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ABSTRACT In the Internet-of-Things (IoT), different types of devices can co-exist within a network. For
example, there can be cheap but inflexible devices and flexible devices in terms of radio frequency (RF)
capabilities. Thus, in order to support different types of devices in different ways and improve throughput,
we propose a multichannel random access scheme based on power-domain non-orthogonal multiple access
(NOMA), where each flexible or dynamic device (DD) can dynamically choose one of multiple channels
when it has a packet to send. In addition, since DDs need to learn the channel selection probabilities to
maximize the throughput of DDs, we consider two-sided learning based on a multi-armed bandit (MAB)
formulation where rewards are decided by learning outcomes at a base station (BS) to improve learning
speed at DDs. Simulation results confirm that two-sided learning can help improve learning speed at DDs
and allows the proposed NOMA-based random access approach to achieve near maximum throughput.

INDEX TERMS IoT, random access, NOMA, learning.

I. INTRODUCTION
In the Internet-of-Things (IoT), a large number of devices
including sensors and actuators are to be connected to net-
works for a number of applications including smart cities
and factories [1], [2]. To allow devices to be connected, IoT
connectivity plays a crucial role in the IoT and a number of
solutions are studied including WiFi, cellular IoT, low-power
wide area networking (LPWAN), and so on [3].

Within a certain geographical area, a number of devices
can be deployed to form an IoT network with a base sta-
tion (BS). In this IoT network, for wireless communications,
dedicated licensed bands or unlicensed bands can be used
[3], [4] to formmultiple channels in order to support a number
of devices that can transmit their packets simultaneously.
In [5], with multichannel ALOHA for random access, learn-
ing algorithms to access multiple channels are considered
when two different types of devices co-exist, namely static
devices (SD) and dynamic devices (DD). A SD is a low-cost
device that only transmits through a pre-determined channel
due to limited radio frequency (RF) capability. On the other
hand, a DD is amore flexible and capable device than SD, and
it can choose a channel from multiple channels. Since DDs
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are capable to select channels for transmissions, multiarmed
bandit (MAB) algorithms [6], [7] are considered so that each
DD can maximize its average reward when multiple channels
are regarded as multiple arms.

As mentioned in [5], MAB algorithms have been studied
for resource allocation in wireless networks [8]–[10], where
MAB is generalized with multiple players due to multiple
users that accessmultiple channels. Unlike the problem in [5],
however, the problems in [8]–[10] assume the case that the
number of users is smaller than that of channels. Thus,
the solution can be characterized by stablematchings [11]. On
the other hand, in IoT networks, it is expected that there will
be far more devices than channels. Thus, each device cannot
be associated with a specific channel, and has to randomly
select one of multiple channels with the risk of collision. As
a result, the setting in [5], where a large number of devices
exist with a limited number of channels, is practical, and the
proposed approach is important in IoT networks.

Power-domain non-orthogonal multiple access (NOMA)
has been extensively investigated for cellular networks as
it can improve the spectral efficiency [12], [13]. In [14],
the notion of NOMA is applied to random access in order to
improve throughput. For access control in NOMA-based ran-
dom access, a game-theoretic approach is adopted in [15]. As
shown in [14], [15], since NOMA can increase the throughput
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of multichannel ALOHA, it seems promising to support a lot
of devices by utilizing NOMA in IoT networks like the one
shown in [5].

In this paper, we apply power-domain NOMA to random
access for an IoT network that consists of one BS and a large
number of devices with a limited number of channels. In
addition,MAB is considered so that devices can learn channel
selection probabilities to maximize the throughput as in [5].
Two different MAB approaches are derived. One is similar
to that in [5], while the other approach requires learning in
both the BS and devices or two-sided learning. In two-sided
learning, the BS is to learn the optimal channel selection
probabilities and decide rewards based on them. In addition,
each device is to learn channel selection probabilities through
a MAB formulation. Thanks to the rewards based on optimal
channel selection probabilities that are decided by the BS, the
learning speed at devices can be improved. Note that in [16],
the learning basedMAB is analyzed as an evolutionary game,
no two-sided learning is studied.

