
Received February 3, 2021, accepted April 23, 2021, date of publication April 30, 2021, date of current version May 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3076918

Security Testing for Naval Ship Combat
System Software
CHEOL-GYU YI 1, (Student Member, IEEE), AND YOUNG-GAB KIM 1,2, (Member, IEEE)
1Department of Computer and Information Security, Sejong University, Seoul 05006, South Korea
2Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, South Korea

Corresponding author: Young-Gab Kim (alwaysgabi@sejong.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) under
Grant 2021R1A2C2012635.

ABSTRACT Military weapon systems are considered as ‘‘system of systems’’ (SoS). They comprise
various equipment based on computers and networks and have been developed using commercial computing
technology for several decades. The state-of-the-art weapon systems are information technology (IT)
systems, for example, the cyber-physical system. In particular, the naval combat system, which is a weapon
system, is a representative system interconnecting a number of equipments by using commercial computing
technology. It is a software-based complex system, which produces and shares information about naval
tactical situations by interconnecting the various systems installed on ships or remote platforms. Moreover,
it performs tactical combat functions automatically or manually for assigned missions. As the core function
and performance of the combat system shift from being hardware-centric to software-centric, cybersecurity
threats to software that can affect the combat systems may emerge as a novel issue. The failure of the combat
system to perform normal combat functions in an actual naval combat situation owing to cybersecurity issues
is a very serious risk to naval operations. However, software security testing is not conducted systematically
during system development because the cybersecurity of the combat system is evaluated to be less important
than its function and performance, resulting in the development of an insecure and vulnerable combat
system against cybersecurity threats. To build a secure combat system against cyberattacks, it is important to
derive systematic and practical security testing for the combat system software during system development.
This paper analyzes the previous researches on a software security test, characteristics of the combat
system software, and guidelines for the software security testing of the Korean military’s weapon system
development. In addition, it proposes improved software security testing to strengthen the cybersecurity of
the combat system based on its characteristics and missions.

INDEX TERMS Weapon system, combat system, software security, security test.

I. INTRODUCTION
For several decades, military weapon systems have been
developed using commercial computing technology. Further,
their coverage and utilization are increasingly expanding.
Recently, state-of-the-art weapon systems, which are infor-
mation technology (IT) systems, have also been developed
such as the cyber-physical system, which is considered to
be more software-dependent [1]. The expansion of the inte-
gration of heterogeneous systems in weapon systems has
increased software complexity and connectivity. Moreover,
weapon systems are considered to be complex ‘‘system of

The associate editor coordinating the review of this manuscript and

approving it for publication was Francesco Mercaldo .

systems’’ (SoS), considerably complicating the analysis of
system security vulnerabilities against cyberattacks [2]. The
‘‘SoS’’ comprises a large complex system integrated by the
interconnection of independent and preexisting individual
systems [3]. According to the ‘‘Weapon system cyberse-
curity’’ reported by the Government Accountability Office
(GAO), weapon systems have numerous cyber vulnerabili-
ties similar to those of other types of automated informa-
tion systems. Moreover, appropriate security controls for
cyber vulnerability are insufficient, resulting in cyberattack
threats [1], [4].

In particular, the naval combat system, which is one of the
weapon systems, is a representative system interconnecting
performance and functions of the diverse subsystem of the

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 66839

https://orcid.org/0000-0003-3006-5078
https://orcid.org/0000-0001-9585-8808
https://orcid.org/0000-0002-9425-1657


C.-G. Yi, Y.-G. Kim: Security Testing for Naval Ship Combat System Software

combat system. Furthermore, the usability and importance
of software are increasing because the core functions and
performance of the combat system transform from being
hardware-centric to software-centric [5]. Therefore, a new
issue emerges, i.e., security problems in the combat system
software can compromise its critical combat performance and
function and disrupt the completion of naval missions.

With the development of cyberattack technology, the US
navy designed a system called Common Architecture System
Assurance (CASA) to deal with cyberattacks on the naval
combat system. CASA is specialized security information
and event manager. It collects and analyzes cybersecurity-
related events from the subsystems of the combat system.
Moreover, it reports mission-critical impact or cyber inci-
dents to the watch officer [6].

However, software security testing is not conducted sys-
tematically during the development of weapon systems,
including the combat system, because the cybersecurity of
the combat system is evaluated to be less important than its
function and performance. This results in the development
of a combat system vulnerable to cyberattacks. Furthermore,
in the Korean military, software security testing during sys-
tem development is not mandatory for the entire weapon
system installed on the platform (e.g., naval ship), including
the combat system, and is only conducted for the application
software of the battle management information system (e.g.,
C4I system and command and control system) by referencing
‘‘Guideline for software development security’’ [7], [8]. This
guideline can be a good standard for security testing of the
application software of general IT systems. However, it is
not suitable for the naval combat system software to perform
real-time combat missions in a unique environment different
from that associated with general IT systems. In addition, this
guideline is mainly described from the developer’s point of
view and can not cover the entire software that comprises the
combat system.

Furthermore, the major problem associated with the com-
bat system software security testing is the lack of a defined
systematic and specific security test criteria in system devel-
opment. To fundamentally reinforce the cybersecurity of the
combat system software, specific and practical security test-
ing must be performed, which can be applied to the combat
system software in the early stage of system development
from the perspective of cybersecurity.

Thus far, various methodology studies have been con-
ducted for software security testing, which contributes to the
improvement of security testing. However, software secu-
rity testing for weapon systems such as combat systems
has not been studied due to the closed environments and
access restrictions of the combat system itself. As a result,
systematic and practical software security testing has not been
performed and a robust combat system against cyberattacks
was not developed. Thus, combat systems are expected to
exhibit various vulnerabilities.

