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ABSTRACT Tongue coating can provide valuable diagnostic information to reveal the disorder of the
internal body. However, tongue coating classification has long been a challenging task in Traditional
Chinese Medicine (TCM) due to the fact that tongue coatings are polymorphous, different tongue coatings
have different colors, shapes, textures and locations. Most existing analyses utilize handcrafted features
extracted from a fixed location, which may lead to inconsistent performance when the size or location of
the tongue coating region varies. To solve this problem, this paper proposes a novel paradigm by employing
artificial intelligence to feature extraction and classification of tongue coating. It begins with exploiting
prior knowledge of rotten-greasy tongue coating to obtain suspected tongue coating patches. Based on
the resulting patches, tongue coating features extracted by Convolutional Neural Network (CNN) are used
instead of handcrafted features. Moreover, a multiple-instance Support Vector Machine (MI-SVM) which
can circumvent the uncertain location problem is applied to tongue coating classification. Experimental
results demonstrate that the proposed method outperforms state-of-the-art tongue coating classification
methods.

INDEX TERMS Tongue coating classification, multiple-instance learning, deep features.

I. INTRODUCTION
Tongue diagnosis is an effective treatment in Traditional
Chinese Medicine (TCM). The tongue is rich in geometric
features and texture features, which are closely linked to the
physiological information of human organs. For a long time,
tongue diagnosis mainly relies on TCM practitioner’ clinical
experience to make visual judgment and analysis. Obviously,
it is imperative to utilize the objective and automatic identifi-
cation technology to tongue diagnosis. In recent years, a large
number of researches based on tongue images have emerged
in the field of artificial intelligence.

Tongue image classification is an important task in tongue
diagnosis. It is used to identify the type of tongue image
to help TCM physicians make further diagnostic decisions.
For this type of automatic diagnosis, a feature extractor is
usually used to extract the features of tongue, and then a
classifier is utilized to do the final classification. The tongue

The associate editor coordinating the review of this manuscript and

approving it for publication was Liangxiu Han .

can be classified by examining its color, shape, texture and
other features. For example, Hou et al. [1] performed tongue
color classification by modified CaffeNet [2]. Tooth-marked
tongue is identified according to whether there are tooth
marks on the edge of the tongue. Li et al. [3] fused a Convolu-
tional Neural Network (CNN) variant into the recognition of
tooth-marked tongue. Zhang and Zhang [4] examined tongue
shape and its relationship to patient status. Thirteen geometry
features including measurements, distances, areas, and their
ratios were extracted from each tongue image and classified
using a decision tree. Tang et al. [5] used a cascaded CNN to
detect the tongue region and tongue landmarks. Meanwhile,
a fine-grained classification network was utilized to recog-
nize the tooth-marked tongue.

Tongue image alignment is a fundamental issue of tongue
diagnosis, which is the mapping of points or subregions
among different tongue images. Wu et al. [6] presented a
conformal mappingmethod for tongue image alignment. And
Dai and Wang [7] proposed a method called the conceptual
alignment deep autoencoder to analyze tongue images that
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FIGURE 1. Different tongue coatings. (a) Normal tongue coating. (b-f) Typical rotten-greasy tongue coatings.

represent different body constitution types. These methods
provided an efficient and accurate tool for deformable medi-
cal image alignment and disease diagnosis.

It is appealing that the tongue can be used for biomet-
ric recognition because of its rich individual characteristics.
Yang et al. [8] exploit appearance manifold learning method
to represent the dynamic shape changes of the tongue for
identity verification.

From the TCM perspective, tongue coatings are closely
related to people’s health. Tongue coatings correspond to the
floating layers of the tongue, whose colors, shapes and tex-
tures can reflect the internal state of the body and organs [9].
This paper focuses on how to distinguish rotten-greasy tongue
coating from normal tongue coating based on tongue image.
Rotten-greasy tongue coating is thick and loose, resembles
residues of bean curd and always locates in the middle and
rear of the tongue body [10]. Normal tongue coating is usu-
ally thin and pale white. Fig. 1 shows normal and different
rotten-greasy tongue coatings, (a) is a normal tongue coating
image and (b-f) correspond to typical rotten-greasy tongue
coating images.

