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ABSTRACT Rotation symmetric Boolean functions (RSBFs) are used widely in symmetric cryptography.
In this paper, a systematic construction of balanced odd-variable RSBFs satisfying strict avalanche criterion
is proposed. Hence, a class of (6k + 3)-variable resilient RSBFs satisfying strict avalanche criterion is also
presented for any k ≥ 2. Some of the obtained RSBFs have many other good cryptographic properties at
the same time, that is, optimal algebraic degree, good global avalanche characteristics, high nonlinearity
and nonexistence of nonzero linear structures. Moreover, we obtain some count results of RSBFs satisfying
strict avalanche criterion. This is the first time that the autocorrelation properties of RSBFs are investigated
systemically.

INDEX TERMS Cryptography, global avalanche characteristics, resilient, Rotation symmetric Boolean
functions, strict avalanche criterion.

I. INTRODUCTION
Boolean functions are central building blocks for many sym-
metric cryptosystems, which should satisfy some cryptog-
raphy criteria to resist known attacks, such as nonlinearity,
balancedness, algebraic degree, etc. To express the avalanche
effect of cryptographic functions, Webster and Tavares [23]
proposed the strict avalanche criterion (SAC). Note that the
SAC is only ameasure for local avalanche. To characterize the
overall avalanche characteristics, the global avalanche char-
acteristics (GAC) was introduced by Zhang and Zheng [25].
The GAC consists of two indicators: the sum-of-squares
indicator and the absolute indicator. The SAC and GAC
indicate a function’s autocorrelation properties. Although
bent functions have the best autocorrelation properties, they
are not balanced and only exist when the number of vari-
ables is even. Therefore, constructing Boolean functions
with balancedness and good autocorrelation properties is
favored [10], [16], [18], [22].

Rotation symmetric Boolean functions (RSBFs) is a sub-
class of Boolean functions which are invariant under the
action of cyclic group. RSBFs have import applications
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in cryptography since they allow faster computation and
need smaller storage space. The cryptographic parameters
of BSBFs have been investigated widely, such as resilient
RSBFs [7], [10], [14], bent RSBFs [2], [9], [19], [21], RSBFs
with optimal algebraic immunity [3], [8], [13]. However,
there are no results on investigating the autocorrelation prop-
erties of RSBFs so far.

This paper first gives a theoretical framework for con-
structing balanced RSBFs satisfying SAC, which have some
other good cryptographic properties simultaneously. The
main idea behind our method is to modify the outputs of
a quadratic RSBF on a selected set of orbits. When n =
6k+3, we obtain n-variable RSBFswith good autocorrelation
properties, resiliency, highest algebraic degree, nonexistence
of nonzero linear structures, high nonlinearity. Moreover,
the enumeration of RSBFs satisfying SAC is also discussed
based on integer partition. This is the first time that the
construction and enumeration of RSBFs satisfying SAC are
investigated.

This paper is organized as follows. Sect. 2 introduces
some necessary notions on Boolean functions and RSBFs.
Sect. 3 presents the constructions of odd-variable balanced
RSBFs with good autocorrelation properties. In Sect. 4, some
count results of RSBFs satisfying SAC is provided. Sect. 5
concludes this paper.
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II. PRELIMINARIES
Let Fn2 be the n-dimensional vector space over the binary field
F2. An n-variable Boolean function f is a mapping from Fn2 to
F2, which can be uniquely represented by its algebraic normal
form (ANF):

f (x1, x2, . . . , xn) =
∑

I⊆{1,2,...,n}

aI
∏
i∈I

xi, aI ∈ F2.

Its algebraic degree is defined as deg(f ) = max{|I | : aI 6= 0}.
The Hamming weight of f is wt(f ) = |{α ∈ Fn2 : f (α) = 1}|,
and f is balanced if wt(f ) = 2n−1. Denote by Bn the set of
all n-variable Boolean functions.
Let α = (a1, a2, . . . , an) ∈ Fn2, supp(α) = {1 ≤ i ≤ n :

ai = 1} is called the support of α, and wt(α) = |supp(α)| is
called the Hamming weight of α. For any 1 ≤ j ≤ n and i ∈
supp(α), i+j is meant cyclically in the set {1, 2, 3, . . . , n}. The
complement ofα is defined as ᾱ = (1+a1, 1+a2, . . . , 1+an).
For a vector β = (b1, b2, . . . , bn) ∈ Fn2, the dot product of β
and α is β · α = b1a1 + · · · + bnan. For any nonempty set
T ⊆ Fn2, let α + T = {α + β : β ∈ T }.
Let f ∈ Bn. The Walsh transform of f at α ∈ Fn2 is defined

as

Wf (α) =
∑
x∈Fn2

(−1)f (x)+α·x . (1)

Clearly, f is balanced if and only ifWf (0) = 0, where 0 is the
all-zero vector in Fn2. The nonlinearity of f is

nl(f ) = 2n−1 −
1
2
max
α∈Fn2
|Wf (α)|.

It is well known that nl(f ) ≤ 2n−1 − 2
n
2−1, and if nl(f ) =

2n−1 − 2
n
2−1, we call f a bent function.

Cryptographic functions with low autocorrelation have
nice diffusion property. Let f ∈ Bn and α ∈ Fn2, its
autocorrelation function at α is

Cf (α) =
∑
x∈Fn2

(−1)f (x+α)+f (x).

f is said to satisfy the strict avalanche criterion (SAC) if
Cf (α) = 0 for allwt(α) = 1. Global avalanche characteristics
(GAC) contains two indicators: the absolute indicator

1f = max
α 6=0
|Cf (α)|

and the sum-of-squares indicator

σf =
∑
α∈Fn2

C2
f (α).

In [25], Zheng showed that 22n ≤ σf ≤ 23n and 0 ≤ 1f ≤

2n, and proved that only bent functions can achieve the lower
bounds.