In this paper, in order to resolve this problem, we focused
on a systematic approach that can perform a specific and

practical security test rather than a theoretical and method-
ological approach. We propose a more effective and prac-
tically applicable software security test by improving the
security test derived from a previous study, wherein the cat-
egories of software security testing and detailed subitems
corresponding to the categories are defined [9].

The following are the contributions of this paper based on
a previous study.

1. Establishment of a specific test framework for conduct-
ing software security testing based on the characteristics of
the combat system software: We defined the categories of
security testing that satisfy the security attributes in accor-
dance with the characteristics of the combat system from the
perspective of cybersecurity and not from the perspective of
developers.

2. Derivation of detailed security test subitems that corre-
spond to the software comprising the combat system soft-
ware: We derived detailed security test subitems relevant to
the categories of security testing and applied them to the
software comprising the combat system software.

3. Reflection of security requirements for the design of the
combat system software during the combat system develop-
ment process: It is desirable that software security must be
considered during the early stage of system development.
We present a direction by which the detailed security test
details derived from this paper can be reflected in the design
of the combat system software.

4. Development of a combat system software robust against
cyberattacks: Systematic security testing performed based on
the characteristics of the combat system software removes
vulnerabilities in the software in advance and develops a
robust combat system against cyberattacks.

The remainder of this paper is organized as follows.
Section 2 discusses previous studies related to software secu-
rity testing and introduces the concept and characteristics of
the naval combat system software. Moreover, it discusses
the software security testing of the weapon system such
as the naval combat system and analyzes its limitations.
Section 3 proposes an improved software security testing
approach for combat systems. Section 4 evaluates the pro-
posed security testing approach through comparison with
papers related to the software security testing discussed in
Section 2, the existing software security testing for theKorean
military’s weapon system, and the Common Criteria (CC).
Finally, Section 5 provides the conclusion and future work.

II. RELATED WORK
In this section, we analyze the existing studies on software
security testing to understand how security testing is applied
to software. In particular, we describe the security testing
techniques classified into four categories as defined in the
existing study and analyze the existing studies related to the
security testing techniques classified above.

Then, we describe the concept and structure of the naval
combat system software and the characteristics of each
sub software that composes the combat system software.

66840 VOLUME 9, 2021



C.-G. Yi, Y.-G. Kim: Security Testing for Naval Ship Combat System Software

TABLE 1. Security testing techniques in a secure software development lifecycle.

In addition, we explain the concept and procedure of software
security testing when developing weapon systems such as
combat systems in the Korean military, and based on this,
derive the limitations of software security testing.

A. SOFTWARE SECURITY TESTING
Software security testing is an important process to vali-
date whether the security functions and features of the soft-
ware are appropriately implemented in accordance with the
requirements related to security properties (e.g., confidential-
ity, integrity, availability, and authentication) and to identify
potential security vulnerabilities in the software during soft-
ware development [10]–[12]. From the perspective of system
development projects and businesses, security testing activi-
ties ensure the quality of the system and reduce development
risk and cost [12].

Software security testing can be divided into two execution
types: security functional testing and security vulnerability
testing. Through security functional testing, it can be val-
idated whether the security requirements are appropriately
achieved in the software. Through security vulnerability test-
ing, cyber vulnerabilities can be identified in the software
[13]. Cyber vulnerability is a flaw in system design, imple-
mentation, and operation [10]. It may not be discovered at
times and will continue to occur. Thus, a malicious attacker
compromises the software system by exploiting the vulnera-
bility of the system.

Felderer et al. [11] suggested that vulnerabilities can be
effectively identified, and the security functionality of the
software can be ensured through security testing. The author
classified security testing into four categories according to
its characteristics with respect to the system development
lifecycle, which is presented in Table 1. The categories of
security testing are as follows.

• Model-based security testing: Model-based test-
ing (MBT) derives its test case from a system under
test (SUT) and/or its environment for software testing
[13]. Model-based security testing follows the MBT
approach, verifies the software requirements related to
security properties, and verifies whether the model has
the specified security features [11].

• Code-based testing and static analysis: This technique
can be used to analyze and review the source code

of the program to manually or automatically identify
vulnerabilities in the software during code development.
An automated static analysis tool is used to analyze the
software code and identify security bugs [14], [15].

• Penetration testing and dynamic analysis: The tester
executes this test on a running system and compromises
the system by sending a payload from the perspec-
tive of a cyber attacker [16]. This testing is similar to
a real attack by a third party who possesses insuffi-
cient information about the target system. In general,
the third-party attacker uses manual and automatic tools
to identify vulnerabilities [17]. Fuzz testing is applied
to identify potential security vulnerabilities by sending
valid or invalid data to a system [18].

• Security regression testing: This technique ensures that
any changes in the system after its development do not
harm its security [19]. Security regression testing is an
important process in the software development lifecycle
because source code changes frequently occur due to
fixes, patches, and enhancements. When modifying the
existing code, the tester should perform security testing
to validate whether new security bugs have been intro-
duced [20].

Following, we discuss the previously studied software
security testing.

Michele et al. [21] proposed amodel-based security testing
framework for web applications, which is based on the MBT
approach combined with knowledge of penetration testing.
The proposed framework uses model-checking techniques
for conducting an automatic search for detecting possible
vulnerabilities in web applications. Security analysts can per-
form security testing without missing important vulnerabil-
ities checkpoints by using this method. It is also reused in
different web applications.

Brucker et al. [15] introduced static application security
testing (SAST). This is performed by the development team.
As the development team integrated SAST into the steps
of the software development lifecycle, SAST supported the
identification and prevention of vulnerabilities in the program
source code.

Valentine et al. [22] proposed an automatic penetration
testing method to evaluate the security level of the cloud
application when considering the cloud application features.