Tongue diagnosis is a kind of inspection. TCM practi-
tioners observe tongue of the patients and make a deci-
sion according to its color, shape, and texture. To the best
of our knowledge, this is the first time that ‘‘TCM vision
concept,’’ proposed in this paper, is applied to the sim-
ulation of TCM inspection diagnosis. These concepts are
only implicitly meaningful to TCM practitioner, but not to
others. In fact, the rotten-greasy coating is a unique vision
concept in TCM. The classification of tongue coatings is a
challenging task for three reasons. First, the classification
of tongue coatings into different subclasses can be viewed
as a fine-grained classification problem since normal and

rotten-greasy tongue coatings are only different symptom of
the floating layer of the tongue. Fine-grained classification
refers to the task of differentiating objects that belong to
the same base class [11]. It demands a powerful algorithm
to discriminate among object classes with a high degree of
similarity that are often differentiated by only subtle differ-
ences such as different species of birds or dogs. Second, there
lacks further information (such as the location or size of the
tongue coating patch) because a tongue image is always either
labeled as normal coating tongue or rotten-greasy coating
tongue. Third, in a rotten-greasy coating tongue, normally,
the area covered by rotten-greasy coating may account for
only a small proportion, while the normal coating area con-
stitutes a larger proportion. Therefore, there is too much
noise in the rotten-greasy coating tongue, which affects the
classification accuracy.

In this paper, we try to solve these aforementioned prob-
lems by multiple-instance learning (MIL) [12] and deep
learning.

MIL is first proposed by Dietterich et al. [12]. In the
MIL method, a classifier is learned based on a training set
of bags, where each bag contains multiple feature vectors
(called instances in the MIL terminology) [13]. As described
in [14], the classification of tongue coatings maps naturally
to a multiple-instance problem. Along this line of thought,
only coarsely labeled images are required to train a MIL
model. In the medical image classification task, Support Vec-
tor Machine (SVM) is a common tool for high dimensional
feature classification. Lin et al. [15] used SVM for diabetic
tongue image recognition. And Wan et al. [16] proposed
using SVM for the identification of fissured tongue. In our
paper, we embed MIL into SVM as a classifier. On the other
hand, the quality of feature extraction, an important step of
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tongue coating classification, directly determines the final
classification performance. Inspired by the success of CNN,
a fine-tuned CNN, instead of handcrafted feature extraction,
is utilized to extract deep features of the tongue coating
patches. The contributions of this paper can be summarized
as follows.
• MIL is introduced into the tongue coating classification
task to alleviate the coarsely labeling problem of tongue
coating images

• We propose a method to find important patches related
to the rotten-greasy information in a tongue body.

• Extensive experiments is conducted to select appreciate
patch size and CNN [17] structure, the results demon-
strate effectiveness of our method.

The remaining of this paper is organized as follows.
In section. II, we review methods of tongue coating classifi-
cation in recent years. In section. III, the proposed method is
elaborated. Experimental results are presented in section. IV.
Finally, we make a conclusion and discuss the future work
in section. V. Our implementation has been released1 to
facilitate further developments on MIL based tongue coating
classification.

II. RELATED WORK
TCM tongue diagnosis relies heavily on the clinical experi-
ence of TCM practitioners. Nowadays, there have been some
researches combining modern technology to tongue coating
classification, which mainly uses machine learning methods
to objectively analyze the distribution of tongue images.
We will introduce them in this section and the corresponding
experimental results are shown in Table 6.
Wei et al. [18] used the improved subspace method to

analyze the texture density of tongue coating. The tongue
body was divided into fixed-size blocks, and each block
was classified. Based on the classification results, the rotten-
greasy index and description of the entire tongue image were
given. When classifying tongue coating blocks, an improved
subspace method was used, and the projection length ratio
was used as the classification distinguishing feature to ana-
lyze the density of texture structure.

Zhang et al. [19] extracted four feature vectors: con-
trast (CON), angular second moment (ASM), entropy (ENT)
and correlation (COR) of the gray-level co-occurrence
matrix (GLCM) in tongue coatings to determine the features
of rotten-greasy tongue coatings.

Qu et al. [20] proposed a tongue coating classification
method based on Gabor wavelet transform. First, the whole
tongue image was transformed by Gabor wavelet. After
weaking the edge of the tongue body, the mean value and
standard deviation were extracted as the texture features to
recognize the rotten-greasy tongue coatings.

