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ABSTRACT We present a time-domain numerical method for calculating the current propagating through
coaxial lines including the radiation effect. In previous studies of transmission lines using the retarded
potential integral equations (RPIE), the so-called thin-wire approximation to the RPIE has been mainly
used. However, the thin-wire approximation has the problem that the unphysical oscillation occurs when
the spatial mesh size is smaller than the radius, even for one-conductor line. In addition, the application of
the thin-wire approximation in multi-conductor coaxial lines causes a problem in the formulation. We solve
these problems by developing a numerical method using the exact RPIE. We perform numerical calculations
in the time-domain for two-conductor coaxial lines and obtain numerical solutions even for the very small
common-mode current that causes radiation emission.

INDEX TERMS Coaxial lines, time-domain, common-mode, retarded potential, integral equation.

I. INTRODUCTION
It has been pointed out that the common-mode current1

can generate a large amount of electromagnetic radiation
emission with a value much smaller than the normal-mode
(differential-mode) current in the two wires [5], [6]. There-
fore, it is important to accurately calculate even a small value
of common-mode current in the electromagnetic interfer-
ence (EMI) analysis. Common-mode currents are generated
by structural asymmetries in electric circuits and transmission
lines [7]. Hence, in transmission lines such as coaxial lines
or parallel lines with different radii, common-mode currents
are excited, which could become a source of electromagnetic
radiation.

However, the classical transmission line theory in terms
of the Heaviside telegraph equations can handle only the
normal-mode current and cannot treat the common-mode
current of two conductors [1], [6]. Hence, in order to deal

The associate editor coordinating the review of this manuscript and

approving it for publication was Flavia Grassi .
1We note that the term ‘‘antenna-mode’’ is used for common-mode in

two-conductor lines in Ref [1]–[3]. In the case of three-conductor lines,
the term ‘‘common-mode’’ is also used for the mutual mode among the three
lines [4], but it is different from the two-conductor common-mode current
discussed in this paper.

with the common-mode current and the electromagnetic radi-
ation, we need to use an extended transmission line theory
that includes the retarded potential integral equations (RPIE)
[1]–[3], [8]–[10].

In such approaches, the thin-wire approximation is com-
monly used, which assumes that the current flows in the
center of the axis for simplicity [1]–[3], [8], [10]. Using
the thin-wire approximation for two parallel conductor lines
with the same radii, the normal-mode and common-mode
decouple each other. In this case, the numerical results
unchanged by varying the mesh size within the region larger
than the radii of the two lines [10]. On the other hand, when
the radii are different, the normal-mode and common-mode
couple, and even if the input is applied only to the nor-
mal mode, a small common-mode current is excited due
to structural asymmetry. In this case, the numerical results
changed by varying the mesh size within the region larger
than the radii [10]. By going further to smaller mesh size,
we encountered numerical results with an unphysical oscil-
lating pattern [10]. It is a difficult problem to calculate
the small common-mode current excited by asymmetry, and
we have to reconsider the formulation performed under the
thin-wire approximation from the beginning to overcome the
difficulty.
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The aforementioned unphysical oscillating pattern are
known to be the problem arising from the ill-posedness of
the integral equation using the thin-wire approximation [11],
[12]. Fikioris et al. gave a clear insight into overcoming
this problem in their study of a very simple electrostatic
problem in one-conductor line [13]. They demonstrated that
the unphysical oscillation occurs in the charge distribution
at both ends of the line even for the electrostatic case when
the spatial mesh size is smaller than the radius. As the way
out, they treated the integral equation rigorously without any
approximation for the one conductor case, and showed that
charge distributions can be calculated without the unphysical
oscillation.

This finding urged us to treat a two-conductor transmis-
sion line system rigorously without any approximation to
the RPIE. Here, we want to take two-conductor lines with
different radii for the study of the coupling problem between
normal-mode and common-mode. Out of various possibil-
ities, only two-conductor coaxial lines hold the axial sym-
metry, where the formulation is transparent. Hence, we take
two-conductor coaxial lines in the present study in order
to discuss the convergence problem in the common-mode
current without much computational complexity. We note
that the use of the thin-wire approximation for two-conductor
coaxial lines is conceptually problematic because the centers
of the two lines are in the same place.