VOLUME 9, 2021 66841



C.-G. Yi, Y.-G. Kim: Security Testing for Naval Ship Combat System Software

This method uses the knowledge of the application architec-
ture and catalog information, including security-related data
(e.g., threat, attack, weakness, and vulnerabilities), and com-
prises three phases (preparation, scanning, and pen-testing)
for testing.

Longoria [23] suggested a prioritization of the security
regression test case based on the threat model. The threat
model is important for performing security analysis during
software development. This model emphasizes the assets that
must be protected and the threats to those assets as well as
threat mitigation. The author explained how the threat model
is applied to prioritize the security test case.

Josip et al. [24] introduced planning-based security test-
ing of web applications. They proposed the application of
artificial intelligence (AI) in the security testing of web
applications, which use automated planning for test suites
to test common cross-site scripting and structured query lan-
guage injection vulnerabilities. In addition, they proposed an
approach based on automated planning, which was obtained
from classical AI.

Pekaric et al. [25] presented security testing techniques
for automotive engineering by focusing on the application
software and service layer of the Automotive Open System
Architecture (AUTOSAR). AUTOSAR is an open and stan-
dardized software architecture for electronic control units
in the automotive domain. They linked the security testing
techniques (MBT, code-based testing, penetration testing and
dynamic analysis, regression testing, and risk-based testing)
to the AUTOSAR layers and identified and defined the rela-
tion between security testing techniques and vehicle lifecycle
phases.

Seana et al. [26] proposed an approach for security test-
ing of unmanned aerial vehicles (UAVs) based on the MBT
method. They developed an approach to building a test suite
using a behavioral model, attackmodel, andmitigationmodel
based on the characteristics of the UAV. Thus, they generated
a scalable four-step test suite to identify vulnerabilities in a
UAV and prevent cyberattacks.

Olivero et al. [27] introduced a security testing approach
named Testing for Security in System of Systems (TeSSoS),
which satisfied the modeling security requirements and test-
ing security properties in the SoS. They also proposed five
sequential steps (SoS discovery, red security requirement
specification, blue requirement specification, security imple-
mentation, and SoS evaluation and validation) to identify
security threats and define security features of the SoS. Par-
ticularly, their assessment approach from the perspective of
the attacker can facilitate in effectively discovering security
vulnerabilities and developing a secure SoS.

As previously described, an approach for software secu-
rity testing has been mainly studied. However, research on
concrete and systematic software security testing that can be
practically applied in combat system development is insuffi-
cient. Even though studies on security testing of UAVs, which
has recently become an issue, have been conducted, research
on security testing for complexweapon system software, such

FIGURE 1. Combat system software structure.

as the naval combat systems installed on platforms (e.g., naval
ship), is still lacking.

B. NAVAL SHIP COMBAT SYSTEM SOFTWARE
The combat system is a complex weapon system based on
computers and networks. It comprises various heterogeneous
systems, including sensors, weapons, and navigation sys-
tems, in a naval ship. It produces and shares information
on a tactical situation by networking different systems and
automatically conducts target detection and tracking, threat
analysis, weapon allocation, engagement, and kill evaluation
[28]. The US navy applied the concept of open architec-
ture in naval combat system development. The naval open
architecture is a multifaced business and technical strategy
for efficient development and maintenance of interoperable
systems. Its core principles include modular design, reusable
application software, and improved interoperability and per-
formance through cutting-edge technologies [29]. The com-
bat system software is developed according to this concept
and includes application software, middleware, and operat-
ing system, as presented in Figure 1. The application soft-
ware at the top performs the actual multiple mission-critical
functions, such as track management, command and control,
and sensor and weapon management and engagement, for
naval combat missions. It is developed based on the modular
concept. Therefore, it can easily deal with the possibility of
changes according to the assigned mission and specifically
required combat functions. In addition, it is installed and run
on the computer server and operator console [30].

The middleware of the combat system is present between
the application software and operating system to pro-
vide common service. Previously, the combat system used
military-specific middleware; however, recently, the com-
mercial middleware data distribution service (DDS) stan-
dardized by the object management group (OMG) is used.
DDS, as a communication middleware, supports real-time
communication between the nodes based on the publication–
subscription model for real-time processing in a distributed
environment [31], [32]. The security standards of the DDS
provide data confidentiality and integrity, mutual authenti-
cation and access authority of the network participants, and
non-repudiation [33], [34]. The operating systems used are

66842 VOLUME 9, 2021



C.-G. Yi, Y.-G. Kim: Security Testing for Naval Ship Combat System Software

commercial operating systems, such as Linux, Unix, and
VxWorks, which is a real-time operating system. The applica-
tion software design may need to be changed if the configura-
tion settings of the operating system are changed because the
software comprising the combat system software are highly
connected to each other.

C. WEAPON SYSTEM SOFTWARE SECURITY TESTING
The Korean military applied the ‘‘Manual for the develop-
ment and management of weapon system software’’ [30].
This manual describes the concept and process for the devel-
opment of weapon system software and provides a specific
direction for software testing. The combat system follows this
regulation because it is part of the weapon system.

1) CONCEPT AND PROCEDURE
Generally, software security testing is conducted along with
the reliability test in the development of weapon system
software. The software security and reliability test identifies
errors and defects in the weapon system software and proac-
tively eliminates the security weaknesses causing cyberat-
tacks. Moreover, it verifies whether the software meets the
specified requirements with technical accuracy and adequacy.
As presented in Figure 2, the tests are conducted by the
R&D supervisory institution in the ‘‘software implementa-
tion’’ and ‘‘software integration and test’’ of the system devel-
opment stage. Thereafter, the development test and evaluation
(DT&E), as well as operational test and evaluation (OT&E),
are conducted by the R&D supervisory institution and mili-
tary. Although security testing is performed through the above
process, its application is limited from the perspective of sys-
tem integration because these stages are performed in the late
process of system development. The occurrence of critical
security problems during these stages incurs additional time
and money for resolving the issue.