Choraś et al. [21] used a bank of filters built from the real
part of Gabor expression, named even symmetric Gabor filter.
By selecting different center frequencies and orientations,

1https://github.com/Hazel-4/litangsun

a family of Gabor kernels was formed to extract features from
a tongue image. Li et al. [22] extracted the center patch of a
tongue body and classified tongue coating using Gabor and
Tamura features of a patch.

Deep learning has good performance in many computer
vision tasks, such as image classification, object detection,
semantic segmentation and so on. Deep learning method
has a strong self-learning ability, which can obtain an
implicit expression of image rules through repeated learn-
ing. Therefore, deep learning method has unique advantages
in extracting features and classifying images. Fu et al. [23],
combining basic image processing with deep learning,
derived tongue coating features through deep neural net-
works. Zhang et al. [24] realized automatic classification of
tongue texture color and tongue coating color through a neu-
ral network. Yang and Zhang [25] proposed a tongue image
classification method based on transfer learning and fully
connected neural network, which can effectively improve the
accuracy of tongue image classification.

The methods mentioned above, however, have some draw-
backs. Firstly, handcrafted features used in the methods
of Wei et al. [18], Zhang et al. [19], Qu et al. [20],
Choraś et al. [21] and Li et al. [22] cannot describe the salient
characteristic of tongue coating. Secondly, although themeth-
ods of Fu et al. [23], Zhang et al. [24] and Yang and Zhang
[25] based on deep neural networks can extract deep features,
it only focuses on global information rather than local one,
which may adversely affect the classification result due to
more irrelevant information captured.

III. METHOD
As shown in Fig. 2, the proposed method is composed of
three stages. First, rotten-greasy tongue coating informa-
tion is utilized to select suspected tongue coating patches.
Then, a CNN is used to extract fixed-length feature vec-
tors for each tongue coating patch. At last, feature vec-
tors belong to one tongue image are grouped into a bag
to obtain an arranged feature vector, and the label of the
bag is the label of the original image. Then, a multiple-
instance Support Vector Machine (MI-SVM) [26] is used to
perform the classification. The details will be described in this
section.

A. OBTAINING SUSPECTED ROTTEN-GREASY
COATING PATCHES
The goal of this step is to obtain suspected rotten-greasy
coating patches for training the MI-SVM. The suspected
rotten-greasy coating patches are not clearly labeled, but there
exists at least one tongue coating patch with rotten-greasy
information in a rotten-greasy coating tongue. Therefore,
we manually select patches in the area with a high probability
of rotten-greasy information. According to the TCM perspec-
tive and our observation (as shown in Fig. 4), the rotten-
greasy coating always appears in the middle and rear of a
tongue body, while the rest of the tongue can be ignored.
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FIGURE 2. The system diagram of the proposed method. Left: Patch selection. Middle: Feature extraction. Right: A multiple-instance SVM is trained to
classify the tongue.

FIGURE 3. The diagram illustrating the process of patch selection.

Thus, these patches selected from a rotten-greasy coating
tongue can satisfy the assumption of multiple-instance binary
classification that there exists at least one positive instance
in a positive bag. Patches obtained from a healthy coating
tongue include only healthy ones.

The steps of obtaining the patches proceed as follows.
Step 1: The rectangle circumscribing the tongue is denoted

as R. The height and width of the rectangle are
denoted as H and W , respectively.

Step 2: Draw a horizontal line H
3 from the top of the tongue,

denoted as Q. Use QL , QR to denote its left and right
intersection point with the edge of the tongue. The
width of the intersection line is denoted asWQ.

Step 3: Find C1 on line Q. C1 is located WQ
3 to the right of

QL . Take C1 as the starting point and WQ
3n the step

length, find Ci (i = 2, 3, . . . , n+ 1) rightwards. For
each Ci, draw a square with Ci as its center and

WQ
6

as its side length. The squares represent the selected
patches.

As shown in Fig. 3, by changing the side length and the
step length, we can obtain tongue coating patches of different
sizes and quantities. The experiment to select the optimal
sizes and quantities of tongue coating patches is shown in
section. IV-C.