In summary, the aim of the paper is to improve the perfor-
mance of IoT networks by introducing power-domainNOMA
for DDs that can dynamically change access channels and
design a learning scheme for both smarter devices and BS to
improve the throughput. The novelty is the two-sided learning
scheme that allows smarter devices and BS to interact so that
key parameters can be adjusted to maximize the throughput
(note that the learning in [5] is carried out at DDs, not BS).
As a result, the main contribution of the paper becomes two-
fold: i) a NOMA-based random access approach is proposed
for the IoT network with different types of devices as in [5] to
improve the throughput; ii) two-sided learning is proposed for
the NOMA-based random access to improve learning speed.

The rest of the paper is organized as follows. In Section II,
the system model for IoT networks is presented with differ-
ent types of devices. To show the throughput improvement
by power-domain NOMA, the throughput is analyzed in
Section III. For the proposed NOMA-based random access
approach, MAB is considered with two-sided learning in
Section IV. We present simulation results in Section V and
conclude the paper with remarks in Section VI.

NOTATION
Matrices and vectors are denoted by upper- and lower-case
boldface letters, respectively. The superscript T denotes the
transpose. For a set A, |A| represents the cardinality of A.
E[·] andVar(·) denote the statistical expectation and variance,
respectively. N (a,R) represents the distribution of Gaussian
random vectors with mean vector a and covariance matrix R.

II. SYSTEM MODEL
In this section, we present the system model based on [5].
Throughout the paper, it is assumed that a system consists
of a number of devices and a BS. In addition, we assume
that there are L orthogonal resource blocks (RBs) or channels
(i.e., throughout the paper, the terms RBs and channels are
interchangeable).

A. CO-EXISTING DIFFERENT TYPES OF DEVICES
In this paper, we assume two groups of devices. One group
consists of SDs of a low duty cycle or access probability.
In addition, the other group consists of DDs that are more
capable than SDs in the following ways:
1) each DD can choose a channel dynamically;
2) the transmit power of DDs is higher than that of SDs so

that power-domain NOMA can be employed.
Power-domain NOMA can effectively create multiple chan-
nels within a RB to improve the spectral efficiency. Assuming
that there are two different power levels, we can see that
SDs access the channels of low power, while DDs access
the channels of high power. Thus, the presence of DDs may
not significantly degrade the throughput of SDs thanks to
NOMA.

As in [5], each SD has a fixed channel (among L channels)
to communicate with the BS as it is less flexible due to poor
RF capability. Thus, the number of SDs that access through
channel l, denoted by Sl , is assumed to be a constant. On the
other hand, DDs are more flexible and able to dynamically
choose a channel out of L channels according to channel
selection probabilities that can be learned. In Fig. 1, we illus-
trate the system model with L RBs to support both SDs and
DDs using power-domain NOMA.

FIGURE 1. An illustration of the system model with L RBs to support both
SDs and DDs using power-domain NOMA.

In addition, as mentioned above, each DD is to transmit
a higher power than SDs to avoid collision with SDs by
exploiting power-domain NOMA [14]. While this feature
is not considered in [5], it plays a crucial role in not only
improving performance, but also learning as will be explained
later.

B. NOMA-BASED RANDOM ACCESS FOR TWO DIFFERENT
TYPES OF DEVICES
In this subsection, power-domain NOMA is considered to
support both SDs and DDs in an IoT network.

LetKl and K̄l denote the index sets of active SDs and DDs
that transmit their signals to channel l, respectively. Let Kl =
|Kl | and K̄l = |K̄l |. The signals from the kth active SD and
DDs are denoted by sk and s̄k , respectively. Then, the received
signal through channel l is given by

yl =
√
P1

∑
k∈Kl

sk +
√
P2

∑
k∈K̄l

s̄l + nl, (1)
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where nl ∼ N (0, σ 2) denotes the background noise, and
P1 and P2 represent the power levels of SDs and DDs,
respectively. We assume that Var(sk ) = Var(s̄k ) = 1 for
normalization with E[sk ] = E[s̄k ] = 0 for all k . Thus,
if |K̄l | = K̄l = 1, the signal-to-interference-plus-noise ratio
(SINR) of DDs is given by

SINR2 =
P2

KlP1 + σ 2 . (2)

It is assumed that the signals from one DD through channel l
is decodable if

SINR2 ≥ 0, (3)

where 0 > 0 denotes the SINR threshold for successful
decoding. Provided that there is only one DD in channel l,
when 0 ≤ P2

P1+σ 2
, the signal from the DD is decodable if

there is at most one active SD in the same channel. Of course,
in this case, the signal of the active SD is also decodable after
successive interference cancellation (SIC) [12], [13].