The security test activities are specified through various
procedures and documentation associated with weapon sys-
tem development. The detailed plans, procedures, and results
of security testing are described in the software test plan
(STP), software test description (STD), and software test
report (STR) for managing test traceability. The security
test requirements are preferentially and roughly considered
during the exploratory development stage. Further, they are
reviewed during the ‘‘software requirement analysis’’ and
‘‘software structure and critical design’’ of the system devel-
opment stage. Security testing is only applicable to developed
software, open software, and autogenerated code and not to
the operating system or middleware. The target languages
used include C, C++, JAVA, and C# [30].

2) SOFTWARE SECURITY TESTING
Software security testing of the weapon system, which is con-
ducted in accordance with the ‘‘Guideline for software devel-
opment security’’ [7] of the Republic of Korea’s Ministry
of the Interior and Safety, is applied only to the battle man-
agement information system (e.g., C4I system and command

and control system) and not to the entire weapon [8]. This
guideline was formulated with reference to the common
weakness enumeration (CWE), the security weakness pro-
vided by the MITRE, and various official announcements
related to secure coding and only provides a criterion for ver-
ifying secure coding of application software. This guideline
is implemented to ensure the secure software of general IT
systems (e.g., web system and DBMS) that can deal with
cyberattacks by minimizing the security vulnerabilities that
can be attributed to developer’s mistakes and logical errors in
the software development process. It also focuses on tech-
nical control for the implementation of security functions
to achieve software confidentiality, integrity, and availability
and specifies the security design and implementation criteria
based on the security requirements identified during software
requirement analysis. The security design criteria of software
design are defined as 20 detailed security requirements in four
categories (input data verification and presentation, security
function, error handling, and session control). As presented
in Table 2, the security implementation criteria of the software
implementation are related to the aforementioned security
requirements of the software design. These criteria comprise
47 items in seven categories (input data verification and
presentation, security function, time and status, error process-
ing, code error, encapsulation, and application programming
interface misuse) [7].

If security testing is to be conducted on the combat system
software, the previously mentioned guideline can be applied
to combat system software security testing. However, such
guideline is only for the secure coding of general IT systems
and is not suitable for a combat system in a mission-critical
environment. Moreover, the combat system does not provide
web and DBMS services.

3) LIMITATION OF SOFTWARE SECURITY TESTING
When a weapon system is developed, software security
testing is perceived to be less important than perfor-
mance or function. Furthermore, conducting security testing
on the weapon system, including a combat system, is not
mandatory. It is only conducted on the application software of
the battle management information system (e.g., C4I system
and command and control system). In this regard, security
testing of the combat system software has the following
limitations.

First, there is no defined systematic and specific strategy
for software security testing that can be applied to the combat
system software comprising the application software, middle-
ware, and operating system in the system development stage
based on the characteristics and environments of the combat
system. The software comprising the combat system software
is closely linked. Thus, systematic and specific security test-
ing must be conducted during the early stage of system devel-
opment. Moreover, there is a very close correlation between
software security testing and analysis and design. Failure
to systematically and comprehensively review the specific

VOLUME 9, 2021 66843



C.-G. Yi, Y.-G. Kim: Security Testing for Naval Ship Combat System Software

FIGURE 2. Weapon system software development process.

TABLE 2. Criteria for secure software implementation in the software implementation phase.

security requirements in software analysis and design results
in developing a system vulnerable to cybersecurity threats.

Second, even if the security test guideline is applied to the
previously mentioned battle management information system

66844 VOLUME 9, 2021



C.-G. Yi, Y.-G. Kim: Security Testing for Naval Ship Combat System Software

(e.g., C4I system and command and control system), it is
not suitable for the combat system software. This is because
the guideline mainly focuses on general IT systems, includ-
ing web and DBMS services. The combat system software
requires optimized security testing when considering the per-
formance and function of the combat system. In addition,
this guideline is good for the software of general IT sys-
tems. However, it was formulated from the developer’s point
of view rather than security and is mainly applied to the
application software. Thus, it must be improved to enable its
application to the combat system software.

To fundamentally reinforce the cybersecurity of the com-
bat system software, specific and practical security testing
must be conducted, which can be applied to the combat
system software during the system development stage when
considering the security properties from the perspective of
cybersecurity.

III. PROPOSED COMBAT SYSTEM SOFTWARE SECURITY
TESTING
Security testing of the combat system software must be con-
ducted not only on the application software but also on the
middleware and operating system to enhance the cybersecu-
rity of the combat system. In particular, security testing of
the middleware and operating system must be integrally con-
ducted together with the application security testing because
the development direction of the application software is influ-
enced by the characteristics and security configuration of the
middleware and operating system. Furthermore, in the early
stage of weapon system development, review and thorough
management of the relation of security requirements between
each software are mandatory. The basic directions for the
improvement of security testing are as follows.
• Establishment of security test categories from the per-

spective of cybersecurity: To enhance the combat system soft-
ware security, it is important to establish systematic security
test categories that can satisfy the security properties from
the perspective of security. Such categories are important to
security testing and derive the detailed security test subitems
accordingly. Even if the ‘‘Guideline for software development
security’’ [7] is applied to the combat system software secu-
rity testing, it is not suitable for the combat system software.
Further, there is a limitation that the mandatory security con-
trol fields are systematically reflected in the security testing.
•Optimization of the detailed security test subitems on the

application software: We derive the optimized detailed secu-
rity test subitems to eliminate security vulnerabilities based
on the aforementioned security categories and the ‘‘Guideline
for software development security’’ [7] when considering
the characteristics and environment of the combat system.
In particular, we derive subitems for security testing of the
operating system with reference to the ‘‘Guideline for anal-
ysis and assessment of technical vulnerability in the main
ICT infrastructures’’ [35]. This guideline evaluates whether
a system is vulnerable by verifying the security configuration

of the system. The middleware security test subitems are
derived from the DDS security standard proposed by OMG.

