
Received April 9, 2021, accepted April 25, 2021, date of publication April 30, 2021, date of current version May 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3076853

Depth Map Super-Resolution Using Guided
Deformable Convolution
JOON-YEON KIM , SEOWON JI , SEUNG-JIN BAEK ,
SEUNG-WON JUNG , (Senior Member, IEEE), AND SUNG-JEA KO , (Fellow, IEEE)
School of Electrical Engineering, Korea University, Seoul 02841, South Korea

Corresponding author: Seung-Jin Baek (sjinbaek@korea.ac.kr)

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea
government (MSIT) (2017-0-00250, Intelligent Defense Boundary Surveillance Technology Using Collaborative Reinforced
Learning of Embedded Edge Camera and Image Analysis).

ABSTRACT Depth maps acquired by low-cost sensors have low spatial resolution, which restricts their
usefulness in many image processing and computer vision tasks. To increase the spatial resolution of the
depth map, most state-of-the-art depth map super-resolution methods based on deep learning extract the
features from a high-resolution guidance image and concatenate them with the features from the depth
map. However, such simple concatenation can transfer unnecessary textures, known as texture copying
artifacts, of the guidance image to the depth map. To address this problem, we propose a novel depth map
super-resolution method using guided deformable convolution. Unlike standard deformable convolution,
guided deformable convolution obtains 2D kernel offsets of the depth features from the guidance features.
Because the guidance features are not explicitly concatenated with the depth features but are used only
to determine the kernel offsets for the depth features, the proposed method can significantly alleviate the
texture copying artifacts in the resultant depth map. Experimental results show that the proposed method
outperforms the state-of-the-art methods in terms of qualitative and quantitative evaluations.

INDEX TERMS Convolutional neural network, depth map, super-resolution.

I. INTRODUCTION
Depth maps are essential in various vision applications such
as 3D reconstruction, virtual reality, and autonomous driv-
ing. In general, the depth map of a scene can be obtained
using a passive or active method. The passive method [1]
mainly obtains the depth map by estimating the correspon-
dence between two ormore images from different viewpoints.
However, accurately identifying points of correspondence in
textureless and occluded regions is fundamentally difficult,
requiring a more robust solution for depth map acquisition.

The active method offers such a solution because it can
robustly acquire the depth map from sensors such as time-
of-flight (ToF) [2] or structured light [3] cameras. Although
the depth map can be captured in real-time by these depth
sensors, the low spatial resolution of the depth map can limit
its applicability to various vision tasks. Therefore, it is nec-
essary to increase the resolution of the depth map to facilitate
the practical use of the active method.

The associate editor coordinating the review of this manuscript and

approving it for publication was Andrea F. Abate .

The simplest approach to generate a high-resolution (HR)
depth map from a low-resolution (LR) depth map is to apply
interpolation, such as bilinear or bicubic interpolation, to the
depth map. Despite their advantage of being simple, these
methods cannot render sharp object boundaries. To address
this problem, advanced super-resolution (SR) techniques,
including optimization-based [4], [5], and learning-based
methods [6], [7], have been proposed in the literature. In addi-
tion, because most commodity depth sensors are embod-
ied with HR color sensors and because many applications,
such as image refocusing and depth image-based rendering,
require the color and depth images to have the same res-
olution, SR techniques that employ the corresponding HR
color image as guidance have also received significant atten-
tion [8]–[15].

Recently, owing to the success of deep learning, several
color-guided depth map SR techniques [16]–[21] using con-
volutional neural networks (CNNs) have been proposed. One
of the common characteristics of these techniques is to extract
the features from the depth map and guidance image sepa-
rately and then concatenate them such that the depth decoding
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or upsampling layers can inherit the HR details from the guid-
ance features. However, it is difficult to control the influence
of the guidance features after the two features have been
concatenated. Excessive use of the guidance features on flat
surfaces could result in unnecessary HR texture details being
transferred from the guidance image to the depth map, which
is known as texture copying artifacts.