It is noteworthy that the packet collision with multiple
DDs in a channel results in decoding failure of the SD in
the same channel due to error propagation [14]. Thus, it has
to be assumed that the probability of packet collision with
DDs is sufficiently low. In other words, the average number
of active DDs, denoted by λ, has to be lower than the number
of channels, L. Throughout the paper, therefore, we assume
that λ ≤ L.

Note that the total number of SDs is M1 =
∑L

l=1 Sl .
Let p1 denote the access probability of SDs that are active
independently. In general, the total number of DDs, denoted
by M2, is also finite. Denote by p2 the access probability of
DDs that also become active independently. Thus, we have

λ = E[N2] = M2 p2, (4)

where N2 =
∑L

l=1 K̄l is the number of active DDs. For
convenience, with a sufficiently large M2 and a low p2, N2
is assumed to be a Poisson random variable, i.e.,

N2 ∼ Poiss(λ) or Pr(N2 = k) =
e−λλk

k!
, (5)

which is an approximation [17].

III. THROUGHPUT ANALYSIS
In this section, we focus on the throughput analysis in order
to demonstrate that the performance can be improved by
exploiting the notion of power-domain NOMA in supporting
SDs and DDs in different ways (or powers) as discussed in
Subsection II-B.

A. PERFORMANCE WITHOUT NOMA
For comparisons, we discuss the throughput of the con-
ventional random access approach in [5], where no
power-domain NOMA is considered.

In each channel, both SDs and DDs transmit signals with
power P = P1 = P2 as NOMA is not used. Then, provided
that there are N2 active DDs, the conditional probability that

one DD can successfully transmit its packet through channel
l is given by

P2,l(N2) = (1− p1)Sl
(
N2

1

)
ql (1− ql)N2−1 , (6)

where ql is the probability that an active DD chooses chan-
nel l or DD’s selection probability of channel l. Thus,
the throughput of DDs, which is the average number of
successfully transmitted packets by DDs, is given by

ηconv,2(q) = E

[
L∑
l=1

P2,l(N2)

]

=

L∑
l=1

(1− p1)Sl
∞∑
k=0

kql (1− ql)k−1
e−λλk

k!

=

L∑
l=1

(1− p1)Sl λqle−λql . (7)

Let P1,l(N2) denote the conditional probability that an
active SD in channel l can successfully transmit its packet
provided that there are N2 active DDs, which is given by

P1,l(N2) = Slp1 (1− p1)Sl−1 (1− ql)N2 . (8)

Then, the throughput of SDs can also be found as

ηconv,1(q) = E

[
L∑
l=1

P1,l(N2)

]

=

L∑
l=1

Slp1 (1− p1)Sl−1 e−λql . (9)

For a given channel l, the throughput of SDs per channel
is a decreasing function of ql as shown in (9). On the other
hand, as shown in (7), the throughput of DDs per channel is
an increasing function of ql when ql ≤ 1

λ
. The relationship

between the throughput (per channel) and DD’s access prob-
ability ql is illustrated in Fig. 2. As a result, the increase of
throughput of DDs leads to the decrease of throughput of SDs.

B. PERFORMANCE WITH NOMA
In this subsection, we focus on the throughput when NOMA
is employed.

Let ωl denote the probability that an active DD can suc-
cessfully transmit its packet when it is only one active DD.
Then, with 0 = P2

P1+σ 2
, from (2) and (3), it can be given by

ωl = Pr(SINR2 ≥ 0 | K̄l = 1)

= (1− p1)Sl +
(
Sl
1

)
p1(1− p1)Sl . (10)

As shown in (10), ωl only depends on the number of active
SDs in channel l. Provided that there are N2 active DDs, the
conditional probability that an active DD choosing channel l
can successfully transmit its packet is given by

P2,l(N2) = ωl

(
N2

1

)
ql(1− ql)N2−1. (11)
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FIGURE 2. Throughput of the conventional approach per channel as a
function of DD access probability, ql , for SDs and DDs when p1 = 0.01,
Sl = 16, and λ = 4.