Cryptographic functions with resiliency are robust against
correlation attacks.
Definition 1 [24]: Let f ∈ Bn and α ∈ Fn2. f is called a

k-resilient function if Wf (α) = 0 holds for all wt(α) ≤ k.

Lemma 1 [15]: Let f ∈ Bn. If f is k-resilient, then deg(f )+
k ≤ n− 1.
Let f (x) ∈ Bn, its derivative at point α ∈ Fn2 is defined as

1αf (x) = f (x + α) + f (x). Clearly, deg(1αf ) < deg(f ). α
is called a linear structure of f if 1αf (x) is a constant for all
x ∈ Fn2.
To resist against algebraic and fast algebraic attacks [5],

[6], Boolean functions used in cryptography should have high
algebraic immunity and fast algebraic immunity.
Definition 2: Let f , h ∈ Bn. The algebraic immunity of f

is

AI (f ) = min
h 6=0
{deg(h) : hf = 0 or h(f + 1) = 0},

and the fast algebraic immunity of f is

FAI (f ) = min{2AI (f ),
min{deg(fh)+ deg(h) : 1 ≤ deg(h) < AI (f )}}.

We say that f has optimal AI if AI (f ) = d n2e, and f has
optimal FAI if FAI (f ) = n.
Let α = (a1, a2, . . . , an) ∈ Fn2 . For any 0 ≤ m ≤ n − 1,

define

ρmn (α) = (a1+m, a2+m, . . . , an+m),

where the addition of index is meant cyclically in the set
{1, 2, 3, . . . , n}.

Definition 2: Let f ∈ Bn. If f (ρmn (α)) = f (α) holds for
any 0 ≤ m ≤ n − 1 and α ∈ Fn2, then f is called a rotation
symmetric Boolean function (RSBF).

Denote by Gn(α) = {ρmn (α) : 0 ≤ m ≤ n − 1} the
orbit generated from α. Hence, we call Gn(α) a long orbit
if |Gn(α)| = n, and call it a short orbit if |Gn(α)| < n. It is
shown that [17]Wf (α) = Wf (β) for α ∈ Gn(β) if f is rotation
symmetric.

III. CONSTRUCTIONS OF RSBFs SATISFYING SAC
A. BALANCED RSBFs HAVING GOOD
AUTOCORRELATION PROPERTIES
We first present the following necessary result on quadratic
RSBFs.
Lemma 2: For odd n and 2 ≤ s ≤ n+1

2 , let k = gcd(s−1, n)
and

gs = x1xs + x2xs+1 + · · · + xnxs−1. (2)

Then wt(gs) = 2n−1, nl(gs) = 2n−1 − 2
n+k
2 −1.

We assume hereafter that n is an odd integer. For 2 ≤ s ≤
n+1
2 with gcd(s− 1, n) = 1, we set

ds = min{n− 2(s− 1), 2(s− 1)}

and define a subset Rs ⊆ Fn2 as
Rs = {αs1, α

s
2, α

s
3, . . . , α

s
n−1}, (3)

where

supp(αs1) = {1},
supp(αs2j) = {1, s, 1+ 2ds, s+ 2ds, . . . , 1+ 2(j− 1)ds,

s+ 2(j− 1)ds}, 1 ≤ j ≤ b
n− 1
4
c,
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supp(αs2j+1) = {1, s, . . . , 1+ 2(j− 1)ds, s+ 2(j− 1)ds,

1+ 2jds}, 1 ≤ j ≤ b
n− 3
4
c,

αsi = ᾱ
s
n−i,

n+ 1
2
≤ i ≤ n− 1.

For 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n, define

Asj (i) =
∑

x∈Gn(αsi )

(−1)gs(x)+gs(x+ej), (4)

where ej = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0), gs(x) is defined in (2).

Lemma 3: Rs and Asj (i) defined above have the following
properties.

1) wt(αsi ) = i.
2) |Gn(αsi )| = n.
3) If i < n+1

2 , then

gs(αsi ) =

{
1, i mod 4 ≡ 2, 3,
0, i mod 4 ≡ 0, 1;

and if i ≥ n+1
2 , then gs(αsi ) = 1− gs(αsn−i).

4) Asj (i) = n− 4min{i, n− i}.
Proof:
1) This holds obviously by the definition of Rs.
2) Note that |Gn(αsi )| = |Gn(α

s
n−i)| and |Gn(α

s
1)| = n. For

2 ≤ i ≤ n−1
2 , assume that |Gn(αsi )| = k < n. Since

1 + k, s + k ∈ supp(αki ), then we have the following
four cases:

a)

{
1+ k = s+ t1ds − k1n
s+ k = s+ t2ds − k2n

b)

{
1+ k = 1+ t1ds − k1n
s+ k = 1+ t2ds − k2n

c)

{
1+ k = s+ t1ds − k1n
s+ k = 1+ t2ds − k2n

d)

{
1+ k = 1+ t1ds − k1n
s+ k = s+ t2ds − k2n

where 0 ≤ t1, t2 ≤ n−1
2 and k1, k2 ≥ 0.

Here we only prove that case a) doesn’t hold, and other
cases can be proved similarly. For case a), we have

s− 1 = (t2 − t1)ds + (k1 − k2)n.