To overcome the aforementioned problem, this paper pro-
poses a novel SR network that uses guided deformable con-
volution. We adopt the deformable convolution [22] that
augments the convolution kernel grid using learnable spatial
offsets. Unlike the standard deformable convolution, the pro-
posed network learns the spatial offsets for convolution of the
depth features from the features of the HR guidance image.
In other words, the proposed network does not directly use
the features obtained from the HR guidance image when
extracting and refining the features of the depth map. This
approach enables us to obtain HR depth map without texture
copying artifacts. The experimental results show that the
proposed method outperforms state-of-the-art methods.

The remainder of this paper is organized as follows.
We review related works in Section II. In Section III,
we explain the proposed depth map SR method in detail.
The experimental results are presented in Section IV.
In Section V, we conclude this paper.

II. RELATED WORKS
Depending on the input data, depth map SR methods can
be divided into two categories: single depth map SR and
color-guided depth map SR. In this section, we briefly
review conventional methods in each category. Furthermore,
we introduce the deformable convolution, which is adopted
by the proposed method.

A. SINGLE DEPTH MAP SR
SR techniques for color images have been widely researched
in recent years. However, because the depth map has different
characteristics from the color image, applying color image SR
methods directly to an LR depth map could result in a sub-
optimal outcome. Based on the observation that real-world
scenes exhibit repetitions of geometric primitives and objects
with symmetries, Hornacek et al. [23] proposed a depth map
SR algorithm that exploits the scene self-similarity. Some
methods addressed the depth map SR as a Markov random
field (MRF) optimization problem. Mac Aodha et al. [4]
increased the resolution of the depth map by finding the
appropriate HR candidate patch in the collected database by
solving the MRF labeling problem. Xie et al. [5] constructed
an HR edge map from LR depth maps using MRF optimiza-
tion. Then, the HR depth map was obtained by employing
a modified joint bilateral filter using the HR edge map as
guidance.

Dictionary learning has also been employed to address
the SR problem associated with single depth maps.
Ferstl et al. [6] estimated edge priors from a given LR depth
map and a learned dictionary. Then, the estimated edge prior

was utilized to guide the regularization termwhen solving the
variational SR problem. Xie et al. [7] proposed a coupled dic-
tionary learning method with locality coordinate constraints
to upsample the LR depth map.

B. COLOR-GUIDED DEPTH MAP SR
The HR color image of the same scene can easily be acquired
with the depth map. In particular, most commodity depth
sensors are already embodied with an HR color sensor, and
thus one can expect that the HR color image can be used
to upsample the LR depth map as a guidance. To this end,
Kopf et al. [8] proposed a joint bilateral filter to produce
a more precise HR map by obtaining a range kernel from
the HR guidance image. Yang et al. [9] iteratively applied
a joint bilateral filter to refine the depth map. Based on the
fact that discontinuities in the depth map and the color image
often co-occur, Diebel and Thrun [10] employed an MRF
to integrate both data sources. Liu et al. [11] utilized the
geodesic distance to upsample the LR depth map by using
a registered HR color image. Jung and Choi [12] trained
a classifier to select an effective upsampling filter for each
depth pixel. Lu and Forsyth [14] segmented the HR color
image and used the smoothing methods to determine the
depth values in each color segment. Kwon et al. [15] proposed
a refinement method based on a data-driven depth map by
using the multi-scale dictionary learning.

Recently, CNNs were applied to various low-level
vision tasks and their performance has been impressive.
Hui et al. [16] first applied a deep CNN to color-guided depth
map SR and proposed a multi-scale guided convolutional
network (MSG-Net). MSG-Net extracts the HR features via
the intensity branch and complements the LR depth features
in the depth branch by using a multi-scale fusion strategy.
Ni et al. [17] proposed a dual-stream CNN to upsample the
LR depth map. They used an edge map inferred from the
HR color image as network input to learn the relationship
between the depth map and edge map. Zuo et al. [18] pro-
posed a deep network with global and local residual learning
to progressively upsample the LR depth map. In addition,
batch normalization layers were used to improve the perfor-
mance of depthmap denoising. Inspired by the residual U-Net
architecture [24], Guo et al. [19] proposed DepthSR-Net for
depth map SR. DepthSR-Net learns the residual between
the interpolated depth map and the ground truth HR depth
map by using rich hierarchical features extracted from the
network. Wen et al. [20] introduced a coarse-to-fine CNN to
approximate the ideal filter for depth map SR. Li et al. [21]
proposed a recumbent Y network (RYNet) for depth map SR.
They built the network based on the residual channel atten-
tion blocks and utilized spatial attention based feature fusion
blocks to suppress the texture copying and depth bleeding
artifacts. Despite the potential benefits, the aforementioned
methods still suffer from the texture copying artifacts owing
to the inappropriate use of the guidance features. Accord-
ingly, we aimed to solve this problem by designing a novel
module that uses the guidance features more effectively.
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FIGURE 1. Overall architecture of the proposed color-guided depth map SR network. Our network consists of two encoders and a decoder. The
two encoders extract the features from the HR intensity image and the pre-upsampled LR depth map, respectively. The HR depth map is generated
by the decoder. The red, blue, and green boxes represent the feature maps of the HR guidance encoder, depth encoder, and depth decoder,
respectively, and the number of channels is denoted above each box.