Thus, the throughput of DDs is given by

η2(q) = E

[
L∑
l=1

ωlN2ql(1− ql)N2−1

]

= λ

L∑
l=1

ωlqle−qlλ. (12)

To decode the signal from an active SD in a channel, it is
necessary to decode any active DD and perform SIC. Thus,
the throughput of SDs can be given by

η1(q) = E
[ L∑
l=1

Slp1(1− p1)Sl−1

×

(
N2(1− ql)N2−1 + (1− ql)N2

) ]
=

L∑
l=1

Slp1(1− p1)Sl−1e−qlλ(1+ λql). (13)

Comparing (13) and (9), we can conclude that the proposed
random access approachwith NOMAhas a higher throughput
of SDs than the conventional random access approach in [5]
at the cost of high transmit power of DDs. In other words,
the presence of DDs has less impact on the performance of
SDs when power domain NOMA is used. Furthermore, if
ql = 1

L , we have

e−qlλ(1+ λql) = e−
λ
L

(
1+

λ

L

)
≤ 0.7358,

as λ ≤ L. This demonstrates that the throughput of SDs can
be degraded by a factor of up to 0.7358 due to the presence
of DDs. On the other hand, as shown in (9), without NOMA,
the throughput of SDs can be degraded by a factor of up to
e−1 = 0.3679 due to the presence of DDs.

We also have the following result to show that the through-
put of the proposed approach with NOMA is higher than that
of the conventional one [5].

Lemma 1:

max
q
η1(q) ≥ max

q
ηconv,1(q)

max
q
η2(q) ≥ max

q
ηconv,2(q)

max
q
η1(q)+ η2(q) ≥ max

q
ηconv,1(q)+ ηconv,2(q). (14)

Proof: The result can be easily obtained from (9), (7),
(13), and (12). Thus, we omit the proof.

In Fig. 3, the relationship between the throughput (per
channel) and DD’s channel selection probability ql is illus-
trated with the same values of the parameters as those
in Fig. 2. Comparing Figs. 2 and 3, it is clear that the proposed
approach with NOMA can provide a higher throughput than
the conventional one for both SDs and DDs.

FIGURE 3. Throughput of the proposed approach per channel as a
function of DD selection probability, ql , for SDs and DDs when p1 = 0.01,
Sl = 16, and λ = 4.

In Fig. 4, we also compare the conventional random access
approach and the proposed random access one with NOMA
in terms of the total throughput when λ varies from 0 to L
with L = 10, Sl = S = 10, p1 = 0.1, and ql = 1

L for all l.
It is clear that the proposed one has a higher throughput than
the conventional one thanks to power-domain NOMA.

C. OPTIMAL CHANNEL SELECTION PROBABILITY
As shown in (13), a salient feature of the proposed random
access approach is that the throughput of SDs is less depen-
dent on ql as long as λql is sufficiently low, which might be
the case that λ < L. This is a desirable result as DDs are to
be opportunistic in accessing channels. That is, the presence
of smart DDs should not have a serious impact on poorly
capable SDs. Based on this, we can consider the following
optimization problem:

q∗ = argmax
q

η2(q)

subject to
L∑
l=1

ql = 1, ql ≥ 0. (15)
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FIGURE 4. Performance of the conventional random access approach and
the proposed one with NOMA in terms of throughput for various values
of λ when L = 10, Sl = S = 10, p1 = 0.1 and ql =

1
L for all l .

In other words, in optimizing q, we only need to consider the
performance of DDs provided that the presence of DDs does
not have a serious impact on SDs.
Lemma 2: The solution of the problem in (15) is given by

q∗l =


1−W

(
βe
ωl

)
λ

, if β ≤ ωl

0, o.w.,

(16)

whereW(·) is the Lambert W function and β is the Lagrange
multiplier. The value of the Lagrange multiplier has to be
decided to satisfy

∑L
l=1 q

∗
l = 1.

Proof: From (15), the following unconstrained opti-
mization problem can be considered:

min
q

L∑
l=1

ωlqle−qlλ − β
L∑
l=1

ql . (17)

By taking the derivative with respect to ql and setting it to 0,
we have

e−qlλ(1− qlλ) =
β

ωl
, for all l. (18)

Then, (18) is re-written as

uleul = zl, (19)

where ul = 1 − qlλ and zl =
βe
ωl
. Since u = W(z) when

ueu = z, we have

ul =W(zl) or ql =
1−W(zl)

λ
. (20)

In addition, sinceW(z) is an increasing function of z ≥ 0 and
becomes 1 when z = e, for zl > e or β > ωl , ql has to be 0.
This results in (16), which completes the proof.

Note that finding β that satisfies
∑

l q
∗
l = 1 is straightfor-

ward as 1−W(zl) is a nonincreasing function of β. It can be
found by any simple numerical technique, e.g., the bisection
method [18].