B. CONVOLUTIONAL NEURAL NETWORK
In our method, robust texture features are needed to describe
tongue coating patches. Motivated by the characteristics of
CNN which can naturally integrate low/mid/high level fea-
tures, we use a CNN to extract fixed-length feature vectors of
the tongue coating patches instead of traditional handcrafted
methods.

AlexNet [27], VGG16 [28], and ResNet [29] are three
popular CNN models in recent years, and we tried all three
models in the experiment. Details of the comparative experi-
ments of the three models will be described in section. IV-D1.
In Table 1, we compared the characteristics of the three
networks in terms of structure and calculation speed. The
symbol (+) indicates the method is used and the symbol
(−) indicates the method is not used. In the table, GFLOPS
(giga floating-point operations per second) represents the
computation speed of the model and FC represents the fully
connected layers.

TABLE 1. System layouts of three different of CNN models.

Hosny et al. [30] utilized transfer learning with pretrained
AlexNet, a highly accurate method, for skin lesion classifica-
tion. AlexNet has the smallest layer numbers and the fastest
operating speed. The activation function of AlexNet adopted
the Rectified Linear Units (ReLU) instead of the traditional
sigmoid function and the tanh function, which can solve the
gradient dispersion problem in the deep network. The dropout
technology was used to avoid model overfitting. For AlexNet,
its first five layers are convolution layers and the remaining
three layers are fully connected layers. The local response
normalization (LRN) layer following the first and the second
convolution layers fixes the means and variances of layer
inputs to ensure that the distribution of each batch is close
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to the true distribution [31]. Pooling layers follow the first
two LRN layers and the fifth convolution layer. The ReLU
non-linearity is applied to the output of each convolution
layer and fully connected layer [27].

VGG16 is proposed by the Visual Geometry Group at
Oxford University. VGG16 performs well in transfer learning
task. So far, this model is still used to extract image features.
For example, [32] shown that VGG16, as a transfer learning
model based on convolutional neural network, can be used
to construct an effective extractor of abdominal ultrasound
images. VGG16 improves AlexNet by replacing large-size
convolutional kernels (11 × 11 and 5 × 5 kernels in the
first and second convolution layer, respectively) withmultiple
3 × 3 convolutional kernels one after another. With a given
receptive field (the effective area size of input image on
which output depends), multiple stacked smaller size kernels
are preferred than one with a larger size kernel. Although
multiple non-linear layers increase the depth of the network,
it enables the network to learn more complex features at a
lower cost.

ResNet, with 50 layers, is the deepest among the three
models. It consists mostly of 3 × 3 kernels, which is similar
to VGG16. Each convolution layer is followed by a batch
normalization layer and a ReLU activation function to alle-
viate vanishing gradient. Shortcut connection is inserted to
VGG16 to form a residual network. Thus, ResNet with a
depth of up to 50 layers still possesses lower complexity
and the degradation problem can be well addressed. Resid-
ual networks are characterized by their ease of optimization
and their ability to increase accuracy by adding considerable
depth. Wang et al. [33] proposed an artificial intelligence
framework using ResNet for the recognition of tooth-marked
tongue. The model had good effectiveness and the overall
accuracy was over 90%. Therefore, we also used a typical
ResNet architecture consisting of 50 layers to classify the
tongue coating images in the present study.

C. FEATURE EXTRACTION
In this stage, we use a CNN to extract fixed-length feature
vectors of tongue coating patches instead of using the whole
tongue image. In this paper, a fine-tuned ResNet is applied as
the feature extractor and the fine-tune experimental details
are delineated in section. IV-B2. The ResNet model has
50 weight layers, 49 of which are convolutional layers and
the remaining 1 is a fully connected layer. There are a total
of 2048 units in the last pooling layer and the outputs of this
layer are used as features.

The tongue coating patches obtained according to the
method described in section. III-A are used as inputs, and
the network outputs a 2048-deimension vector. Thus, a 2048-
dimension feature vector for every suspected tongue coating
patch is obtained.

D. CLASSIFICATION
In this stage, a MI-SVM is trained to classify the tongue
images. In the MIL task, a classifier based on a training set

of bags, where each bag contains multiple feature vectors,
is learned [13]. The main idea ofMI-SVM is to maximize bag
margin which serves as an extension of the instance margin
of standard SVM, and the details are thoroughly introduced
in [26].