Most of the analysis of the common-mode current has been
performed in the frequency domain [1]–[3]. In the frequency
domain, however, it is difficult to identify the source of the
coupling of the common-mode with the normal-mode. On the
other hand, by analyzing the system in the time-domain, it is
possible to understand the mechanism of electromagnetic
noise generation such as where and how the normal- and
common-mode currents are coupled. There is a study of the
numerical method in the time-domain using the exact RPIE
in a single conductor [14]. In the numerical method, however,
they introduced an additional approximation in the treatment
of the delay term. We develop a numerical method that does
not apply any additional approximations for the calculation of
the delay term, except for discretizing the exact RPIE using
the collocation method [15].

In this paper, we study a numerical method of
multi-conductor coaxial lines in the time domain using
the exact RPIE. We numerically calculate the normal- and
common-mode currents for two-conductor coaxial lines.

This paper is organized as follows. In section 2, we for-
mulate coupled integral and partial-differential equations
for multi-conductor coaxial lines derived from the Maxwell
equations, and give a numerical method for the derived equa-
tions using the collocation method [15] and finite difference
time-domain (FDTD) method. In section 3, we show the
numerical results for one-conductor line and two-conductor
coaxial lines in the time-domain. In section 4, we present the
conclusions of this study. We write Appendix for the details
of the numerical method.

FIGURE 1. Two-conductor coaxial lines with the diameters 2a1 and 2a2
and the length of Lc . The internal conductor is hollow and thin, and not
connected to the outer thin conductor in both ends.

II. FORMULATION AND NUMERICAL METHODS
A. COUPLED INTEGRAL AND PARTIAL-DIFFERENTIAL
EQUATIONS FOR COAXIAL LINES
We consider multi-conductor coaxial lines of Nc conductors,
where the conductors are assumed to be perfect conductors.
We show the case of Nc = 2 in Fig. 1. The length of the con-
ductor is Lc and the radius of each line is ak (k = 1, . . . ,Nc).
We start with the retarded potential integral equations (RPIE)
derived from the Maxwell equations in the Lorenz gauge as

U (r, t) =
1

4πε

∫
V ′

ρ(r′, t − |r− r′|/c)
|r− r′|

dr′ , (1)

A(r, t) =
µ

4π

∫
V ′

J(r′, t − |r− r′|/c)
|r− r′|

dr′ . (2)

Here, ρ is the charge density C/m3, J is the current density
vector A/m2. ε and µ are permittivity and permeability in
vacuum, respectively. We use the primed coordinates for
source locations, while the unprimed ones for observer loca-
tions. Here, |r − r′|/c is the time for the signal to propagate
from the source at r′ to the potential at r with the speed of
light c. Hence, this term |r− r′|/c is named as delay term.
We take the cylindrical coordinate system (r, φ, x) and

assume that the current flows only in the x-direction due to
the axial symmetry of the coaxial lines. The vector potential
has only the x component, and the x component Ax of the
vector potential is simply written as A, and the x component
Jx of the current density vector as J . Furthermore, since the
coaxial lines has axial symmetry, we set φ = 0 for the scalar
and vector potential without loss of generality. The scalar
and vector potentials on the surface of the k-th conductor
are expressed as Uk and Ak , respectively. Assuming that the
conductor thickness is infinitely thin, the charge density and
current density are given as follows.

ρ(r ′, φ′, x ′, t ′) =

{∑Nc
l=1 ρ̃l(x

′, t ′)δ(r ′ − al) 0 ≤ x ′ ≤ Lc
0 otherwise

(3)

J (r ′, φ′, x ′, t ′) =

{∑Nc
l=1 J̃l(x

′, t ′)δ(r ′ − al) 0 ≤ x ′ ≤ Lc
0 otherwise

(4)

Here, the units of ρ̃l , and J̃l are changed from ρ and J as C/m2

and A/m, respectively. The charge and current do not have φ′

dependence due to the axial symmetry.
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Substituting (3) into (1) and (4) into (2) gives the following
integral equations.

Uk (x, t) =
Nc∑
l=1

1
4πε

Lc∫
0

π∫
−π

×
ρ̃l(x ′, t−Rkl(x − x ′, φ′)/c)

Rkl(x − x ′, φ′)
aldφ′dx ′ , (5)

Ak (x, t) =
Nc∑
l=1

µ

4π

Lc∫
0

π∫
−π

×
J̃l(x ′, t−Rkl(x − x ′, φ′)/c)

Rkl(x − x ′, φ′)
aldφ′dx ′ , (6)

where

Rkl(x, φ) =
√
x2 + a2k + a

2
l − 2akal cosφ . (7)

Here, Rkl(x, φ) is the distance between the position of the
potential and the source. Due to the axial symmetry, we can
write line charge density ρl in unit of C/m, and the current Il
in unit of A are written as

ρl(x, t) = 2πal ρ̃l(x, t) (8)

Il(x, t) = 2πal J̃l(x, t) (9)

We can then arrive at the following equations.