IV. TWO-SIDED LEARNING
In this section, we discuss learning for the proposed random
access approach. In particular, two-sided learning is consid-
ered where the BS and DDs perform learning to maximize the
throughput of DDs.

Throughout this section, it is assumed that SDs and DDs
become independently active to transmit their packets in each
time slot. Thus, we denote by N1(t) and N2(t) the total num-
bers of active SDs and DDs at time slot t , respectively, which
are assumed to be independent and identically distributed
(iid).

A. BS’s LEARNING FOR SDs’ ACTIVITIES
As shown in (16), the DD’s optimal channel selection proba-
bilities, {q∗l }, depend on {ωl}. Thus, it is necessary for the BS
to learn or estimate the ωl’s that are assumed to be fixed. To
this end, the BS needs to learn SDs’ activities.

From (10), we can show that

ωl = Pr(A1,l), (21)

whereA1,l denotes the event that the number of active SDs in
channel l is 0 (idle) or 1. Unfortunately, the eventA1,l cannot
be observed if there are more than 1 active DDs in channel l
due to error propagation. On the other hand, if there is none or
one active DD (no collision between DDs), the BS is able to
observe the eventA1,l and update ωl . In particular, an on-line
estimate of ωl at time t can be updated as follows:

ω̂l(t) =


(t − 1)ω̂l(t − 1)

t
+
1(A1,l(t))

t
, if K̄l ≤ 1

ω̂l(t − 1), o.w.,
(22)

where A1,l(t) is the event A1,l at time slot t . Let Xl(t) =
1(A1,l(t)) ∈ {0, 1}. If the BS can observe A1,l(t) regardless
of DD collision, it can be seen that ω̂l(t) is the sample mean
of the Xl(t)’s, which are iid. Thus, in this case, as t → ∞,
ω̂l(t) converges to ωl w.p. 1 [19].

However, as mentioned earlier, the BS may not be able to
see some events A1,l(t) due to collision between active DDs
in channel l. In the presence of DD collision, to see whether
or not ω̂l(t) can converge toωl , consider an example. Suppose
that DD collision happens at t = 3 in channel l. Thus, from
(22), the estimate of ωl at t = 4, is given by

ω̂l(4) =
Xl(1)+ Xl(2)+

Xl (1)+Xl (2)
2 + Xl(4)

4

=
3
8
Xl(1)+

3
8
Xl(2)+

1
4
Xl(4).

Thus, in general, ω̂l(t) can be written as

ω̂l(t) =
∑
τ∈T (t)

V (τ ; t)Xl(τ ), (23)

where T (t) denotes the index set of the time slots of no
DD collision up to time slot t and V (τ ; t) is the weight for
Xl(τ ) that depends on the events of DD collision. Due to the
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normalization, we have∑
τ∈T (t)

V (τ ; t) = 1.

Since the activity of SDs is independent of that of DDs, Xl(t)
is independent of DD collision, i.e., V (τ ; t). In addition, since
the events of DD collision are independent, as t →∞, it can
be shown that V (τ ; t) = O(1/t) if the probability of DD
collision is not 1. Note that the probability of DD collision
in channel l is ρ = 1− e−qlλ(1+ qlλ) < 1. Thus, as in [20],
we expect that ω̂l(t)→ ωl w.p. 1 as t →∞.
Thanks to power-domain NOMA, as shown above, active

DDs do not significantly interfere with learning to estimate
the ωl’s, and reliable estimates of the ωl’s become available
after a sufficient number of slots. Then, with the estimates,
the BS is able to obtain q∗l as in (16).

B. DDs’ LEARNING VIA MAB FORMULATION
Prior to deriving a learning approach for DDs using the on-
line estimates of the ωl’s at the BS, we consider a straight-
forward extension of the learning algorithm used in [5] to
the proposed random access approach with NOMA in this
subsection.