If ds = 2(s−1), then (1+2(t1−t2))(s−1) = (k1−k2)n.
Note that |1+ 2(t1− t2)| < n. Since gcd(s− 1, n) = 1,
then k1 − k2 is a multiple of s − 1, that is |s − 1| ≤
|k1 − k2|. Hence

|(1+ 2(t1 − t2))(s− 1)| < |(k1 − k2)n|,

a contradiction. If ds = n− 2(s− 1), we have

s− 1 = (t2 − t1)(n− 2(s− 1))+ (k1 − k2)n,

then (2(t2− t1)+1)(s−1) = (k1−k2+ t2− t1)n. Since
gcd(s− 1, n) = 1, then k1 − k2 + t2 − t1 is a multiple
of s− 1, that is |s− 1| ≤ |k1 − k2 + t2 − t1|. Note that
|2(t2 − t1)+ 1| < n. Hence

|(2(t2 − t1)+ 1)(s− 1)| < |(k1 − k2 + t2 − t1)n|,

a contradiction. Then the desired result follows.
3) This holds obviously according to the definitions of gs

and Rs.
4) For 1 ≤ j ≤ n, we have

gs(x)+ gs(x + ej)

=

n∑
i=1

x1+ixs+i +
n∑

i 6=j−1,i 6=n+j−s

x1+ixs+i

+ (xj + 1)xs+j−1 + xn+j−s+1(xj + 1)

= xs+j−1 + xn+j−s+1
= xs+j−1 + xs+j−1+n−2(s−1).

By the definition of αsi that

|{x ∈ Gn(αsi ) : xs+j−1 + xs+j−1+n−2(s−1) = 1}|

= 2min{wt(αsi ), n− wt(α
s
i )},

that is,

|{x ∈ Gn(αsi ) : xs+j−1 + xs+j−1+n−2(s−1) = 1}|

= 2min{i, n− i}.

Therefore Asj (i) = n− 4min(i, n− i).

Lemma 4: For T ⊆ Fn2 and T 6= ∅, let T̃ =
⋃
α∈T Gn(α).

For any α ∈ Fn2 and α 6= 0, we have

Fn2\[T̃ ∪ (T̃ + α)]+ α = Fn2\[T̃ ∪ (T̃ + α)].

Proof: Assume that there exists γ ∈ Fn2\[T̃ ∪ (T̃ + α)]
such that γ + α ∈ T̃ ∪ (T̃ + α). Then we have γ + α ∈ T̃ or
γ + α ∈ T̃ + α. Hence, γ ∈ T̃ ∪ (T̃ + α), a contradiction.
This completes the proof.

Now we are ready to construct RSBFs having good auto-
correlation properties. Let n ≥ 11 be odd. For 1 ≤
m ≤ dn/16e and 1 ≤ i1, i2, . . . , i4m ≤ n − 1, let I =
{i1, i2, . . . , i4m} and Ts,I = {αsi1 , α

s
i2
, . . . , αsi4m} ⊆ Rs. Define

UI , a subset of I , as:

UI = {it ∈ I : it mod 4 ≡ 0, 1} if n ≡ 3 mod 4,

UI = {it ∈ I : it <
n+ 1
2

, it mod 4 ≡ 0, 1 or (5)

it ≥
n+ 1
2

, it mod 4 ≡ 2, 3} if n ≡ 1 mod 4.

Note that gs(αsi ) = 0 if and only if i ∈ UI . Denote

n− I = {n− i1, n− i2, . . . , n− i4m}, DI =|I ∩ (n−I )|.

(6)

Define

fs,I (x) =

{
gs(x), x ∈ Fn2\T̃s,I ,
1+ gs(x), x ∈ T̃s,I ,

(7)
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where T̃s,I =
⋃
α∈Ts,I Gn(α). Clearly, fs,I is an n-variable

RSBF.
Theorem 1: fs,I defined in (7) has the following properties.

1) If
4m∑
t=1

min{it , n− it } = mn and |it1 − it2 | ≥ 2 holds for

any it1 , it2 ∈ I , then fs,I satisfies the strict avalanche
criterion.

2) If |UI | = 2m then fs,I is balanced.
3) 1fs,I = 2n − 4n(4m− DI ).
4) σfs,I < 22n+1 + 2n+8m2n2.
5) If |DI | 6= 4m, fs,I has no nonzero linear structures.
6) nl(fs,I ) > 2n−1 − 2

n−1
2 − 4mn.

Proof: 1). Assume that α ∈ T̃s,I and wt(α) = it ∈ I . For
1 ≤ j ≤ n, we have wt(α + ej) = it ± 1. Since |it1 − it2 | ≥ 2
holds for any it1 , it2 ∈ I , then it±1 6∈ I . It follows that α+ej 6∈
T̃s,I , that is (T̃s,I + ej) ∩ T̃s,I = ∅. Hence, by Lemma 4 we
have

Fn2\[T̃s,I ∪ (T̃s,I + ej)]+ ej = Fn2\[T̃s,I ∪ (T̃s,I + ej)].

Denote Tj = T̃s,I ∪ (T̃s,I + ej). For 1 ≤ j ≤ n, we have∑
x∈Fn2

(−1)fs,I (x)+fs,I (x+ej)

=

∑
x∈Fn2\Tj

(−1)fs,I (x)+fs,I (x+ej) +
∑
x∈Tj

(−1)fs,I (x)+fs,I (x+ej)

=

∑
x∈Fn2\Tj

(−1)gs(x)+gs(x+ej) −
∑
x∈Tj

(−1)gs(x)+gs(x+ej)

=

∑
x∈Fn2

(−1)gs(x)+gs(x+ej) − 2
∑
x∈Tj

(−1)gs(x)+gs(x+ej)

= −2
∑
x∈Tj

(−1)gs(x)+gs(x+ej)

= −4
∑
i∈I

Asj (i).

By Lemma 3, we have

∑
i∈I

Asj (i) = 4mn− 4
4m∑
t=1

min{it , n− it }.

If
4m∑
t=1

min{it , n− it } = mn, then
∑
i∈I
Asj (i) = 0. It follows that

∑
x∈Fn2

(−1)fs,I (x)+fs,I (x+ej) = 0.