In our method, a tongue image is represented as a bag and
a patch are represented as a instance in the bag. we denote
X = {X1,X2, . . . ,XN } as a set of bags, the ith bag X i ={
xi1, xi2, . . . , ximi

}
, where N and mi denote the number of

bags and number of instances in bag X i respectively, and xij
denotes the jth instance of the ith bag. A binary lable Yi is
associated with the bag X i, while the instance lable yij in the
bag is ambiguous. Yi = −1 indicates a negative bag (rotten-
greasy tongue coating image) where all instance are negative.
And Yi = +1 represents a positive bag (normal tongue coat-
ing image) containing at least one positive instance. In MI-
SVM, the function margin of a bag is defined as:

γi = Yi max
1≤j≤mi

(〈
ω, xij

〉
+ b

)
. (1)

Parameters ω and b are the normal vectors and intercepts of
the hyperplane respectively.

The MI-SVM aims at maximizing the bag margin, which
is defined as follows:

min
ω,b,ξ

1
2
‖ω‖2 + C

N∑
i=1

ξi,

s.t. ∀i : Yi max
1≤i≤mi

(〈ω, xi〉 + b) ≥ 1− ξi, ξi ≥ 0. (2)

ξ is the relaxation factor and C is the penalty parameter.
When the value ofC is large, the penalty for misclassification
increases, and when the value of C is small, the penalty for
misclassification decreases. In MI-SVM, the bag margin is
determined by only one of its instance. For a positive bag,
the margin is decided by the most positive instance, while
the margin of a negative bag is up to the least negative
instance [34]. The label of the bag is then the label of the
image.

IV. EXPERIMENT AND DISCUSSION
In this section, our tongue coating classification experi-
ment are introduced. The limitations and requirements of
dataset collection is discussed in section. IV-A. The pre-
trained ResNet is fine-tuned to learn deep features of tongue
coating patches (section. IV-B). The selection of suspected
rotten-greasy coating patches is discussed in section. IV-C.
We conduct some comparative experiments, including com-
paring the performance of different feature extractors, differ-
ent classifiers and the proposed method with other methods
(section. IV-D, section. IV-E and section. IV-F, respectively).

A. DATASET COLLECTION
Data collection is challenging for tongue coating classifica-
tion. Two problems often arise when collecting data. The first
problem is the standardization of illumination and imaging
camera. Different light sources and environments always
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affect illumination, while the lens and the Charge Coupled
Device (CCD) of the imaging camera will influence the cap-
tured picture [9]. The second problem involves privacy, when
we intend to use patients’ tongue images as dataset for the
study of tongue diagnosis, their consents are required. As a
result, the number of tongue images we can collect is limited.

Fortunately, our dataset has no problem with the effects
of illumination, as all of the tongue images are captured
under a standard light source. In addition, the images are col-
lected clinically by DS01-B Information Collection System
of Tongue and Face Diagnosis, professional equipment pro-
vided by Shanghai Daosheng Medical Technology Co., Ltd.

In many pattern recognition and matching problems, for
example the identification and verification of identities,
the annotation of single sample is straightforward and objec-
tive. However, in TCM, since some symptoms are not visually
apparent and the texture of the rotten-greasy tongue coating
is not very obvious, there may be noise labels in the tongue
images. To solve the problem above, the label of a tongue
image is proceeded voted by five TCM practitioners and
only tongue images with a judgment rate of 80% or above
were accepted into the sample set. The dataset used in our
paper includes 274 samples of tongue images, 186 of them
are normal tongue coating images and 88 are rotten-greasy
ones. On the other hand, in order to better analyze the tongue
images, we used Photoshop to extract the tongue body part
from the original image.

B. TRAINING ON CNN
We hope that by training the ResNet network, it will be able to
identify the characteristics of different tongue coatings. The
features of suspected rotten-greasy coating patches can be
extracted by the fine-tuning ResNet model. And the feature
extraction method is as described in section. III-C.

1) DEEP FEATURES OF ROTTEN-GREASY COATING PATCH
CNN can be a powerful feature extractor. We hope that CNN
can effectively extract deep features combining color, shape
and texture information to describe tongue coating patches.
Therefore, when training a CNN, we manually label patches
with salient features in each tongue image as input.