As in [5], MAB can be used for learning at DDs. Suppose
that a DD has L arms or channels.When a DD becomes active
to transmit its packet, it chooses one of L arms and receives
a reward from the BS. If rewards are iid for selected arms in
multiple plays, the DD can learn or estimate the mean reward,
denoted by µl for arm l, after a number of plays. Then, it can
select the best arm, i.e., l∗ = argmaxl µ̂l , where µ̂l is an
estimate of µl .
For MAB, Thompson sampling [21] can be used. For each

arm, a beta distribution Beta(al;m(t), bl;m(t)), where al;m(t)
and bl;m(t) are the shape parameters, is assumed at DD m,
wherem ∈ {1, . . . ,M2}. For uniform prior, it can be assumed
that al;m(0) = bl;m(0) = 1. After each play, DD m receives
a reward, rl;m(t) ∈ {−1, 1}. Here, rl;m(t) = −1 or 1 implies
that transmission through channel l by DD m is unsuccess-
ful or successful, respectively. The shape parameters can be
updated as follows:

if rl;m(t) = 1
al;m(t) = al;m(t − 1)+ 1, bl;m(t) = bl;m(t − 1)

if rl;m(t) = −1
bl;m(t) = bl;m(t − 1)+ 1, al;m(t) = al;m(t − 1). (24)

If DD m does not play at time t (i.e., DD m is not an active
DD), the shape parameters are not updated, i.e., al;m(t) =
al;m(t − 1) and bl;m(t) = bl;m(t − 1).
At time slot t , if DD m has a packet to send, it can have

samples from the Beta posterior as follows:

Zl;m(t) ∼ Beta(al;m(t), bl;m(t)). (25)

Then, from the samples, the selected arm or channel to send
a packet is given by

l∗ = argmax
l∈{1,...,L}

Zl;m(t), (26)

which is a randomized selection policy.

As discussed in [5], although the approach in (26) does not
consider multiple players, i.e., other DDs, interacting with the
same set of arms, i.e., L channels, it may provide reasonable
performance after a number of plays. However, there are a
few drawbacks as follows:
• The BS does not exploit the estimates of the ωl’s or
the channel selection probabilities, {ql}, in making the
rewards, although they are available.

• A DD can receive a reward only when it is active. Thus,
when p2 is low, the time to learn for each DD is limited.
Furthermore, since an active DD can choose one arm at
a time, with a large L, it may take a long time to learn or
have reliable shape parameters for each DD.

C. A MODIFIED LEARNING APPROACH FOR DDs
In this subsection, we propose a two-sided learning approach
where the BS learns the channel selection probabilities using
the estimates of the ωl’s as discussed in Subsection IV-A, and
DDs learn using designed rewards from the BS.

At time t , the BS expects to receive 6l(t) = λ
∑t

i=1 ql(i)
packets from DDs through channel l, where ql(t) denotes the
selection probability of channel l at time t obtained using
{ω̂l(t)}. Note that if ω̂l(t) → ωl , we have ql(t) → q∗l as t
increases. Thus, the BS canmake a reward, which is rl(t) = 1,
for the active DDs that send packets through channel l to
increase the selection probability if

6̂l(t) < 6l(t)− ε(t), (27)

where 6̂l(t) represents the accumulated number of active
DDs that transmit packets through channel l up to time t and
ε(t) is a positive increasing function of t . On the other hand,
if

6̂l(t) > 6l(t)+ ε(t), (28)

the BS makes a different reward, which is rl(t) = −1, for the
active DDs that send packets through channel l to decrease
the selection probability.

If an active DD, say DD m, receives rl(t), it can update the
shape parameters as in (24). Note that if

|6l(t)− 6̂l(t)| ≤ ε(t), (29)

the reward becomes 0, i.e., rl(t) = 0. In this case, the active
DDs do not update their shape parameters.

Note that the same rewards, rl(t), are shared by all the
active DDs that transmit packets through channel l. Thus,
the BS broadcasts rl(t). In Algorithm 1, the algorithm tomake
the rewards is summarized.

Consequently, we expect that 6̂l(t) can follow 6l(t) as
illustrated in Fig. 5. We can also consider asymptotic behav-
iors. Regardless of DD’s learning of the channel selection
probabilities, it can be shown that

6l(t)→ tq∗l λ, t →∞,

because the activity of SDs is independent of that of DDs.
Suppose that ε(t) = εt with a sufficiently small ε > 0. Then,
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Algorithm 1 Making Rewards at the BS

Data: {ω̂l(t)}, {6̂l(t)}, and ε(t)
Result: {rl(t)}
update {ql(t)} from {ω̂l(t)} using (16);
find {6l(t)} from {ql(t)};
for l = 1 : L do

if 6̂l(t) < 6l(t)− ε(t) then
rl(t) = 1;

else if 6̂l(t) > 6l(t)+ ε(t) then
rl(t) = −1;

else
rl(t) = 0;

end
end

FIGURE 5. An illustration of trajectory of 6̂l (t).