FIGURE 3. Establishment of the improved security test categories of the
combat system software.

A. ESTABLISHMENT OF SECURITY TEST CATEGORIES
As presented in Figure 3, improved security test categories
were established based on the ‘‘Guideline for software devel-
opment security’’ [7]. The existing security test categories are
inappropriate and unsystematic from the perspective of cyber-
security and have various mixed subitems of security testing
complexly because they are classified from the perspective of
source code development in spite of including measures for
known vulnerabilities.

Therefore, the security test categories should be improved
in consideration of the characteristics and environments of
the combat system and security properties that must be pos-
sessed by the combat system. Well-defined security test cat-
egories are the cornerstone of systematic security testing.
Moreover, system security architects or testers can effec-
tively derive and categorize security test subitems based on
them.

From the perspective of cybersecurity, we established the
improved eight categories (i.e., input data control, authen-
tication, access control, authorization, coding error control,
confidentiality, service control, log control) from the existing
categories. Several categories (i.e., access control, service
control, and log control) are considered to be critical security
properties.

Table 3 presents the description of each category and
the corresponding software comprising the combat system
software. Accordingly, the detailed security test subitems
were systematically derived from the improved security test
categories, and they can become the standard for conducting
security testing on the combat system software.

VOLUME 9, 2021 66845



C.-G. Yi, Y.-G. Kim: Security Testing for Naval Ship Combat System Software

TABLE 3. Security test categories of the combat system software.

B. DERIVATION OF DETAILED SECURITY TEST SUBITEMS
We derived the detailed test subitems required by the category
corresponding to each software based on the characteristics
and functions of the software comprising the combat system
software. As presented in Table 3, the test categories of
each software can be identical; however, there are different
detailed test subitems depending on the characteristics of
each software.

1) APPLICATION SOFTWARE
Security testing of the application software includes eight
categories and 37 subitems, excluding cyber control items
related to web services and DBMS that are not correlated
with the combat system among the security control items pre-
sented in the ‘‘Guideline for software development security’’
[7]. And we added access control and log control categories.
This security testing determines whether there known vulner-
abilities in the source code.

Table 4 presents the subitems of the application soft-
ware security testing: 1. ‘‘Input data control’’ identifies
inappropriate input data and command or buffer overflow;
2. ‘‘Authentication’’ verifies improper authentication for
important functions and checks if the account’s password
is vulnerable; 3. ‘‘Access control’’ verify that access to the
significant tactical function is properly controlled; 4. ‘‘Autho-
rization’’ identifies incorrect permission assignment for the
critical resource of the software; 5. ‘‘Code error control’’
verifies whether the mistake of the developer resulted in
the usage of wrong function and unintended disclosure of
information; 6. ‘‘Confidentiality’’ checks whether there is a
hard-coded password or encryption key value on the source
code and if weak cryptographic algorithms and keys can
be used to verify the storage and transmission of sensi-
tive information in the plaintext; 8. ‘‘Log control’’ verifies
whether the audit log is generated and managed for impor-
tant security data (e.g., log-in, access, tactical information
processing).

66846 VOLUME 9, 2021



C.-G. Yi, Y.-G. Kim: Security Testing for Naval Ship Combat System Software

TABLE 4. Subitems of the application software security testing.

2) MIDDLEWARE
The categories of middleware security testing are 2. ‘‘Authen-
tication,’’ 3. ‘‘Access control,’’ and 6. ‘‘Confidentiality.’’
Security testing of middleware must be performed with opti-
mized subitems of test because the security function should
not excessively affect the critical combat mission perfor-
mance. Thus, security testing for middleware should mini-
mize the impact on the performance of the middleware.

Table 5 presents subitems of the middleware security test-
ing. These subitems can be used to ensure that the appro-
priately authenticated participants in the domain can access
information and verify access control for the domain partici-
pants. Moreover, they can be used to verify whether sensitive
data are encrypted.

3) OPERATING SYSTEM
Security testing of the operating system includes five cate-
gories and 30 subitems. They can be used to verify whether
the security configurations of the operating system are appro-
priately established. They are considered as very important
factors for the combat system because the system can be
easily accessed and exploited by cyber attackers if security
configurationswith known vulnerability are not appropriately
established. Table 6 presents the subitems of operating system
security testing.

2. ‘‘Authentication’’ verifies the improper use of account
and password. 3. ‘‘Access control’’ checks if the remote
access and accessible IP and port are properly controlled.
4. ‘‘Authorization’’ verifies the authority on critical direc-
tories and checks whether files can be exploited with inap-
propriate permissions. 7. ‘‘Service control’’ checks if the
unnecessary services and programs to be exploited for hack-
ing are running. 8. ‘‘Log control’’ verifies that the significant
log saving function of the system is established for tracing,
post-analysis, and audit following cyberattacks. [Windows] is
the subitem corresponding to the Windows operating system.

C. SECURITY TESTING IN THE COMBAT SYSTEM
DEVELOPMENT PROCESS
The proposed approach for software security testing mainly
focuses on ‘‘software implementation’’ and ‘‘software
integration and test’’ of the system development stage, as pre-
sented in Figure 2. However, we present the roles and advan-
tages of the proposed security testing in the process of combat
system development by applying the proposed security test-
ing to the V model as presented in Figure 4. The V model
was derived from the waterfall model and is widely used in
system engineering. It facilitates the systematic development
of weapon systems by matching the requirements, system
analysis, and design process on the left side with the test

VOLUME 9, 2021 66847



C.-G. Yi, Y.-G. Kim: Security Testing for Naval Ship Combat System Software

TABLE 5. Subitems of the middleware security testing.