C. DEFORMABLE CONVOLUTION
Because the plain convolution module performs the con-
volution operation using fixed geometric structures, it is
difficult to accommodate various geometric transformations
of objects when using a CNN. Accordingly, the perfor-
mance of a CNN with respect to visual recognition tasks
tends to be limited. To enhance the modeling capability of
CNNs, Dai et al. [22] proposed deformable convolution by
introducing 2D kernel offsets to the regular sampling loca-
tions of the standard convolution. The offsets are learned
through additional convolution layers without extra super-
vision. The deformable convolution module improved the
performance of high-level vision tasks such as object detec-
tion [25] and semantic segmentation [26] when used as a
replacement for the plain convolution module of existing
CNNs. Deformable convolution was also used to align mul-
tiple frames for video restoration tasks [27], [28]. We thus
surmised that the performance of depth SR can be improved
by appropriately adopting deformable convolution to a depth
SR network.

III. PROPOSED METHOD
A. PROBLEM FORMULATION
The objective of color-guided depth SR is to construct the
HR depth map Dh, given the LR depth map Dl and the HR
color intensity image Ih of the same scene. We pre-upsample
Dl to the desired resolution by using the bicubic interpolation
and obtainDl up, following Guo’s method [19]. Then, the pre-
upsampled depth map Dl up is used as input to the network.
The final HR depth map Dh is obtained as:

Dh = F(Dl up, Ih; θ )+ Dl up, (1)

where F represents the nonlinear residual mapping function
that estimates the residual between Dl up and Dh, and θ is a
set of network parameters.

B. OVERALL NETWORK ARCHITECTURE
The overall network architecture of the proposed color-guided
depth map SR is illustrated in Fig. 1. Similar to [16], [19],
the proposed network consists of a depth encoder, guidance
encoder, and depth decoder. The depth and guidance encoders
extract the features from Dl up and Ih, respectively. Following
the U-Net principle [24], the features of the depth encoder are
concatenated with their corresponding features of the depth
decoder. Then, before applying deconvolution, we insert the
proposed guided deformable convolution module such that
the features from the guidance encoder can facilitate depth
feature refinement. After feature refinement, the decoder
generates the residual [29], and thusDh is obtained by adding
the residual to Dl up.

C. GUIDED DEFORMABLE CONVOLUTION MODULE
Fig. 2(a) illustrates the principles of deformable convolu-
tion [22]. First, 2D kernel offsets are obtained by applying
a convolutional layer to the same input feature map. Specifi-
cally, these 2D kernel offsets are obtained as follows:

f OI = M
(
f I
)
, (2)

where f I represents the input feature andM is a general func-
tion consisting of convolution layers. In our work, we used a
single 3 × 3 convolution layer. The f OI contains 2D kernel
offsets for every position, and thus it requires 18 channels for
3×3 convolution. Given f OI , the output feature f O is obtained
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as

f O(x) = δ

∑
r∈�R

W (r) · f I
(
x+ r+ f OI (x, r)

) , (3)

where �R represents the regular grid for the convolution
kernel, and δ represents the rectified linear unit (ReLU) as
the activation function. f OI (x, r) denotes the 2D offset of
element r in �R at position x.
Fig. 2(b) illustrates the proposed guided deformable con-

volution. Similar to the deformable convolution, 2D kernel
offsets are obtained for convolution of the input feature.
However, these offsets are obtained from the guidance feature
as follows:

f OG = M
(
f G
)
, (4)

where f G represents the guidance feature and f OG is the
offset field for the deformable convolution of f I . The guided
deformable convolution is operated as the deformable con-
volution in (3) with f OG in the place of f OI . Through the
guided deformable convolution, the input feature is refined