Uk (x, t) =
Nc∑
l=1

1
8π2ε

Lc∫
0

π∫
−π

×
ρl(x ′, t−Rkl(x − x ′, φ′)/c)

Rkl(x − x ′, φ′)
dφ′dx ′, (10)

Ak (x, t) =
Nc∑
l=1

µ

8π2

Lc∫
0

π∫
−π

×
Il(x ′, t−Rkl(x − x ′, φ′)/c)

Rkl(x − x ′, φ′)
dφ′dx ′ . (11)

There are charge conservation equations to be satisfied
between the line charge density and current for each line
k = 1, . . . ,Nc.

∂ρk (x, t)
∂t

+
∂Ik (x, t)
∂x

= 0 . (12)

Additionally, we take the relation of the scalar and vector
potentials of each line for a perfect conductor.

∂Uk (x, t)
∂x

+
∂Ak (x, t)
∂t

= 0 . (13)

With these four fundamental equations (10), (11), (12), (13),
we can treat the propagation of signals in coaxial lines, taking
into account the radiation effects.

We take simple boundary conditions as given for each
conductor k as follows.

Ik (0, t) = IBk (t) ,

Ik (Lc, t) = 0 . (14)

where IBk (t) is a given function and is used as input to each line
from the left end. Also, as the initial condition, all quantities
are set to zero for t ≤ 0.

B. NUMERICAL METHODS FOR DERIVED EQUATIONS
We introduce here the collocation method and the FDTD
method for numerical calculations. We divide a line of length
Lc into Nx small areas with a mesh size 1x = Lc/Nx . The
time step 1t is related with 1x = αc1t with a parameter
α, where c is the speed of light. The number of time steps is
expressed as Nt .

Since we take the FDTD method for discretization of the
partial differential equations, we shift the mesh points for
the current and vector potential from those of the charge and
scalar potential by a half-integer as

xAi = (i+ 1/2)1x, (i = 0, . . . ,Nx − 1) , (15)

tAn = (n+ 1)1t, (n = 0, . . . ,Nt − 1) . (16)

We write the vector potential and current at the mesh points
as

An,ik = Ak (xAi , t
A
n ) , (17)

In,ik = Ik (xAi , t
A
n ) . (18)

Similarly, for the charge and scalar potential, we write

xUi = (i+ 1)1x, (i = 0, . . . ,Nx − 2) , (19)

tUn = (n+ 3/2)1t, (n = 0, . . . ,Nt − 2) , (20)

and

Un,i
k = Uk (xUi , t

U
n ) , (21)

ρ
n,i
k = ρk (x

U
i , t

U
n ) . (22)

For illustration, we show the collocation points of the scalar
potential Un,i

k and the vector potential An,ik together with the
current In,ik and charge ρn,ik in the space-time plane in Fig. 2.

We discretize the integral equation (11) for the current and
vector potential using the collocation method. We expand the
current using the pulse function and the value at each mesh
point.

Il(x, t) =
Nx−1∑
j=0

Nt−1∑
m=0

Im,jl f Ij (x)g
I
m(t) , (23)

where the space pulse function is written as

f Ij (x) =
{
1 j1x ≤ x < (j+ 1)1x ,
0 otherwise .

(24)

and the time pulse function is

gIm(t) =
{
1 m1t < t ≤ (m+ 1)1t ,
0 otherwise .

(25)
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FIGURE 2. Collocation points of the scalar potential Un,i
k and the vector

potential An,i
k together with the current In,i

k and charge ρn,i
k are shown in

the space-time plane. The collocation points of Un,i
k and ρn,i

k are denoted
by the black points at the same positions, while the collocation points of
An,i

k and In,i
k are denoted by the blue points, which are shifted by a

half-integer from those of Un,i
k and ρn,i

k .