FIGURE 4. Roles of the proposed security testing in the V model of the combat system development.

and evaluation process on the right side. In particular, it has
been utilized for developing the Aegis combat system in US
navy [36]–[38].

The proposed categories and specific subitems of software
security testing are basically applied in the unit testing phases
and elementary integration & evaluation phase on the right
side of V model. It can be verified whether the proposed
security testing is appropriately reflected, as each modu-
lar application software is developed and connected, and
the application software, middleware, and operating system,
which comprise the combat system software, are closely inte-
grated. In the process on the left side, the proposed security
testing can facilitate the establishment of the required security
concept of the software in the operational requirement phase,
and support security requirement analysis in the software
requirement analysis & definition phase, and reflect the pre-
viously defined security requirements in the design phases.

In addition, after the security testing is performed in the
unit testing phase and elementary integration & testing phase,
it is possible to reverify whether the tested critical security
requirements have been properly developed and integrated
from a system integration perspective in the engineering test
& evaluation phases and system test & evaluation phase

by using the subitems of the proposed security testing.
The reason for enabling the above activities is that the test
concept and detailed subitems of the security testing have
already been defined in consideration of the characteristics
and environment of the combat system software. As a result,
the proposed security testing effectively reflects the security
requirements in the early stages of combat system software
development and supports security-related activities in all
stages.

Therefore, the proposed security testing approach rein-
forces the security of the combat system through the overall
process of system development and the software security test
process. In addition, by systematically and comprehensively
reviewing the software security from the initial process of
system development, the security issues identified in the latter
half of the development process can be prevented.

IV. EVALUATION AND DISCUSSION
In this paper, an improved new security testing approach
for the combat system software is proposed. This provides
a systematic and practical framework for software security
testing, which has not yet been effectively achieved when
developing combat systems. In this section, the proposed

66848 VOLUME 9, 2021



C.-G. Yi, Y.-G. Kim: Security Testing for Naval Ship Combat System Software

TABLE 6. Subitems of the operating system security testing.

security testing is analyzed by comparing it with the previ-
ously studied software security testing discussed in related
work, the existing security testing applied to the battle man-
agement information system of the Korean military, and CC
part 2, which is the international criteria for the security eval-
uation of general IT systems. CC part 2 defines the security
function requirements, which include 11 security function
classes (e.g., security audit, communication, cryptographic
support, user data protection, and security management) for
IT system security. These requirements describe the desired
security behavior expected from the evaluation target to meet
the security objectives [39].

As presented in Table 7, evaluation fields related to the
combat system software security, such as applicability to the
combat system software, key function factors (secure cod-
ing, security configuration, and vulnerability verification) for
security testing, and consideration of the characteristics of the
combat system software, are analyzed. The previously stud-
ied security testings focused on a theoretical methodology
rather than a specific and practical approach. Moreover, they
were mainly applied to the application software and not to the
middleware and operating system. They were not suitable for
security testing of the combat system software, considering
its characteristics and environments.

Thus, although the existing security testings can ensure
secure coding for the application software, they are insuf-
ficient for verifying security configuration and identifying
vulnerabilities in the middleware and operating system.

CC part 2 is a good standard for security evaluation;
however, it does not include secure coding and security

configuration setting of the operating system. In addition,
it does not match the characteristics of the combat system
software.

However, security testing of the overall combat system
software is systematically and holistically performed because
the proposed security testing is applied to the middleware,
operating system, and application software, which constitute
the combat system software, and the characteristics of the
combat system are satisfied.

Nevertheless, the proposed security testing exhibits a lim-
itation in that it cannot prevent all cyberattacks. This paper
focuses on the prevention of cyberattacks to software during
the development of a combat system and the implementation
of robust cybersecurity software using the proposed security
testing. Security testing for installation or configuration of an
additional security system for the combat system has not been
considered here.

The combat system is a mission-critical system that pro-
cesses tactical data and engages enemies in real-time; thus,
security testing cannot take precedence over performance
and function tests. It is very important to balance security,
performance, and function tests by considering the charac-
teristics and environment of the combat system. Therefore,
we propose practical and optimized security testing by fully
considering the above factors.

Security vulnerabilities of software can be caused by
faults or errors generated by mistakes of software designers
and developers or other reasons. They provide a potential
security threat to software, as well as have a significant
impact on the quality and reliability of the software. Recently,

VOLUME 9, 2021 66849



C.-G. Yi, Y.-G. Kim: Security Testing for Naval Ship Combat System Software

TABLE 7. Comparison of the proposed security test.

various studies on software fault predictions that can be
performed before software tests are in progress to improve
the quality and reliability of software [40].

In the future, new cyber vulnerabilities in the software
will be discovered. Accordingly, detailed subitems of the
proposed security testing must be continuously modified and
improved. Moreover, the cooperation among software devel-
opers, security experts, and designers from the start of the
combat system development process is very important. The
combat system software security must also be reviewed in
the early stage of system development and reflected system-
atically in software analysis and design.

In particular, subitems, which can verify such attacks,
must be developed and applied to the security testing
if a new zero-day attack to the combat system software
(application software, middleware, and operating system) is
discovered.

V. CONCLUSION
The naval combat system is a software-centric complex
weapon system integrated with the network and computer
software. The core performance and function of this system
are influenced by software. Recently, the use of commercial
software has significantly increased. However, systematic
software security testing has not been applied to the real
testing process in the system development stage during the
combat system development, restricting the development of
a robust combat system against cyberattacks. To solve this
problem, an effective and practical software security testing
approach is proposed in this paper to fundamentally deal

with cyberattacks when considering the characteristics and
environment of the combat system.