Therefore, fs,I satisfies SAC.
2). Observe that

|supp(fs,I )| = |supp(gs)| − |{x ∈ T̃s,I : gs(x) = 1}|

+|{x ∈ T̃s,I : gs(x) = 0}|.

By Lemma 2, we know that gs is balanced, then
|supp(gs)| = 2n−1. If |UI | = 2m, then

|{it ∈ I : gs(αsit ) = 1}| = |{it ∈ I : gs(αsit ) = 0}|.

By Lemma 3, we have

|{x ∈ T̃s,I : gs(x) = 1}| = |{x ∈ T̃s,I : gs(x) = 0}|.

Therefore, |supp(fs,I )| = 2n−1, that is fs,I (x) is balanced.
3). For any α ∈ Fn2\{0}, denote Tα = T̃s,I ∪ (T̃s,I + α).

By Lemma 4, we have

Cfs,I (α) =
∑

x∈Fn2\Tα

(−1)fs,I (x)+fs,I (x+α)

+

∑
x∈Tα

(−1)fs,I (x)+fs,I (x+α)

=

∑
x∈Fn2\Tα

(−1)gs(x)+gs(x+α)

+

∑
x∈Tα

(−1)fs,I (x)+fs,I (x+α)

=

∑
x∈Fn2

(−1)gs(x)+gs(x+α)

−

∑
x∈Tα

(−1)gs(x)+gs(x+α)

+

∑
x∈Tα

(−1)fs,I (x)+fs,I (x+α).

Denote by 1 the all-one vector in Fn2. When α 6= 1, gs(x)+
gs(x+α) is a linear function. Then

∑
x∈Fn2

(−1)gs(x)+gs(x+α) = 0,

and hence |Cfs,I (α)| ≤ 16mn.Whenα = 1, then gs(x)+gs(x+
1) = 1. Hence,∑

x∈Fn2

(−1)gs(x)+gs(x+1) = −2n,

∑
x∈T̃s,I∪(T̃s,I+1)

(−1)gs(x)+gs(x+1) = −|T̃s,I ∪ (T̃s,I + 1)|

= −n(8m− DI ),∑
x∈T̃s,I∪(T̃s,I+1)

(−1)fs,I (x)+fs,I (x+1) = n(8m− 3DI ).

Thus,

|Cfs,I (1)| = | − 2n + n(8m− DI )+ n(8m− 3DI )|

= 2n − 4n(4m− DI ).

Consequently, 1fs,I = |Cfs,I (1)| = 2n − 4n(4m− DI ).
4). We have

σfs,I =
∑

α∈Fn2\{0,1}
C2
fs,I (α)+ C

2
fs,I (0)+ C

2
fs,I (1)

< 22n+1 + 2n+8m2n2.

5). If α ∈ Fn2 is a nonzero linear structure of fs,I , then
|Cfs,I (α)| = 2n, which implies that α = 1 and |DI | = 4m.
Therefore, if |DI | 6= 4m, then fs,I has no nonzero linear
structures.
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6). For any α ∈ Fn2, by (1) and (7) we have

|Wfs,I (α)| = |
∑

x∈Fn2\T̃s,I

(−1)gs(x)+α·x −
∑
x∈T̃s,I

(−1)gs(x)+α·x |

= |Wgs (α)− 2
∑
x∈T̃s,I

(−1)gs(x)+α·x |

< |Wgs (α)| + 2|T̃s,I |

= |Wgs (α)| + 8mn.

Since gcd(n, s − 1) = 1, it follows Lemma 2 that nl(gs) =
2n−1 − 2

n−1
2 , that is max{|Wgs (α)| : α ∈ Fn2} = 2

n+1
2 . Thus

|Wfs,I (α)| < 2
n+1
2 + 8mn, and then nl(fs,I ) > 2n−1 − 2

n−1
2 −

4mn.
Example 1: Let n = 11 and s = 2, then g2(x) =

n∑
i=1

x1+ix2+i,

R2 = {α2i : i = 1, 2, . . . , 10},

where

supp(α21) = {1}, supp(α
2
10) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11},

supp(α22) = {1, 2}, supp(α
2
9) = {3, 4, 5, 6, 7, 8, 9, 10, 11},

supp(α23) = {1, 2, 5}, supp(α
2
8) = {3, 4, 6, 7, 8, 9, 10, 11},

supp(α24) = {1, 2, 5, 6}, supp(α
2
8) = {3, 4, 7, 8, 9, 10, 11},

supp(α25) = {1, 2, 5, 6, 9}, supp(α
2
8) = {3, 4, 7, 8, 10, 11}.

Let I = {1, 5, 7, 10}, T2,I = {α21, α
2
5, α

2
7, α

2
10}, T̃2,I =⋃

α∈T2,I Gn(α), then

f2,I (x) =

{
g2(x), x ∈ Fn2\T̃2,I ,
1+ g2(x), x ∈ T̃2,I ,

is a 11-variable balanced RSBF satisfying SAC, and with
nl(f2,I ) = 982, 1f2,I = 1960, σf2,I = 1.16 × 223 and
deg(f2,I ) = 10.
Theorem 2: Let notions be defined as above. For k ≥ 1,

we set

T =


{α21, α

2
4k+1, α

2
4k+3, α

2
n−1}, n = 8k + 3,

{α22, α
2
4k , α

2
4(k+1), α

2
n−2}, n = 8k + 5,

{α21, α
2
4k+3, α

2
4k+5, α

2
n−1}, n = 8k + 7,

{α22, α
2
4k+2, α

2
4k+6, α

2
n−2}, n = 8k + 9,

and T̃ =
⋃
α∈T Gn(α). Define a new n-variable RSBF as:

f (x) =

{
g2(x), x ∈ Fn2\T̃ ,
1+ g2(x), x ∈ T̃ .