Hence, we can write the vector potential (11) at the collo-
cation point (xAi , t

A
n ) as

An,ik =
Nc∑
l=1

µ

8π2

Lc∫
0

π∫
−π

dφ′dx ′

×
Il(x ′, tAn−Rkl(x

A
i − x

′, φ′)/c)

Rkl(xAi − x
′, φ′)

(26)

Inserting (23), we get

An,ik =
Nc∑
l=1

Nx−1∑
j=0

Nt−1∑
m=0

Ln,m,i,jk,l Im,jl , (27)

where

Ln,m,i,jk,l =
µ

8π2

Lc∫
0

π∫
−π

dφ′dx ′

×
f Ij (x

′)gIm(t
A
n−Rkl(x

A
i − x

′, φ′)/c)

Rkl(xAi − x
′, φ′)

. (28)

We use equation (27) to calculate the unknown currents from
the known vector potentials and currents. We describe this
detail in the Appendix A.

Using (24), we can write the local delay inductance as

Ln,m,i,jk,l =
µ

8π2

(j+1)1x∫
j1x

π∫
−π

dφ′dx ′

×
gIm(t

A
n−Rkl(x

A
i − x

′, φ′)/c)

Rkl(xAi − x
′, φ′)

. (29)

Here, Ln,m,i,jk,l is symmetric for i and j, and depend only on the
difference |i−j|. As for the n andm, the local delay inductance
depends only on the difference n−m. Here, we introduce the

local delay impedance as,

Zn,ik,l = ζ

x+i∫
x−i

π∫
−π

gn(Rkl(x, φ)/c)
Rkl(x, φ)

dφdx , (30)

with ζ = 1
8π2 Z0, where Z0 =

√
µ/ε is the impedance of

the vacuum. Hence, Zn,ik,l has the dimension of the resistance.
For the upper and lower bound of the integral we use x±i =
(i± 1/2)1x, and the pulse function as

gn(t) =
{
1 n1t ≤ t < (n+ 1)1t ,
0 otherwise .

(31)

We can write the local delay inductance Ln,m,i,jk,l (29) in terms
of the local delay impedance Zn,ik,l (30) as

Ln,m,i,jk,l =
1
c
Zn−m,|i−j|k,l (32)

Similarly, we discretize the integral equation (10) for the
line charge density and scalar potential using the collocation
method. We expand the line charge density using the pulse
function as

ρl(x, t) =
Nx−2∑
j=0

Nt−2∑
m=0

ρ
m,j
l f ρj (x)g

ρ
m(t) . (33)

Here, the pulse function in the x direction is

f ρj (x) =
{
1 (j+ 1/2)1x ≤ x < (j+ 3/2)1x ,
0 otherwise .

(34)

and the time direction is

gρm(t) =
{
1 (m+ 1/2)1t < t ≤ (m+ 3/2)1t ,
0 otherwise .

(35)

From (10), wewrite the scalar potentialUn,i
k at the collocation

point (xUi , t
U
n ) as

Un,i
k =

Nc∑
l=1

Nx−2∑
j=0

Nt−2∑
m=0

Pn,m,i,jk,l ρ
m,j
l , (36)

where

Pn,m,i,jk,l =
1

8π2ε

Lc∫
0

π∫
−π

dφ′dx ′

×
f ρj (x

′)gρm(tUn −Rkl(x
U
i − x

′, φ′)/c)

Rkl(xUi − x
′, φ′)

. (37)

This coefficient Pn,m,i,jk,l can be written in terms of the local
delay impedance Zn,ik,l (30) as

Pn,m,i,jk,l = cZn−m,|i−j|k,l (38)

We calculate Zn,ik,l by numerically integrating the equa-
tion (30). Since the integrand of (30) diverges at
k = l, i = 0, n = 0 and φ′ = 0, x ′ = 0, we need to be
careful about the treatment of this singularity in the numerical
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integration. If this singularity is avoided in the nodes of the
numerical integration, the approximate value of integral can
be obtained, but the convergence of the numerical integration
is slow. Hence, we divide the region of integration and
perform singular integration analytically. We write the details
of this method in the Appendix B.

In mutual terms other than the above self term, the inte-
grand does not diverge. On the other hand, due to the basis
function (31) in the numerator, the integrand may be a dis-
continuous function, in which case the numerical integra-
tion converges slowly. Therefore, the numerical integration
is performed after finding the domain of integration where
the integrand is not zero. Since it is an important point in the
treatment of the local delay impedance, we provide the detail
in the Appendix C.