First, we present a concrete and practical framework for
software security testing by establishing eight security test
categories for the combat system software, which comprise
the application software, middleware, and operating system,
from the viewpoint of cybersecurity. These categories are
mandatory security controls that must be adhered to by the
combat system software. Also, optimized detailed security
subitems are derived based on these categories when con-
sidering the characteristics and environment of the combat
system. Moreover, a combat system software that is fun-
damentally robust against cyberattacks can be developed
because the proposed security testing helps in indicating the
security requirements in the early stage of combat system
development by reviewing and defining them during software
analysis and design, as presented in Figure 4.

In the future, cyberattacks to the military weapon system
called ‘‘SoS’’ (e.g., naval combat system, missile systems,
and airplanes) will emerge. Therefore, this situation must be
analyzed and studied by weapon system and security experts,
and appropriate countermeasures must be established based
on the mission characteristics associated with the weapon
system. It is also important to develop a security framework
that can be practically applied in weapon system development
and guidelines for the security of weapon system software.
In future work, we will develop additional subitems of the
security test in consideration of future combat system trends.
It is necessary to extend the proposed approach to a frame-
work that can be applied to combat systems and other weapon
systems.

66850 VOLUME 9, 2021



C.-G. Yi, Y.-G. Kim: Security Testing for Naval Ship Combat System Software

REFERENCES
[1] C. Chaplain, ‘‘Weapon systems cyber security: DOD just beginning to

grapple with scale of vulnerabilities,’’ Government Accountability Office,
Washington, DC, USA, Tech. Rep. GAO-19-128, Oct. 2018.

[2] R. Koch and M. Golling, ‘‘Weapons systems and cyber security—A chal-
lenging union,’’ in Proc. 8th Int. Conf. Cyber Conflict (CyCon), May 2016,
pp. 191–203.

[3] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska,
‘‘Systems of systems engineering: Basic concepts, model-based tech-
niques, and research directions,’’ ACM Comput. Surveys, vol. 48, no. 2,
pp. 1–41, 2015.

[4] J. K. Lee, ‘‘Trend of weapon system cyber security policy,’’ J. Korea Inst.
Inf. Secur. Cryptol., vol. 28, no. 6, p. 84, Dec. 2018.

[5] K. Y. Heo, K. Y. Kwon, and T. S. Kim, ‘‘A study on the promotion of
reliability test for imbedded software of weapon system,’’ J. Korean Soc.
Syst. Eng., vol. 11, no. 1, p. 66, Jun. 2015.

[6] W. William, H. Brian, S. Adam, and S. Owen, ‘‘Common architecture
system assurance: Information assurance for the next generation of combat
systems,’’ Lead. Edge, Combat Syst. Eng. Int., pp. 137–139, Feb. 2013.

[7] Guideline For Software Development Security, Korea Internet Secur.
Agency, Seoul, South Korea, Jan. 2017.

[8] Manual for Development and Management of Weapon System Software,
Defense Acquisition Program Admin., Seoul, South Korea, Aug. 2017.

[9] C.-G. Yi and Y.-G. Kim, ‘‘A study on software security test of naval
ship combat system,’’ J. Korean Inst. Commun. Inf. Sci., vol. 45, no. 3,
pp. 628–637, Mar. 2020.

[10] T. Y. Gu, Y. S. Shi, and Y. Y. Fang, ‘‘Research on software security testing,’’
J. Comput. Inf. Eng., vol. 4, no. 9, p. 1446, Jun. 2010.

[11] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and
A. Pretschner, ‘‘Security testing: A survey,’’ in Advances in Computers,
vol. 101. Innsbruck, Austria: Innsbruck Univ., 2016, pp. 1–5.

[12] Risk-Based and Functional Security Testing. Accessed: Jul. 2013. [Online].
Available: https://www.us-cert.gov/bsi/articles/best-practices/security-
testing/risk-based-and-functional-security-testing

[13] M. Felderer, P. Zech, R. Breu, M. Büchler, and A. Pretschner, ‘‘Model-
based security testing: A taxonomy and systematic classification,’’ Softw.
Test., Verification Rel., vol. 26, no. 2, pp. 119–148, Mar. 2016.

[14] B. Chess, and J. West, Secure Programming With Static Analysis. London,
U.K.: Pearson, 2007.

[15] A. Brucker and U. Sodan, ‘‘Deploying static application security testing
on a large scale,’’ Sicherheit 2014-Sicherheit, Schutz und Zuverlässigkeit,
Tech. Rep. 228, 2014.

[16] K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh, ‘‘NIST technical
guide to information security testing and assessment,’’ Nat. Inst. Standards
Technol., Gaithersburg, MD, USA, Tech. Rep. NIST SP 800-115, 2008,
pp. 2–25.

[17] S. N. Matheu-García, J. L. Hernández-Ramos, A. F. Skarmeta, and
G. Baldini, ‘‘Risk-based automated assessment and testing for the cyber-
security certification and labelling of IoT devices,’’ Comput. Standards
Interfaces, vol. 62, pp. 64–83, Feb. 2019.

[18] P. Godefroid, M. Y. Levin, and D. Molnar, ‘‘SAGE: Whitebox fuzzing for
security testing,’’ Queue, vol. 10, no. 1, pp. 20–27, Jan. 2012.

[19] M. Felderer and E. Fourneret, ‘‘A systematic classification of security
regression testing approaches,’’ Int. J. Softw. Tools Technol. Transf., vol. 17,
no. 3, pp. 305–319, Jun. 2015.

[20] U. Waheed, ‘‘Security regression testing framework for Web application
development,’’ M.S thesis, Dept. Info., Oslo Univ., Oslo, Norway, 2014.