(8)

Then f (x) has the following properties.
1) f is a balanced .
2) f satisfies SAC.
3) nl(f ) ≥ 2n−1 − 2

n−1
2 − 4n.

4) 1f = 2n − 16n.
5) σf ≤ 22n+1 + 2n+8n2.
6) f has no nonzero linear structures.
7) deg(f ) = n− 1.

Proof: 1)∼6) can be verified according to Theorem 1.
7). Here we only prove the case of n = 8k + 3, and

the proof of other cases can be got similarly. Let αi =
(ai1 , ai2 , . . . , ain ) ∈ supp(f ), 1 ≤ i ≤ |supp(f )|, then

f (x) =
|supp(f )|∑
i=1

n∏
j=1

(xj + aij + 1).

We denote c1 the coefficient of x1x2 · · · xn/x1 in the ANF of
f (x). Let S be a subset of Fn2, and denote NS the number of
vectors in the S with the 1-th entry being 0. Obviously, c1 =
Nsupp(f ) mod 2.
Note that

supp(f ) = supp(g2)
⋃

(Gn(α21) ∪ (α
2
4k+1))

\(Gn(α24k+3) ∪ α
2
n−1).

Then we have

Nsupp(f ) = Nsupp(g2) − NGn(α2n−1)
−NGn(α24k+3)

+NGn(α21 )
+NGn(α24k+1)

.

Since deg(g2) = 2, then Nsupp(g2) ≡ 0 mod 2. It follows that

Nsupp(f2) ≡ NGn(α2n−1)
+ NGn(α24k+3)

+ NGn(α21 )
+ NGn(α24k+1)

.

Note that NGn(α) = n− wt(α) holds all |Gn(α)| = n. Hence,

Nsupp(f ) ≡ n− 1+ 1+ 4k + 4k + 2 ≡ 1 mod 2.

Thus, the monomial x1x2 · · · xn/x1 appears in f (x), then
deg(f ) ≥ n − 1. As f is balanced, then deg(f ) = n − 1.
This completes the proof.

Although it is different to analyze the AI and FAI of f in
(8) systematically, we can give some experiment results when
n is small. Using Algorithm 1 of [1] implemented by Magma
program, we can obtain the minimal degree of g such that
gf = 0 and (g + 1)f = 0 by exhaustive search. We find that
AI (f ) = (n− 3)/2 for n = 11, 13, and AI (f ) = (n− 5)/2 for
n = 15. For n = 2k + 1, let g1, h1 ∈ Bn with deg(h1) = e
and 1 ≤ deg(g1) = d < k such that fg1 = h1. We need to
obtain the minimal value of d + e to analyze the FAI of f in
(8). Using Algorithm 2 of [1], we can find that (e, d) exist
only for e + d ≥ n − 4 when n = 11, 13, and (e, d) exist
for e + d ≥ n − 6 when n = 15. Thus, FAI (f ) = n − 4 for
n = 11, 13, and FAI (f ) = n−6 for n = 15. This shows that f
in (8) has a good behavior against algebraic and fast algebraic
attacks at least for small n.

B. RESILIENT RSBFs HAVING GOOD
AUTOCORRELATION PROPERTIES
In this subsection, let n be odd with n ≡ 0 mod 3, and let

g(x) =
n∑
i=1

xi+1xi+n/3. Define a vector v ∈ Z(n−1)/2 as

• n = 12k + 3, k ≥ 1:

v = (1, 4, . . . , 12(k − 1)+ 1, 12(k − 1)+ 4, 2,

5, . . . , 12(k − 1)+ 2, 12(k − 1)+ 5, 3,

6, . . . , 12(k − 1)+ 3, 12(k − 1)+ 6, 12k + 1);
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• n = 12k + 9, k ≥ 1:

v = (1, 4, . . . , 12(k − 1)+ 1, 12(k − 1)+ 4, 2,

5, . . . , 12(k − 1)+ 2, 12(k − 1)+ 5, 3,

6, . . . , 12(k − 1)+ 3, 12(k − 1)+ 6, 12k + 1,

12k + 4, 12k + 2, 12k + 5).

Denote by

R = {α1, α2, α3, . . . , αn−1} ⊆ Fn2,

where

supp(αi) = {v(j) : 1 ≤ j ≤ i}, αn−i = ᾱi, 1 ≤ i ≤
n− 1
2

.

For 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n, define

Aj(i) =
∑

x∈Gn(αi)

(−1)g(x+ej)+g(x), (9)

where αi ∈ R, ej = (0, 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, 0, . . . , 0).

Similarly as Lemma 4, we can prove the following result.
Lemma 5: For αi ∈ R and Aj(i) defined in (9), we have
1) wt(αi) = i.
2) |Gn(αi)| = n.
3) If i ≤ (n− 1)/2, then

g(αi) =

{
1, i mod 4 ≡ 2, 3,
0, i mod 4 ≡ 0, 1;

and if i ≥ (n+ 1)/2, then g(αi) = 1− g(αn−i).
4) If n = 12k + 3, Aj(i) = n− 4min{i, n− i} for i ≤ 6k,

Aj(6k + 1) = 3− 12k.
If n = 12k + 9, Aj(i) = n− 4min{i, n− i} for i ≤ 6k,
Aj(6k + 1) = Aj(6k + 2) = 5 − 12k,Aj(6k + 3) =
Aj(6k + 4) = 1− 12k.

For 1 ≤ m ≤ dn/16e and 1 ≤ i1, i2, . . . , i4m ≤ n − 1, let
I = {i1, i2, . . . , i4m} and TI = {αi1 , αi2 , . . . , αi4m} ⊆ R. Let
UI , n− I ,DI be defined as (5) and (6). Note that g(αi) = 0 if
and only if i ∈ UI .
Define

fI (x) =

{
g(x), x ∈ Fn2\T̃I ,
1+ g(x), x ∈ T̃I ,

(10)

where T̃I =
⋃
α∈TI Gn(α). Then fI is an n-variable RSBF.