FIGURE 2. Comparison of (a) deformable convolution [22] and (b) guided
deformable convolution. Unlike the deformable convolution module,
which obtains the offset field from the same input feature map,
the guided deformable convolution module generates an offset field from
the guidance feature map.

using rich HR information inherent in the guidance feature.
Also, since the guidance feature is not directly concatenated
to the depth feature and is only used to transform the kernel,
we can effectively prevent the texture copying problem.

D. LOSS FUNCTION
Following the previous color-guided depth SR methods
[16]–[19], we minimize the mean squared error (MSE) loss
to train the proposed network as follows:

L(θ )=
1
N

N∑
i=1

∥∥F((Dl up)i, (Ih)i; θ )+(Dl up)i − (Dh)i
∥∥2 , (5)

where N represents the total number of training samples.
We noticed that the performance of the network improved
slightly when the MSE loss was utilized instead of the l1 loss.

E. IMPLEMENTATION DETAILS
We used 58 RGB-D images from theMPI Sintel depth dataset
[30] and 34 RGB-D images (6, 10, and 18 images from
the 2001, 2006, and 2014 datasets, respectively) from the
Middlebury dataset [1], [31], [32]. Among them, 82 images
were used for training, and the remainder was used for vali-
dation. From the dataset, we sampled 96 × 96 patches with
a stride of 48 for training. To obtain the LR depth maps,
we downsampled the collected depth patches using the bicu-
bic interpolation. Rotation and flip were randomly applied to
the training dataset for its augmentation. To train the proposed
network, we used the Adam optimizer [33] with a batch size
of 64. The ReLU was used as an activation function after
the convolution layers except for the layers generating the
offset fields and residual map.We initialized the filter weights
for the offset layer to zero and the remaining filter weights
were initialized by He initialization method [34]. We used a
constant learning rate of 10−4 in the training process.

IV. EXPERIMENTAL RESULTS
Our experiments were conducted with the PyTorch frame-
work [35] on a PC with an Intel(R) Core(TM) i7-8700K
CPU @3.70GHz and an NVIDIA TITAN Xp GPU. We
compared the proposed method with the baseline bicubic
interpolation, the CNNs for the single image SR (SRCNN
[36] and SAN [37]), and the recent color-guided depth map
SR networks (MSG-Net [16], MFR-SR [18], DepthSR-Net
[19], and RYNet [21]). We evaluated the performance of the
conventional and proposed methods by conducting qualita-
tive and quantitative comparisons for noise-free and noisy
test data with various scaling factors (i.e., 2×, 4×, 8×, 16×).
To generate noisy test data, we added Gaussian noise with
mean= 0 and variance= 25 to the noise-free LR depth map.
Gaussian noise was also added to the LR depth map during
the training process.

The results of DepthSR-Net on the noise-free test data
were obtained by directly applying the author-provided
trained model to the test images. For the noisy test data,
the DepthSR-Net model was re-trained. We implemented
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SRCNN, MSG-Net, MFR-SR, and RYNet. The former two
networks, SRCNN and MSG-Net, were trained by applying
the same training strategy that was used to train the proposed
method. MFR-SRwas trained using a strategy as described in
[18]. The batch size was set to 32 for training the RYNet due
to the GPU memory. We trained the SAN using the source
code provided by the authors, and evaluated the performance
only for the scaling factors 8 and 16 because of the limitation
of GPU memory.

A. ABLATION STUDY
To demonstrate the effectiveness of the guided deformable
convolution in the depth map SR, we performed three com-
parative experiments by changing the feature map refine-
ment modules shown in Fig. 1. First, as shown in Fig. 3(a),
the depth feature map is directly refined by performing the
conventional deformable convolution [22], which is referred
to as ‘‘Case 1’’. This is equivalent to a single depth map
SR because it does not use the features extracted from the
guidance image. Second, as shown in Fig. 3(b), the depth fea-
ture is extracted after concatenating the depth and guidance
feature maps, and the extracted feature map is then refined
using the conventional deformable convolution, which is
referred to as ‘‘Case 2’’. Third, as shown in Fig. 3(c),
to show the effectiveness of deformable convolution in depth
SR, ‘‘Case 3’’ performs feature map refinement through
the self-attention mechanism. Among the various attention
modules, we utilized convolutional block attention module
(CBAM) [38] which sequentially applies channel and spatial
attention modules.