[21] M. Peroli, F. De Meo, L. Viganò, and D. Guardini, ‘‘MobSTer: A model-
based security testing framework for Web applications,’’ Softw. Test., Ver-
ification Rel., vol. 28, no. 8, p. e1685, Dec. 2018.

[22] V. Casola, A. De Benedictis, M. Rak, and U. Villano, ‘‘Towards auto-
mated penetration testing for cloud applications,’’ in Proc. IEEE 27th
Int. Conf. Enabling Technol., Infrastruct. Collaborative Enterprises (WET-
ICE), Jun. 2018, pp. 24–29.

[23] J. A. Longoria, ‘‘Prioritizing security regression test cases using threat
models,’’ Ph.D. dissertation, Dept. Elect. Comp. Eng., Texas Univ., Austin,
TX, USA, 2016.

[24] J. Bozic and F. Wotawa, ‘‘Planning-based security testing of Web applica-
tions with attack grammars,’’ Softw. Qual. J., vol. 28, pp. 1–28, Mar. 2020.

[25] I. Pekaric, C. Sauerwein, andM. Felderer, ‘‘Applying security testing tech-
niques to automotive engineering,’’ in Proc. 14th Int. Conf. Availability,
Rel. Secur., Aug. 2019, pp. 1–10.

[26] S. Hagerman, A. Andrews, and S. Oakes, ‘‘Security testing of an unmanned
aerial vehicle (UAV),’’ in Proc. Cybersecurity Symp. (CYBERSEC),
Apr. 2016, pp. 26–31.

[27] M. A. Olivero, A. Bertolino, F. J. Dominguez-Mayo, M. J. Escalona,
and I. Matteucci, ‘‘Security assessment of systems of systems,’’ in Proc.
IEEE/ACM 7th Int. Workshop Softw. Eng. Syst. Syst. (SESoS), 13th
Workshop Distrib. Softw. Develop., Softw. Ecosyst. Syst. Syst. (WDES),
May 2019, pp. 62–65.

[28] Defense Agency for Technology and Quality, Dictionary Military Tech.
Terms, Seoul, South Korea, 2018.

[29] Combat System Principle and Understanding, ROK Nav. Educ. Training
Command, Jinhae-gu, South Korea, Sep. 2016.

[30] Surface Navy Combat System Engineering Strategy, U.S. Navy PEO IWG,
Washington, DC, USA, Mar. 2010.

[31] J. H. Han, ‘‘Message encryption methods for DDS security performance
improvement,’’ J. Korea Inst. Inf. Commun. Eng., vol. 22, no. 11, p. 1555,
Nov. 2018.

[32] DDSPortal. Accessed:Mar. 2015. [Online]. Available: http://www.portals.
omg.org/dds

[33] Y. K. Go and C. S. Kim, ‘‘Cryptographic overhead of DDS security for
naval combat system security,’’ in Proc. KIISE Korea Comput. Congr.,
Jun. 2017, p. 1217.

[34] DDS Security Standard Document. Accessed: Sep. 2016. [Online]. Avail-
able: http://www.omg.org/spec/DDS-SECURITY/1.0

[35] Guideline for Analysis and Assessment on Technical Vulnerability of Main
ICT Infrastructures, Korea Internet Secur. Agency, Seoul, South Korea,
Dec. 2017.

[36] S. Balaji and M. S. Murugaiyan, ‘‘Waterfall vs. V-model vs. agile: A com-
parative study on SDLC,’’ Int. J. Inf. Technol. Bus. Manage., vol. 2, no. 1,
pp. 26–30, 2012.

[37] S. P. Gregg, D. M. Albert, and P. Clements, ‘‘Product line engineering on
the right side of the ‘V,’’’ in Proc. 21st Int. Syst. Softw. Product Line Conf.,
Sep. 2017, pp. 165–174.

[38] A. Al-Momani, F. Kargl, R. Schmidt, A. Kung, and C. Bösch, ‘‘A privacy-
aware V-model for software development,’’ in Proc. IEEE Secur. Privacy
Workshops (SPW), May 2019, pp. 100–104.

[39] Common Criteria Part 2: Security Functional Components, Ver. 3.1 Rev. 5,
Apr. 2017, pp. 13–14.

[40] T. B. Alakus, R. Das, and I. Turkoglu, ‘‘An overview of quality metrics
used in estimating software faults,’’ in Proc. Int. Artif. Intell. Data Process.
Symp. (IDAP), Sep. 2019, pp. 1–6.

CHEOL-GYU YI (Student Member, IEEE)
received the B.S. degree in naval architecture
from Naval Academy, South Korea, in 1995, and
the M.S. degree in computer science and indus-
trial systems engineering from Yonsei University,
Seoul, South Korea, in 2002. He is currently
pursuing the Ph.D. degree with the Department
of Computer and Information Security, Sejong
University. His current research interests include
weapon system security, naval combat systems,

software security testing, threat hunting, and security operation center.

YOUNG-GAB KIM (Member, IEEE) received
the B.S. degree in biotechnology and genetic
engineering and minored in computer science and
engineering and the M.S. and Ph.D. degrees in
computer science and engineering from Korea
University, Seoul, South Korea, in 2001, 2003,
and 2006 respectively. He was an Assistant Pro-
fessor with the School of Information Technol-
ogy, Catholic University of Daegu. He is currently
an Associate Professor with the Department of

Computer and Information Security, and the Department of Convergence
Engineering for Intelligent Drone, Sejong University. He has published
over 180 research articles in the field of computer science and information
security. His current research interests include the Internet of Things (IoT)
security, big data security, network security, home networks, security risk
analysis, and security engineering. As a Korean ISO/IEC JTC 1 Member,
he is contributing in developing data exchange standards.

VOLUME 9, 2021 66851