To investigate the properties of fI (x) in (10), we need the
following result.
Lemma 6: [20] Assume n = 3m, where m is an integer.

Then g(x) =
n∑
i=1

xi+1xi+m is a (m− 1)-resilient RSBF.

Theorem 3: The following properties hold for f (x) defined
in (10).

1) If
4m∑
t=1

Aj = mn and |it1 − it2 | ≥ 2 holds for any it1 , it2 ∈

I , then fI satisfies the strict avalanche criterion.
2) If |UI | = 2m and

∑
i∈UI i =

∑
i∈(I\UI ) i, then fI is

1-resilient.

3) 1fI = 2n − 4n(4m− DI ).
4) σfI < 22n+1 + 2n+8m2n2.
5) If |DI | 6= 4m, fI has no nonzero linear structures.
6) nl(fI ) > 2n−1 − 2

n−1
2 − 4mn.

Proof: 1), 3)∼6) can be proved similarly as Theorem 1,
and next we only prove 2).

Denote T̃1 =
⋃

i∈UI Gn(αi) and T̃2 =
⋃

i∈(I\UI ) Gn(αi).
Note that T̃ = T̃1 ∪ T̃2 and T̃1 ∩ T̃2 = ∅. Then supp(fI ) =
supp(g) ∪ T̃2\T̃1 and |supp(fI )| = |supp(g)| − |T̃1| + |T̃2|.
Clearly, we have |T̃1| = n

∑
i∈UI i and |T̃2| = n

∑
i∈(I\UI ) i.

Note that |I | = 4m. If |UI | = 2m, then |I\UI | = 2m.
It follow that |T̃1| = |T̃2|. By Lemma 6, g(x) is resilient, then
|supp(g)| = 2n−1. Thus |supp(fI )| = 2n−1, that is, fI (x) is
balanced. Assume that α = (1, 0, 0, . . . , 0) ∈ Fn2. Note that
wt(α) = 1.

Wf (α) =
∑

x∈Fn2\T̃

(−1)f (x)+α·x +
∑
x∈T̃

(−1)f (x)+α·x

=

∑
x∈Fn2

(−1)g(x)+α·x − 2
∑
x∈T̃

(−1)g(x)+α·x

=

∑
x∈Fn2

(−1)g(x)+x1 − 2
∑
x∈T̃

(−1)g(x)+x1 .

Since g(x) is resilient, then
∑

x∈Fn2
(−1)g(x)+x1 = 0, it follows

that

Wf (α) = −2
∑
x∈T̃

(−1)g(x)+x1

= −2
∑
x∈T̃1

(−1)x1 + 2
∑
x∈T̃2

(−1)x1

= −2
∑
i∈UI

(n− 2i)+ 2
∑

i∈(I\UI )

(n− 2i)

= 2n(|I | − 2|UI |))+ 4

∑
i∈UI

i−
∑

i∈(I\UI )

i


= 0.

Hence, Wf (α) = 0 holds for any wt(α) = 1. Thus, fI is
1-resilient.
Theorem 4: Let n ≥ 33 be an integer with n ≡ 3 mod 6. If

n ≡ 3 mod 24, let

T = {α1, α3, α5, α n−18
3
, α n+6

3
, α n−9

2
, α n+3

2
, α 2n−3

3
};

if n ≡ 9 mod 24, let

T = {α1, α3, α n−7
2
, α n−3

2
, α n+5

2
, α n+9

2
, αn−8, αn−2};

if n ≡ 15 mod 24, let

T = {α1, α3, α5, α n−18
3
, α n+6

3
, α n−5

2
, α n+7

2
, α 2n−3

3
};

if n ≡ 21 mod 24, let

T = {α1, α3, α n−7
2
, α n−3

2
, α n+5

2
, α n+9

2
, αn−6, αn−4}.
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Denote T̃ =
⋃
α∈T Gn(α) and define an n-variable RSBF as

f (x) =

{
g(x), x ∈ Fn2\T̃ ,
1+ g(x), x ∈ T̃ .

(11)

Then f (x) has the following properties.
1) f satisfies SAC.
2) f is 1-resilient.
3) 1f = 2n − 32n.
4) σf ≤ 22n+1 + 2n+10n2.
5) nl(f ) ≥ 2n−1 − 2

n−1
2 − 8n.

6) f has no nonzero linear structures.
7) deg(f ) = n− 2.
Proof: 1)∼6) can be verified easily according to

Theorem 3. Now we only need to consider deg(f ). Denote
c2 the coefficient of x1x2 · · · xn/x1x2 in the ANF of f (x). Let
S be a subset of Fn2, and denote NS the number of vectors in
the S with the 1-th entry and 2-th entry being 0. Obviously,
c2 = Nsupp(f ) mod 2.

It is not difficult to find that

Nsupp(f ) ≡ Nsupp(g) +
∑
α∈T

NGn(α) mod 2.

Since deg(g) = 2, then Nsupp(g) ≡ 0 mod 2. It follows that

Nsupp(f ) ≡
∑
α∈T

NGn(α) mod 2.

When n = 24k + 3 for k ≥ 1, we have

NGn(α1) = 24k + 1,NGn(α3) = 24k − 4,

NGn(α5) = 24k − 8,NGn(α8k−5) = 12k − 8,

NGn(α8k+3) = 12k − 7,NGn(α12k−3) = 10k − 4,

NGn(α12k+3) = 10k,NGn(α16k+1) = 4k + 3.

Hence, we have Nsupp(f ) ≡ 1 mod 2, that is, c2 = 1. Then
deg(f ) ≥ n−2. Furthermore, by Lemma 1 we have deg(f ) =
n − 2. Similarly, we also can prove that this holds for other
cases.