We evaluated the performance of the proposed method and
the aforementioned methods for the test data. Table 1 shows
the average performance of each method in terms of the
peak signal-to-noise ratio (PSNR) and the root mean square

FIGURE 3. Depth feature refinement modules for (a) ‘‘Case 1’’,
(b) ‘‘Case 2’’, (c) ‘‘Case 3’’, and (d) the proposed method.

TABLE 1. Average performance of each method on the test data in terms
of PSNR(dB)/RMSE.

error (RMSE). The best and second-best results are bold-
faced and underlined, respectively. From the performance
gap between ‘‘Case 1’’ and ‘‘Case 2’’, it can be seen that
the use of guidance, despite simple concatenation, enhances
the performance of depth map SR using the conventional
deformable convolution. From a comparison of the proposed
method with ‘‘Case 2’’, we can confirm that the performance
gap is occurred according to the different use of guidance
feature and deformable convolution. Moreover, comparing
the performances of ‘‘Case 2’’ and ‘‘Case 3’’, we can see
that the feature map refinement through attention module
is inefficient compared with deformable convolution. The
results of the proposed method demonstrate that the utiliza-
tion of guidance features by the proposed guided deformable
convolution is superior to the other approaches.

B. QUANTITATIVE EVALUATION
Fig. 4 shows the average PSNR and processing time of the
color-guided depth SR methods for the color images with the
size 1312 × 1072 and the scaling factor of 16. The radius of
circle is proportional to the number of network parameters
which are indicated below each circle. The RYNet and the
proposed method show the best and second-best average
PSNRs of 42.54 dB and 42.43 dB, respectively. Although
RYNet shows a slightly higher PSNR than the proposed
method, it requires approximately ×18.4 more parameters
and ×11.5 more processing time. The proposed method,
which only utilizes 3 × 3 kernels, shows the fastest run-

FIGURE 4. Average PSNR and processing time of color-guided depth SR
methods for the scaling factor of 16. The radius of each circle is
proportional to the number of network parameters.
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TABLE 2. Quantitative comparison of the proposed method with state-of-the-art methods on the noise-free dataset in terms of PSNR(dB)/RMSE.

TABLE 3. Quantitative comparison of the proposed method with state-of-the-art methods on noisy dataset A in terms of PSNR(dB)/RMSE.

ning time with MSG-Net which uses the fewest number of
parameters.

Table 2 presents the performance for each test image
using PSNR and RMSE in the noise-free case. The best

and second-best results are boldfaced and underlined, respec-
tively. For the last four low resolution test images, the max-
imum scaling factor was set to 8. The performance of the
SRCNN is comparable to that of the state-of-the-art methods
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FIGURE 5. Visual comparison of the noise-free test images ‘‘Laundry’’ (16×) and ‘‘Dolls’’ (16×): (a) HR color image, (b) ground truth, upsampled depth
maps obtained by (c) MSG-Net, (d) MFR-SR, (e) DepthSR-Net, (f) RYNet, and (g) the proposed method. Magnified regions are shown below each image.

FIGURE 6. Visual comparison of the noisy test images ‘‘Books’’ (8×) and ‘‘Art’’ (16×): (a) HR color image, (b) ground truth, upsampled depth maps
obtained by (c) MSG-Net, (d) MFR-SR, (e) DepthSR-Net, (f) RYNet, and (g) the proposed method. Magnified regions are shown below each image.

with small scaling factors (i.e., 2×, 4×). However, because
the SRCNN upsamples the depth map without the guidance
image, its performance with the high scaling factors is unsat-
isfactory. The state-of-the-art single image SR method, SAN,
shows superior performance over SRCNN, but still exhibits
unsatisfactory performance compared with the color-guided
depth SR methods. Among the color-guided depth map
SR methods, the proposed method and RYNet exhibit the
second-best and the best performance for most test images,
respectively. In addition, the results of each method on the
noisy dataset are presented in Table 3. The authors of MFR-
SR [18] adopted batch normalization layers to improve the

performance of depth map denoising. Although our proposed
network does not contain layers for depth map denoising,
it outperforms the other methods in most cases.