for a large t , we have

6̂l(t)−6l(t)
t

= λ

(
6̂l(t)
t
− q∗l

)
. (30)

If the sample mean is not close to λq∗l , the BS sends appro-
priate rewards to update the shape parameters, which may
happen during the early phase of learning. However, when
the sample mean 6̂l (t)

t is sufficiently close to λq∗l , i.e.,

λ|
6̂l (t)
t − q∗l | ≤ ε, the shape parameters are not updated

according to Algorithm 1. Thus, as DDs have learned the
channel selection probabilities well through the shape param-
eters {al;m(t), bl;m(t)}, the sample mean will converge to the
average number of active DDs in channel l, which is λql ,
as t →∞.
While the MAB approach in Subsection IV-B, which will

be referred to as MAB 1 for convenience, has rewards that
depend on the instantaneous outcomes of DD’s collision,
the approach based on two-sided learning in this subsection,
which will be referred to as MAB 2, provides the rewards
based on the accumulated number of active DDs, 6̂l(t),
which results from BS’s learning. Thus, the rewards in MAB
2 can be seen as smoothed versions of those in MAB 1,
which may lead to faster learning at DDs (as confirmed by
simulation results in Section V).

As mentioned earlier, each active DD chooses only one
channel to transmit its packet and receives a reward rl(t)
for the selected channel l. As a result, it may take a long
time to learn or estimate the selection probabilities for all L
channels. Thus, in order to obtain reliable estimates of the
channel selection probabilities, each DD may use a fraction
of L channels, i.e., B channels, where B < L. Let Bm
denote the index set of B selected channels at DD m. Clearly,
|Bm| = B and Bm ⊆ {1, . . . ,L}. In this case, each DD only
needs to learn the selection probabilities of B channels. In
Algorithm 2, we summarize the learning process at DD m for
the received reward, rl(t), when it becomes active and sends
a packet through channel l ∈ Bm.

Algorithm 2 Updating Shape Parameters at DD m
Data: rl(t), for a l ∈ Bm
Result: {al;m(t), bl;m(t)}
if rl(t) = 1 then

al;m(t) = al;m(t − 1)+ 1, bl;m(t) = bl;m(t − 1);
else if rl(t) = −1 then

bl;m(t) = bl;m(t − 1)+ 1, al;m(t) = al;m(t − 1);
else

al;m(t) = al;m(t − 1), bl;m(t) = bl;m(t − 1);
end

Note that B has to be greater than 1. If B = 1, each
DD needs to choose only one fixed channel. In other words,
it becomes an SD. In addition, it is required that B is not
too small. To see this, suppose that B = 2 and assume that
Bm = {1, 2} for DD m. In this case, if q∗1 = q∗2 = 0, DD m
cannot transmit any packets. Thus, B is sufficiently large so
that the sum of channel selection probabilities is greater than
0.

V. SIMULATION RESULTS
In this section, we present simulation results under the setting
that is similar to that in [5]. In particular, we assume that
L = 10 and the SDs are distributed over L = 10 channels
as follows:

(S1, . . . , SL) = (0.3, 0.2, 0.1, 0.1, 0.05, 0.05, 0.02, 0.08,

0.01, 0.09)×M1,

where the total number of SDs is set toM1 = 1000. The total
number of DDs, M2, is set to 100 for all simulations. Recall
that the MAB approaches in Subsections IV-B and IV-C are
referred to as MABs 1 and 2, respectively. That is, MAB 2
requires two-sided learning, while MAB 1 only requires
learning at DDs. For MAB 2, we assume that B = L unless it
is stated otherwise and ε(t) = εt with ε = 0.01.

Note that as illustrated in Fig. 4, since the conventional
random access approach that does not use NOMA cannot
have better performance than the proposed approach with
NOMA, we only present simulation results of the proposed
random access approach and focus on learning aspects.
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FIGURE 6. On-line estimation of ωl when p1 = 0.05 and p2 = 0.06. In the
figure, the solid lines represent the on-line estimates and the dash lines
represent the true values of the ωl ’s.