In order to obtain deep features of rotten-greasy coating
patch, the method of obtaining tongue coating patches is
described as follows. The tongue coating patches that contain
rotten-greasy features are generated using the bounding boxes
on rotten-greasy tongue coating images provided by TCM
practitioners. For normal tongue coating images, patches are
chosen in the area with normal coating characteristics. And
for each tongue image, 10-15 patches are obtained and each
patch is about 180-300 pixels wide and 240-400 pixels high.
Unlike the suspected rotten-greasy tongue coating patches,
these patches for training a CNN are clearly labeled.

2) TRAINING
In our paper, we use the ResNet described in [29] as a fea-
ture extractor. Since tongue coating classification is a binary

classification problem, we drop the last 1000-way fully con-
nected layer and replace it with a 2-way fully connected layer
during the network fine-tuning.

The network is first pretrained on ILSVRC [35] dataset
and then followed by fine-tuning on tongue coating patches.
All tongue coating patches are obtained using the method
shown above. These patches are only used for fine-tuning
the network. There are 3333 tongue coating patches in total,
among which 1183 are rotten-greasy coating patches and
2150 are normal coating patches, which are, however, not
enough to train such a high-capacity network. The network
would fail to converge if it is not pretrained.

Size of tongue coating patches is variable, while our sys-
tem demands a constant input dimension. Therefore, for
the input of neural network models (AlexNet, VGG16 and
ResNet), we sample the patches to a fixed size of 224 ×
224. Given a rectangular patch, we first scale the patch so
that the length of the short side is 256, and then crop out the
central 256 × 256 patch from the resulting patch. At last a
fixed-size 224×224 sub-patch is randomly cropped from the
256 × 256 patch to be trained on the ResNet.
During training, we took seven tenths of the total number of

tongue coating patches as the training set, and the remaining
three tenths as the test set, and kept the balance between the
number of rotten-greasy coating patches and normal coating
patches in the training set and test set. We use stochastic
gradient descent to fine-tune the network with a batch size
of 32 and a learning rate of 0.00001. We stop the training
after 30 epoches since the accuracy ceases increasing. Thus,
the fine-tuned ResNet has the ability to extract deep features
of different tongue coatings.

C. DISCUSSION ON THE SELECTION OF SUSPECTED
ROTTEN-GREASY COATING PATCHES
In this section, we introduce the method of choosing the
reasonable position, size and quantity of the suspected
rotten-greasy coating patches in each tongue body for the
classification stage. All the tongue images were segmented
manually from the background for better analysis. According
to the TCM perspective and our observation, rotten-greasy
coatings always appear in the middle and rear of a tongue
body. Our experiments will subsequently lead to an objective
conclusion about this.

Our dataset includes 274 tongue coating images. We per-
form fivefold cross-validation on this dataset to prove the
effectiveness of the proposed method. The details of the
dataset are described in section. IV-A. The dataset is ran-
domly shuffled and partitioned into five subsets and the
balance between the amount of rotten-greasy tongue coating
images and normal tongue coating images is maintained in
each subsets. Each time, four subsets are selected for train-
ing and the remaining one for testing. It should be noted
that the samples of MI-SVM training are suspected tongue
coating patches selected using the method described in
section. III-A.
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FIGURE 4. Statistical histograms of the position, height and width of the
rotten-greasy tongue coating in the tongue body.

Firstly, for all rotten-greasy tongue coating images, distri-
bution of tongue coating areas is counted and the location
information is integrated. Statistical histogram of the posi-
tion, height and width of the rotten-greasy tongue coatings in
the rotten-greasy tongue coating body is shown in Fig. 4. If a
position Q on the tongue body is determined, we denote A as
the vertical distance from Q to the root of the tongue and B
as the horizontal distance from Q to the left boundary of the
tongue. If the height of the tongue body is H and the width is
W , then the value of X -axis is A×H and the value of Y -axis is
B×W . The Z -axis is the probability of having a rotten-greasy
tongue coating at this position. For each rotten-greasy tongue
image, the rotten-greasy tongue coating is counted according
to whether the positionQ contains rotten-greasy tongue coat-
ing. Let M denotes the number of the rotten-greasy tongue
images andm denotes the number of the rotten-greasy tongue
coating at this position, then the probability of the occurrence
of rotten-greasy tongue coating at the position is defined as
z = m

M . This statistical result verifies our pervious claim
about the position of the rotten-greasy tongue coatings.