C. QUALITATIVE EVALUATION
Fig. 5 shows the upsampled results of each method for
the noise-free test images. Since the laundry basket in the
test image ‘‘Laundry’’ has detailed structures with many
edges, it is hard to construct the HR depth map. As shown
in Figs. 5(c) and (d), the MSG-Net and MFR-SR produce
the HR depth map with blurred edges. On the other hand,
Fig. 5(g) shows that the proposed method generates the sharp
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FIGURE 7. Visual comparison of the robustness against the texture copying artifacts: (a) HR color image, (b) ground truth, difference maps between
ground truth and upsampled (16×) depth maps obtained by (c) MSG-Net, (d) MFR-SR, (e) DepthSR-Net, (f) RYNet, and (g) the proposed method. The
first and second rows show the experimental results for the test images ‘‘Wall1’’ and ‘‘Wall2’’, respectively.

edges. The upsampled results for the test image ‘‘Dolls’’
are shown at the bottom of Fig. 5. It can be seen that the
proposed method restores sharp depth boundaries compared
to the conventional methods.

We also show the upsampled results of the noisy LR depth
maps. The resultant HR depth maps for the noisy test image
‘‘Books’’ are presented at the top of Fig. 6. Compared with
the conventional methods, the proposed method successfully
preserves sharp depth discontinuities. The resultant HR depth
maps of each method for the noisy test image ‘‘Art’’ are
shown at the bottom of Fig. 6. Because the conventional
methods directly concatenate the features of the HR intensity
image to the depth features, texture copying artifacts occur,
as shown in the red rectangles in Figs. 6(c)–(f). In contrast,
as seen in Fig. 6(g), the proposed method effectively prevents
the texture copying artifacts and produces a homogeneous
depth map. In addition, it can be seen that the proposed
method reconstructs the fine details better than the other
methods.

To clearly demonstrate the advantages of using the pro-
posedmethod to solve the texture copying artifacts, additional
experimental results are shown in Fig. 7. We prepared two
images of walls containing repetitive texture patterns and
assumed that each wall has a homogeneous depth map (i.e.,
all pixels in the depth map have the same depth value). The
differences between the ground truth HR depth map and
the results of each method are presented in Figs. 7(c)–(g).
Although MSG-Net alleviates the texture copying artifacts
owing to its high-frequency domain training approach, a few
artifacts are still generated in the resultant depth map,
as shown in Fig. 7(c). Figs. 7(d) and (e) show that the
MFR-SR and DepthSR-Net experience the texture copying
problem because the features of the HR intensity image affect
the constructed depth map directly. Although RYNet includes
the spatial attention based feature fusion blocks to suppress
the texture copying artifacts, its results still suffer from the
undesired artifacts, as shown in Fig. 7(f). Compared with
the other methods, the proposed method successfully avoids
undesired artifacts and produces the closest result to the
ground truth, as shown in Fig. 7(g).

FIGURE 8. Experimental results on real data: (a) HR color image, (b) LR
depth map, and (c) HR depth map generated by the proposed method.

D. REAL DATA
To find out the performance of the proposed method in the
real environment, we utilized the real data [39], [40] collected
using the Microsoft Kinect. The depth map is pre-upsampled
by the authors and provided in the same size as the color
image.We directly applied the proposed network learnedwith
the scaling factor of 4 to the depth map. The HR depth map
generated by proposed method is shown in Fig. 8(c). It can
be seen that the depth discontinuities become sharper by the
proposed method.

V. CONCLUSION
In this paper, we presented a deep network for color-guided
depth map SR. Observing that recent color-guided depth
map SR networks produce unwanted texture copying artifacts
because of the excessive use of guidance features, we pro-
posed guided deformable convolution, which uses the guid-
ance features only for choosing the sampling locations of
the convolution kernel of depth features. Consequently, the
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proposed method successfully restores sharp depth bound-
aries and prevents texture copying artifacts from coming
into existence. The experimental results demonstrate that
the proposed network significantly outperforms conventional
networks.
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