In Fig. 6, we show the estimates of the ωl’s that are
obtained by (22) when p1 = 0.05 and p2 = 0.06. As
expected, we can see that ω̂l(t) can approachωl as t increases.
In Figs. 7 and 8, the simulation results of MABs 1 and 2

are shown in terms of the throughput over time and the
estimates of the channel selection probabilities, ql , at DDs
when p1 = 0.05 and p2 = 0.02. The estimate of ql at DDs
is obtained by taking the average of al;m(t)

al;m(t)+bl;m(t)
over M2

DDs. Comparing Figs. 7 and 8, we can see that with MAB 2,
DDs can learn the channel selection probabilities faster than
MAB 1. As mentioned earlier, in MAB 2, the BS provides
rewards according to the optimal ql’s that are obtained using
the estimates ofωl’s. Thus, DDs’ learning is carried out under
more stationary settings (once the ωl’s are reliably estimated

FIGURE 7. Performance of MAB 1 with p1 = 0.05 and p2 = 0.02;
(a) throughput as a function of time; (b) the estimates of the channel
selection probabilities, q∗l , at DDs.

FIGURE 8. Performance of MAB 2 with p1 = 0.05 and p2 = 0.02;
(a) throughput as a function of time; (b) the estimates of the channel
selection probabilities, q∗l , at DDs.

as in Fig. 6), which results in faster learning outcomes in
MAB 2 than those in MAB 1.

Fig. 9 shows the average throughput of DDs over 2000 time
slots as functions of p1 when p2 = 0.06 (in Fig. 9 (a)) and
p2 = 0.01 (in Fig. 9 (b)). For each average throughput,
100 runs are used. It is shown that the throughput decreases
with p1, sinceωl decreases with p1. It is also observed that the
performance ofMAB 1 differs from that ofMAB 2when p2 is
low. When p2 or λ is high, the channel selection probability
tends to be even (i.e., each ql approaches 1

L ). On the other
hand, as p2 or λ decreases, the channel selection probabilities
are different. Thus, learning becomes more important when
p2 or λ is low. Consequently, as shown in Fig. 9, the perfor-
mance difference between MABs 1 and 2 is not significant
with p2 = 0.06, while MAB 2 performs better than MAB 1
with p1 = 0.01.
In Fig. 10, we show the average throughput of DDs over

2000 time slots as functions of p2 when p1 = 0.1. For each
average throughput, 100 runs are used. Since MAB 2 can
learn the channel selection probabilities faster than MAB 1,
it is shown that the performance of MAB 2 is better than that
of MAB 1. As mentioned earlier, for a large p2, the selection
probability tends to be even. Thus, the performance difference
between MABs 1 and 2 diminishes as p2 increases.
Finally, we consider the case that each DD uses only B out

L channels, whereB < L, and learn the selection probabilities
of B channels in MAB 2. This makes learning faster with the
drawbacks mentioned earlier. In Fig. 11, we present simula-
tion results when p1 = 0.05 and p2 = 0.01. If B = 1, DDs
become SDs and cannot dynamically choose channels. As a
result, the performance of MAB 2 is poor when B = 1, while
the performance is improved as B increases. However, a large
B requires a longer learning time. As a result, it seems there
is an optimal B, which is B = 7 under the setting according
to Fig. 11.
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FIGURE 9. Average throughput of DDs over 2000 time slots as functions
of p1: (a) p2 = 0.06 or λ = 6; (b) p2 = 0.01 or λ = 1.

FIGURE 10. Average throughput of DDs over 2000 time slots as functions
of p2 when p1 = 0.1.

It is noteworthy that the estimates of the channel selection
probabilities at DDs are slightly different from the actual
ones, as shown in Fig. 7 (b) and Fig. 8 (b) as MAB is a

FIGURE 11. Average throughput of DDs over 2000 time slots as a function
of B for MAB 2 when p1 = 0.05 and p2 = 0.01.

randomized selection policy. That is, even if q∗l = 0 for
some l, the selection probability of this arm or channel at a
DD may not be zero. Thus, a better approach can be obtained
by allowing to remove some unused channels. This may be
combined with dynamic selection of the subset of channels
for Bm by each DD, which might be a further work.

VI. CONCLUDING REMARKS
In this paper, we proposed a NOMA-based random access
approach for IoT networks where SDs and DDs co-exist. It
was shown that the proposed random access approach can
provide a higher throughput than the conventional random
access approach that does not use NOMA. For DDs that are
flexible enough to choose one of multiple channels, we pro-
posed two-sided learning where the learning outcomes at the
BS are used to make rewards for DDs’ learning based on a
MAB formulation. Thanks to the rewards decided by the BS,
the resulting MAB approach can improve learning speed at
DDs compared to a conventional MAB approach.
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