We discretize the partial differential equation (12) using the
FDTD method.

ρ
n,i
k − ρ

n−1,i
k

1t
+
In,i+1k − In,ik

1x
= 0 (39)

We rewrite this equation to express ρn,ik in terms of known
quantities.

ρ
n,i
k = ρ

n−1,i
k −

1t
1x

(In,i+1k − In,ik ) (40)

Similarly, we discretize the partial differential equation (13)
using the FDTD method.

An,ik − A
n−1,i
k

1t
+
Un−1,i
k − Un−1,i−1

k

1x
= 0 (41)

We rewrite this equation to express An,ik in terms of known
quantities.

An,ik = An−1,ik −
1t
1x

(Un−1,i
k − Un−1,i−1

k ) (42)

As for the boundary condition (14), we take

In,0k = IBk (t
A
n ) , (43)

In,Nx−1k = 0 . (44)

From the initial condition, we set all quantities are 0 for
n ≤ 0. For n ≥ 1, using (42) we calculate An,ik , and use (59)
to find In,ik at the places other than the boundary. Then,
using (40) to find ρn,ik , and (36) to find Un,i

k . Increasing time
steps one by one, the values of the later time are repeatedly
obtained. We show the flowchart of numerical calculations
in Fig. 3.

III. NUMERICAL RESULTS
In this section, we obtain numerical results in one- and
two-line systems using numerical methods described in the
previous section. First, we compare the exact case and
the case with the thin-wire approximation in the calcu-
lation of one conductor line. For the numerical calcula-
tion of the thin-wire approximation in the time-domain,
we use the method described by Kitora et al. [10]. We shall
show next the numerical results for the normal-mode and
common-mode currents in the two-conductor coaxial lines.

FIGURE 3. The flowchart of numerical calculations.

A. NUMERICAL RESULTS FOR A SINGLE CONDUCTOR
Here, we compare the thin-wire approximation and the exact
expression in one conductor. It is important to understand
that the thin-wire approximation gives an oscillatory behavior
due to the ill-posed problem even in the electrostatic case of
one conductor. In a recent paper, a comparison of thin-wire
approximation and exact treatment in the electrostatic case is
discussed by Fikioris et al. [13]. They consider the charge
density distribution in an equipotential line occupying the
interval from −L to L. It is known that the solution behaves
like 1/

√
L2 − x2 around x = ±L [13], [16]. While this

behavior can be calculated using the exact representation,
the thin-wire approximation causes unphysical oscillations
at the boundary when the mesh size 1x is smaller than the
radius due to the ill-posedness of the integral equation in the
thin-wire approximation.

We compare the thin-wire approximation of one conductor
line with the exact expression in the time-domain. For com-
pleteness, we write a formula of the thin-wire approximation
in the expression of the scalar and vector potential for the one
conductor case instead of the potentials expressed rigorously
in Eqs. (10) and (11).

U (x, t) =
1

4πε

Lc∫
0

ρ(x ′, t − |x − x ′|/c)
R(x − x ′; a)

dx ′ , (45)

A(x, t) =
µ

4π

Lc∫
0

I (x ′, t − |x − x ′|/c)
R(x − x ′; a)

dx ′ , (46)
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where

R(x − x ′; a) =
√
(x − x ′)2 + a2 . (47)

Here, R(x − x ′; a) is the distance between the position of
the potential and the source. In the thin-wire approximation,
the charge and current are assumed to be at the center of the
line. The integrand has no singularities, and the analytical
solution of the local delayed impedance can be obtained. Note
that we used |x− x ′|/c instead of R(x− x ′; a)/c for the delay
term so that the self term of local delay impedance should not
be zero when the spatial mesh is smaller than the radius a.
For the numerical calculation, we take the line length Lc

is 1 m, and the radius a is 20 mm. We take 1x is 10 mm,
which is smaller than the radius, and α is 1. The Gaussian
function with an amplitude of 1 A and a standard devia-
tion of 0.4 ns is used as the input current. The numeri-
cal results of the line charge density are shown in Fig. 4.
As shown in Fig. 4 (a) and (b), it can be seen that there is
a large difference between exact and approximate ones at
both ends. Similar to the static case, the line charge den-
sity shows a sharp increase at both ends in the exact case,
while oscillations occur at both ends of the conductor in the
thin-wire approximation. This oscillation occurs when the
charge density reaches the ends (right end of Fig. 4 (b)).
On the other hand, except for both ends, exact and approxi-
mate cases have similar results (Fig. 4 (a), (b) and Fig. 4 (c)).
These results are similar to the electrostatic case discussed by
Fikioris et al. [13]. In order to validate the numerical result
in the time-domain using the exact RPIE, we compare the
result with a numerical solution obtained by solving the same
problem in the frequency domain and performing the inverse
discrete Fourier transform, and confirm that the same result
are obtained.