IV. ENUMERATION OF ODD-VARIABLE RSBFs
SATISFYING SAC
In this section, we investigate the lower bound on the number
of odd-variable RSBFs satisfying SAC based on integer par-
tition. Firstly, we recall some notions about integer partition.
For three integers s, t and r , denote L(r; t, s) the number of
partitions of r satisfying the following conditions:
• a1 + a2 + · · · + at = r
• 1 ≤ a1, a2, · · · , at ≤ s,

denote M (r; t, s) the number of partitions of r satisfying the
following conditions:
• a1 + a2 + · · · + at = r
• 1 ≤ a1 ≤ a2 ≤ · · · ≤ at ≤ s,

and denote N (r; t, s) the number of partitions of r satisfying
the following conditions:
• a1 + a2 + · · · + at = r

• 1 ≤ a1 < a2 < · · · < at ≤ s.
Theorem 5: Let n ≥ 13 be odd and An be the number of

n-variable RSBFs satisfying SAC, then we have

An ≥
φ(n)
2

dn/16e∑
m=1

4m∑
k=0

mn−(4m−k)2∑
l=k2

h(m, k, l),

where

h(m, k, l) =
∏

r∈{k,4m−k}

(
r∑

u=0

M (g(r); r − u,
n+ 1− 4r

2
)

)

with g(k) = l − k2 and g(4m− k) = mn− l − (4m− k)2.
Proof: For 2 ≤ s ≤ n+1

2 with gcd(s− 1, n) = 1 and 1 ≤
m ≤ dn/16e, let I = {i1, i2, . . . , i4m}, 1 ≤ i1, i2, . . . , i4m ≤
n− 1, and fs,I be defined in (7). Denote

I = {I :
4m∑
t=1

min{it , n− it } = mn, |it1 − it2 | ≥ 2}.

Then fs,I satisfies SAC if I ∈ I. Denote Fs = {fs,I : I ∈ I},
that is, the set of fs,I satisfying SAC. Note thatFs1 ∩Fs2 = ∅
for s1 6= s2. Since

|{2 ≤ s ≤
n+ 1
2
: gcd(s, n) = 1}| =

φ(n)
2
,

then An ≥
φ(n)
2 |I|.

Assume that I ∈ I and

1 ≤ i1 < i2 < · · · < ik ≤
n− 1
2

< ik+1 · · · < i4m ≤ n− 1,

1 ≤ k ≤ 4m − 1. Clearly, there exists a sequence
11,12, . . . ,14m such that ij = (2j− 1)+1j for 1 ≤ j ≤ k
and n− ij = 2(4m− j)+ 1+1j for k + 1 ≤ j ≤ 4m, where

0 ≤ 11 ≤ 12 ≤ · · · ≤ 1k ≤
1+ n− 4k

2
,

0 ≤ 14m ≤ 14m−1 ≤ · · · ≤ 1k+1 ≤
1+ n− 4(4m− k)

2
.

(12)

For given m, k and l = i1+ i2+ · · · + ik , we now consider
the possible values of 1j, 1 ≤ j ≤ 4m. Note that

l = k2 +11 +12 + · · · +1k ,

mn− l = (4m− k)2 +1k+1 +1k+2 + · · · +14m. (13)

By (12) and (13), we have

k2 ≤ l =
k∑
j=1

ij ≤ mn− (4m− k)2.

Hence, if 11 = · · · = 1u = 0 < 1u+1 ≤ · · · ≤ 1k ,
0 ≤ u ≤ k , the number of choices of 11,12, . . . ,1k is
M (l − k2; k − u, n+1−4k2 ). Similarly, the number of choices
of 1k+1,1k+2, . . . ,14m is

M (mn− l − (4m− k)2; 4m− k − u,
n+ 1− 4(4m− k)

2
),
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where 0 ≤ u ≤ 4m− k . Then, for given m, k and l, the total
number of possible choices of 11,12, . . . ,14m is

h(m, k, l) =
∏

r∈{k,4m−k}

(
r∑

u=0

M (g(r); r − u,
n+ 1− 4r

2
)

)
,

where g(k) = l − k2, g(m − k) = mn − l − (4m − k)2. By
considering the cases of k = 0 (i1, i2, . . . , i4m > n−1

2 ) and
k = 4m (i1, i2, . . . , i4m ≤ n−1

2 ), we have

|I| =
dn/16e∑
m=1

4m∑
k=0

mn−(4m−k)2∑
l=k2

h(m, k, l). (14)

Then the result follows.
Theorem 6: Let Bn be the number of n-variable balanced

RSBFs satisfying SAC for odd n ≥ 39. If n ≡ 1 mod 4, then

Bn > 132φ(n)N (
n− 13

4
; 3, b

n− 9
8
c)

+120φ(n)N (
n− 13

4
; 4, b

n− 9
8
c).

If n ≡ 3 mod 4, then

Bn > 192φ(n)N (
n− 11

4
; 3, b

n− 9
8
c)

+96φ(n)N (
n− 11

4
; 4, b

n− 9
8
c).

Proof: For 2 ≤ s ≤ n+1
2 with gcd(s− 1, n) = 1 and 1 ≤

m ≤ dn/16e, let I = {i1, i2, . . . , i4m}, 1 ≤ i1, i2, . . . , i4m ≤
n− 1, and fs,I be defined in (7). Denote i′t = min{it , n− it },
1 ≤ t ≤ 4m, and MI = {i′1, i

′

2, . . . , i
′

4m}. Denote

I = {I :
∑
i′t∈MI

i′t = mn, |it1 − it2 | ≥ 2,

|{it ∈ I : it mod 4 ≡ 0, 1}| = 2m}

for n ≡ 3 mod 4, and denote

I = {I :
∑
i′t∈MI

i′t = mn, |it1 − it2 | ≥ 2,

|{it ∈ I : it <
n+ 1
2

, it mod 4 ≡ 0, 1}|

+|{it ∈ I : it ≥
n+ 1
2

, it mod 4 ≡ 2, 3}| = 2m}

for n ≡ 1 mod 4. Note that fs,I is a balanced RSBF satisfying
SAC if and only if I ∈ I. Clearly, we have Bn ≥

φ(n)
2 |I|.

