimation error increases with
the growth of the number of signals. For CMIA and CMRA
which are combined with MUSIC, the more the signals num-
ber, the less the noise vector, and the lower the estimation
accuracy of the noise subspace. For CMSR and OCVSR
which are based on sparse reconstruction, the more the sig-
nals number, the smaller the sparsity of signal power vector,
the lower the reconstruction accuracy of signal power vector.

We can also find the estimation accuracy is not sensitive to
the change of angle separation when it exceeds 4◦.

C. COMPUTATIONAL EFFICIENCY COMPARISION
In the last experiment, the average running times of each
method for one trial underdetermined DOA estimation under
different SNR, number of snapshots and signals are com-
pared. CPU time of different methods for one trial is counted
in Table 5 with K = 11, SNR = 10dB and L = 500 by using
GMRA. For each trial, we can find OCVSR spends less time
than CMSR and spends nearly the same time of CMRA with
MUSIC.

TABLE 5. CPU time of different methods for one trial underdetermined
DOA estimation.

The simulation result of Monte-Carlo trials under different
conditions is also illustrated in Fig.8 and we set with K = 11,
SNR = 10dB when the number of snapshotsL varying from
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FIGURE 9. Computational time via different SNR, Snapshots and Number
of signals.

50 to 550 while K = 11, L = 100 when SNR varying from
10dB to 10 dB by using GMRA.

It is clear from Fig.9 that CPU time of DOA estimation by
OCVSR is robust to the change of SNR, snapshots and the
number of signals and fast covariance matrix estimation is
helpful to reduce the computational burden. OCVSR nearly
spend the same time as CMRA and achieve underdetermined
DOA estimation without the knowledge of signal number.

Based on the simulation results analysis above, we can
conclude that the OCVSR has better estimation efficiency
compared to the most existing approaches and has good
computational efficiency.

VI. CONCLUSION
In this paper, the underdetermined DOA estimation of sparse
array has been transformed into the conventional DOA esti-
mation of uniform array with the same aperture. And we find
one reason why sparse array can achieve DOA estimation
with more sources than sensors is the redundancy of Toeplitz
covariance matrix of uniform array. With the appropriate
array structure, sparse array can address same number of
sources as uniform array. Based on the MRA, a generalized
MRA, named as GMRA, was proposed with high degrees of
freedom and low mutual coupling. Different form the MRA,
the GMRA always has corresponding array structure under
various aperture. So it can be used to design the sparse array
configuration easily. Experiment result for underdetermined
DOA performance of different sparse arrays demonstrated
the superiority of GMRA in degrees of freedom and mutual
coupling.

To achieve more accurate underdetermined DOA estima-
tion of GMRA without the knowledge of signal number,
a sparsity-based DOA estimation method, named as OCVSR,
was proposed. With fast covariance matrix reconstruction,
OCVSR can achieve more accurate DOA estimation without
increasing computational burden than other sparsity-based
methods. It is due to the reduced dimension of covariance
vector based on the redundancy of Toeplitz covariance matrix
of uniform array. In addition to achieve high-precision DOA
estimation of GMRA, OCVSR can also achieve underde-
termined DOA estimation of other sparse arrays. However,
OCVSR has little high requirements of sufficient snapshots
and can only address uncorrelated sources now. A future work

is to expand the adaptability to coherent signals and achieve
2D DOAs with sparse parallel array or sparse planar array.

APPENDIX A
THE PROOF OF THE EQUATION (38)
When limited snapshots are collected, the covariance of orig-
inal uniform array output can be estimated from (32), and the
pth element of the original covariance vector is

t̂p =
1
L

L∑
t=1

 K∑
k1

sk1 (t)e
−jπp sin θk1 + np (t)


×

 K∑
k1

sk2 (t)e
−jπ sin θk2 + n1 (t)


=

K∑
k=1

(
1
L

L∑
t=1

|sk (t)|2
)
e−jπ(p−1) sin θk

+
1
L

L∑
t=1

K∑
k1=1

K∑
k2=1
k1 6=k2

sk1 (t) s
∗

k2
(t) e−jπ

(
p sin θk1−sin θk2

)

+
1
L

L∑
t=1

K∑
k=1

sk (t) n∗1 (t) e
jπ sin θk

+
1
L

L∑
t=1

K∑
k=1

s∗k (t) np (t) e
−jπp sin θk

+
1
L

L∑
t=1

np (t) n∗1 (t)

=

K∑
k=1

δke−jπ(p−1) sin θk + t (1)p + t
(2)
p + t

(3)
p (40)

The perturbation of t̂p in t̂ f is εp=t
(1)
p + t

(2)
p + t

(3)
p . When

the number of snapshots L is adequately large, εp is approx-
imately circular complex Gaussian distributed according to
the law of large numbers.
As the incident signals and the additive noise are mutually

independent, one can easily conclude

E
(
εp
)
= E

(
t (1)p

)
+ E

(
t (2)p

)
+ E

(
t (3)p

)
= 0 (41)

The estimate of the original covariance vector is
perturbation-contaminated on account of limited snapshots
and the variance of εp can be estimated as

Var
(
εp
)
= E

(
t (1)p t (1)∗p

)
+ E

(
t (2)p t (1)∗p

)
+ E

(
t (3)p t (1)∗p

)
+E

(
t (1)p t (3)∗p

)
+ E

(
t (2)p t (2)∗p

)
+ E

(
t (3)p t (2)∗p

)
+E

(
t (1)p t (3)∗p

)
+ E

(
t (2)p t (3)∗p

)
+ E

(
t (3)p t (3)∗p

)
= E

(
t (1)p t (1)∗p

)
+ E

(
t (2)p t (2)∗p

)
+ E

(
t (3)p t (3)∗p

)
=

1
L

K∑
k=1

δk

 K∑
k′=1
k′ 6=k

δk ′

+ 2
L
δn

K∑
k=1

ηk+
1
L
δ2n (42)
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Then we can get

E

(∥∥∥∥∧t f −AGδG∥∥∥∥2
2

)
=

M∑
p=1

E
(∣∣εp∣∣2) = MVar (ε1) (43)

Based on the fitting error’s distribution, threshold can be
obtained as

β = µ×MVar (ε1) (44)

where µ is a weighting factor and is set to be 1 based on
experience in the simulations.
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