Secondly, in order to determine the optimal size and quan-
tity of the suspected rotten-greasy coating patches in each
tongue body for the classification stage, we conduct a series
of experiments which use different sizes and quantities of
tongue coating patches in each tongue image. As mentioned
above, we select patches in the middle and rear of the
tongue. All experiments are based on the proposed methods,
in which the suspected rotten-greasy tongue coating patches
are obtained using the method detailed in section. III-A,
ResNet is used as a feature extractor and MI-SVM is uti-
lized to perform the final classification. Experimental results
in Table 2 show that our method has the highest accuracy
when the size of the suspected tongue coating patches is
300 × 300 and the quantity is 5 in each tongue images.
Therefore, in the following experiments, the suspected tongue
coating patches are all obtained from the middle and rear of
the tongue body, the quantity of patches of each tongue image
is 5, and the size is 300× 300.

D. COMPARISON BETWEEN DIFFERENT FEATURES
In this section, we conduct experiments on the dataset
described in section. IV-A using the proposed method and

TABLE 2. Comparison of eight experiments with different patch
quantities and sizes.

compare the performance between ResNet and other fea-
ture extractors in extracting the features of tongue coating
patches. The same MI-SVM classifier is used to test the
performance of different feature extraction methods. And
fivefold cross-validation are performed on the dataset for all
the experiments.

Experimental results are evaluated by the following three
metrics: 1) accuracy (ACC); 2) true positive rate (TPR);
3) true negative rate (TNR).

ACC =
TP+ TN

TP+ FP+ FN + TN
. (3)

TPR =
TP

TP+ FN
. (4)

TNR =
TN

TN + FP
. (5)

True Positive (TP) and False Negative (FN) are samples
which are positive and predicted as positive or negative,
respectively. On the other hand, False Positive (FP) and True
Negative (TN) are samples which are negative and predicted
to be positive or negative, respectively.

1) COMPARISON BETWEEN DIFFERENT CNN FEATURES
CNN is mainly used to extract features of images based
on the idea of shared weights and good nonlinear learning
ability. For the task of tongue coating classification in this
paper, in order to show the rationality of selecting ResNet
as feature extractor, AlexNet and VGG are applied as two
representative deep learning methods, and are compared in
performing tongue coating classification. In which VGG uses
the 16-layer model and ResNet the 50-layer model. The
structural details of ResNet, AlexNet and VGG16 are shown
in section. III-B. The method of MI-SVM is used to test the
performance of these CNN extractors.

We extracted features from ResNet, AlexNet and
VGG16 using the method described in section. III-C. Similar
to ResNet, AlexNet and VGG16 are pretrained on ILSVRC
dataset. In the training stage, the last layers of both AlexNet
and VGG16 are modified to be a 2-way fully connected
layer because tongue coating classification is a binary clas-
sification problem. And they are also fine-tuning on the
same tongue coating patches described in section. IV-B1.
In the feature extraction stage, the outputs of the second fully
connected layer for both AlexNet and VGG16 are used as
features.
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Compared with AlexNet, VGG16 is deeper. To ensure the
same perception as AlexNet and reduce network parameters,
three 3 × 3 convolutional kernels are used instead of 7 × 7
convolutional kernels in VGG16. But the performance is
not as good as expected in our dataset, as shown in Fig. 5.
This cannot be interpreted as overfiting, because overfiting
networks perform better in the training sets. The reason for
the poor performance of VGG16 is that the gradient vanishes
with the increased depth. Meanwhile, it is necessary to opti-
mize more spatial parameters when training deeper networks,
which will result in higher training errors.

FIGURE 5. The accuracies of ResNet, AlexNet, and VGG16.

ResNet, however, performs better than AlexNet and
VGG16. Although ResNet is the deepest, thanks to its resid-
ual module, its accuracy and computational efficiency are
the highest. At the same time, ResNet uses 3 × 3 convo-
lutional kernels instead of large-size kernels. Consequently,
the network learns more detailed features under the same
receptive field and reduces the amount of parameters. Thus,
in the following experiments, ResNet is employed as a feature
extractor.