Next we set m = 1 and give an estimate of |I| by considering
the possible cases of MI . When n ≡ 3 mod 4, if fs,I satisfies
SAC, then MI should be one of the following cases:

MI = {4k1 + 1, 4k2 + 1, 4k3 + 2, 4k4 + 3},

MI = {4k1 + 1, 4k2 + 1, 4k3 + 1, 4k4 + 4},

MI = {4k1 + 1, 4k2 + 2, 4k3 + 2, 4k4 + 2},

MI = {4k1 + 1, 4k2 + 2, 4k3 + 4, 4k4 + 4},

MI = {4k1 + 2, 4k2 + 2, 4k3 + 3, 4k4 + 4},

MI = {4k1 + 1, 4k2 + 3, 4k3 + 3, 4k4 + 4},

MI = {4k1 + 2, 4k2 + 3, 4k3 + 3, 4k4 + 3},

MI = {4k1 + 3, 4k2 + 4, 4k3 + 4, 4k4 + 4},

where k1, k2, k3, k4 ≥ 0. Andwhen considering the balanced-
ness of fs,I , MI should be one of the following cases:

MI = {4k1 + 1, 4k2 + 1, 4k3 + 2, 4k4 + 3},

MI = {4k1 + 1, 4k2 + 3, 4k3 + 3, 4k4 + 4}.

For the case of MI = {4k1 + 1, 4k2 + 1, 4k3 + 2, 4k4 + 3},
we have

4k1 + 1+ 4k2 + 1+ 4k3 + 2+ 4k4 + 3 = n,

that is, k1 + k2 + k3 + k4 = n−7
4 , where k1, k2, k3, k4 ≤ n−7

8 .
Now we consider the possible values of ki by assuming that
the values of ki are different. The discussion is divide into the
following cases.
• k1 = 0. The number of k ′1, k

′

2, k
′

3 satisfying 0 <

k ′1 < k ′2 < k ′3 ≤
n−7
8 and k ′1 + k ′2 + k ′3 =

n−7
4

is N ( n−74 ; 3, b
n−7
8 c). Considering the relationship of

k2, k3, k4, we have |MI | = 6N ( n−74 ; 3, b
n−7
8 c). Hence,

for given i′t ∈ MI , either it < n
2 or it > n

2 . Thus,
the number of I ∈ I is

96N (
n− 7
4
; 3, b

n− 7
8
c).

• k3 = 0 or k4 = 0. The number of I ∈ I is
48N ( n−74 ; 3, b

n−7
8 c).

• k1, k2, k3, k4 6= 0. The number of I ∈ I is
96N ( n−74 ; 4, b

n−7
8 c).

Thus, the number of I ∈ I in this cases is

192N (
n− 7
4
; 3, b

n− 7
8
c)+ 96N (

n− 7
4
; 4, b

n− 7
8
c).

For the cases ofMI = {4k1+1, 4k2+3, 4k3+3, 4k4+4},
we also can also deduce that the number of I ∈ I is

192N (
n− 11

4
; 3, b

n− 9
8
c)+ 96N (

n− 11
4
; 4, b

n− 9
8
c).

Therefore,

Bn > 192φ(n)N (
n− 11

4
; 3, b

n− 9
8
c)

+96φ(n)(
n− 11

4
; 4, b

n− 9
8
c).

When n ≡ 1 mod 4, we can similarly deduce that

Bn > 132φ(n)N (
n− 15

4
; 3, b

n− 9
8
c)

+120φ(n)N (
n− 15

4
; 4, b

n− 9
8
c).

This completes the proof.
Remark 1: Note that the bounds in Theorems 5 and 6 are

stated by N (r; t, s) and M (r; t, s), which don’t have concrete
expressions yet. Fortunately, the formula of L(r; t, s) has been
presented in [4]:

L(r; t, s) =
t∑
j=0

(−1)j
(
t
j

)(
t + r − j(s+ 1)− 1

t − 1

)
.
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TABLE 1. The lower bounds on number of RSBFs satisfying SAC.

Based on L(r; t, s), we can give an estimation of M (r; t, s)
and N (r; t, s) as

M ′(r; t, s)

=
L(r; t, s)

t!

=

t∑
j=0

(−1)j
(
t
j

)(
t + r − j(s+ 1)− 1

t − 1

)/
t!,

N ′(r; t, s)

=
L(r − t(t−1)

2 ; t, s)

t!

=

t∑
j=0

(−1)j
(
t
j

)(
t + r − t(t−1)

2 − j(s+ 1)− 1
t − 1

)/
t!.

Obviously, we have M (r; t, s) ≥ M ′(r; t, s),N (r; t, s) ≥
N ′(r; t, s).
In Table 1, we present the lower bounds on the number

of odd-variable RSBFs satisfying SAC (An) and the number
of balanced odd-variable RSBFs satisfying SAC (Bn) for
some n by considering all of the possible choices of Ts,I in
Theorem 1.

V. CONCLUSION
This paper presents a theoretical framework for constructing
balanced odd-variable RSBFs satisfying SAC. Some of the
obtained functions have good GAC properties, optimal alge-
braic degree, resiliency, high nonlinearity and nonexistence
of nonzero linear structures at the same time. In addition,
the count results about odd-variable RSBFs satisfying SAC
are also considered.
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