2) COMPARISON WITH HANDCRAFTED FEATURES
Handcrafted feature extractions are utilized to extract
features for each suspected rotten-greasy coating patch.
30 features are extracted for GLDM [36], 6 features for
Tamura et al. [37], 80 features for Gabor [38], and 20 features
for Subspace [39]. These features are also grouped into bags
to train MI-SVM. Experimental results in Table 3 show that
deep features perform better than handcrafted features such
as the features extracted by GLDM, Tamura, Gabor and
Subspace. It demonstrates that ResNet can effectively extract
useful feature information to describe tongue coating patches.

E. COMPARISON WITH OTHER CLASSIFIERS
Different classifiers are evaluated for tongue coating clas-
sification using the features extracted by the fine-tuned
ResNet. The categories of tongue coating can be predicted

TABLE 3. Comparison between different features.

by the aggregation method [3] used by other classifica-
tion algorithms. The aggregation method also satisfies the
multiple-instance learning assumption that if a bag is positive
then at least one instance of this bag is positive [3]. Suppose
there arem instances in a bag, and pi is the prediction result of
the ith instance in the bag, then the test accuracy of the tongue
represented by this bag is as follows.

PB = max {p0, . . . , pm} . (6)

Firstly, we compared the experimental results between
using MI-SVM with CNN features and using CNN directly.
As shown in Table 4, the results demonstrate that our method
achieves an accuracy of 85.0% and a recall rate (TPR) of
89.8% which are 11% and 6% higher respectively than those
of using CNN directly.

TABLE 4. Comparison between using MI-SVM with CNN and using CNN
directly.

The performance of other classifiers with the same features
extracted using ResNet model is shown in Table 5. It can be
seen that the accuracy of the proposed method is superior to
that of Decision Tree [40], Random Forest [40], K-nearest
neighbor (KNN) [41] and EMDD [42] – a multiple instance
learning algorithm combines expectation maximization (EM)
with the diverse density (DD).

TABLE 5. Comparison with other classifiers.

The reasons why MI-SVM performs better are summa-
rized as follows. 1) For fine-grained classification prob-
lem, MI-SVM can effectively exclude irrelevant information.
2) The exact location of the rotten-greasy tongue coating in
the tongue body is irrelevant.

F. COMPARISON WITH OTHER METHODS
We conduct experiments on the dataset described in
section. IV-A using the proposed method and three other
methods. The three methods are: Li’s work [22], Qu’s
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TABLE 6. Comparison with other methods.

work [20] and Fu’s work [23]. Li obtained the center patches
of the tongue images and classified rotten-greasy tongue
coatings using Gabor and Tamura features. Without know-
ing the exact location of tongue coating, this method may
lead to unstable performance. Qu proposed a tongue coating
recognition method using Gabor wavelet transform on the
whole tongue image. It inevitably captures more irrelevant
information, deteriorating the recognition results. Fu et al.
trained a CNN to extract features of the tongue images and
used the softmax layer of the CNN directly to classify the
tongues. Although Fu’s method can extract deep features for
tongue coatings, feature extraction was still conducted on
the whole image. The results of the above experiments are
listed in Table 6. It can be concluded from the table that our
approach outperforms all other methods and has the highest
accuracy.

V. CONCLUSION
In this paper, we have presented a new method for
tongue coating classification using MIL and deep features.
The method is divided into three stages. First, suspected
rotten-greasy tongue coating patches are selected. Then,
a deep CNN is used to extract features of each patch. At last,
tongue coating is represented by a bag consisting of multiple
feature vectors and MI-SVM is used to perform the final
classification. Experiment results demonstrated that the pro-
posed method outperforms previous methods. Future work
includes four aspects: 1) Collecting more tongue samples.
Since we use a deep CNN as feature extractor, the proposed
model always benefits from a larger dataset. 2) Adopting
more advanced network architecture to further improve the
accuracy. 3) Some fine-grained classification models can
be used as feature extractors, because the classification of
the tongue coating is a naturally classification task. 4) The
multiple-instance learning method can be embedded into the
neural network to realize the end-to-end classification model.
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