Therefore, with the exact RPIE, the spatial mesh size
can be reduced regardless of the radius because it does not
cause unphysical oscillations even when the spatial mesh
size is smaller than the radius. This is an important result
to be stressed, since the oscillatory behavior in the thin-wire
approximation appears near the edges of the line due to the
ill-posedness. The behavior of the current is influenced by the
oscillatory behavior of the charge distribution.

B. NUMERICAL RESULTS FOR TWO COAXIAL LINES
We perform the numerical calculation of the two-conductor
coaxial lines using the exact RPIE. We take the line length
Lc is 1 m, and the conductor radius is a1 = 10 mm and
a2 = 20 mm. We input the normal-mode current from the
left end using the Gaussian function with an amplitude of 1
A and a standard deviation of 0.4 ns. The currents I1 and I2 are
calculated by the numerical method developed in the previous
section, and the normal-mode and common-mode currents
are calculated from them using the following formulas [3].

In =
1
2
(I1 − I2) (48)

Ic = I1 + I2 (49)

FIGURE 4. Numerical results of line charge density in one conductor line.
(a) The two-dimensional plot in exact RPIE case. (b) The two-dimensional
plot using thin-wire approximation. (c) Comparison of exact and
approximate results at x = 0.5 m, which are obtained at the vertical black
lines in the two dimensional plots Figs. (a) and (b). (d) Comparison of
exact and approximate results at t = 8 ns, which are obtained at the
horizontal black lines in the two dimensional plots Figs. (a) and (b).

FIGURE 5. Numerical results of the normal-mode current (left) and those
of the common-mode current (right) at the time t = 3.8 ns as a function
of the position x . There are 4 curves in each figure for 4 mesh sizes
ranging from 20 mm to 2.5 mm.

First of all, it is important to study the behavior of the
common-mode current with respect to the mesh size1x. The
results are shown in Fig. 5. We change the mesh size from
1x = 20 mm to 2.5 mm, which are smaller than the radius of
the conductors. The normal-mode current shown in the left
figure is essentially unchanged with the parameter change.
The common-mode currents in the right figure tend to con-
verge as the mesh size is reduced. We get satisfactory results
on the numerical calculation in terms of convergence without
having the unphysical oscillating pattern. Note that in the
calculation of two parallel conductor lines with different radii
using the thin-wire approximation, the convergence of the
common-mode current is not achieved in the region where the
mesh size is larger than the radii of the lines, and oscillation
patterns are observed as the mesh size becomes smaller than
the radii [10].
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FIGURE 6. Numerical results of the normal-mode current (left) and those
of the common-mode current (right) at the middle of the line (x = 0.5 m)
as functions of time using the mesh size of 1x = 5 mm. We show two
curves in each figure. One is the result of the exact RPIE calculation
including the delay term and the other is the calculation without the
delay term.

We show the numerical results of the normal and common
mode currents at the center of the conductor when using
the exact RPIE in the black lines of Fig. 6. We take the
mesh size of 1x = 5 mm, which provides the converged
results as shown in Fig. 5. We should note that the mag-
nitude of the excited common-mode current is about a per-
cent of the normal-mode current. It is important to point
out the the common-mode current is excited in the coaxial
lines due to the asymmetry about the radius of the coaxial
lines. For comparison, we show the numerical results for the
RPIE formulation by dropping the delay term in Eqs. (10)
and (11). The results without the delay term are shown by
red dashed-curves in Fig. 6. For the normal-mode current as
shown in the left figure in Fig. 6, there is no difference in
the results between the case with delay and without delay.
On the other hand, for the common-mode currents as shown
in the right figure in Fig. 6, the amplitude of the common
mode currents with and without delay shows a difference.
The magnitudes of the current with the delay term is smaller
than those without the delay term, which can be attributed to
the fact that the delay term is related to the electromagnetic
radiation. These results indicate that in order to accurately
calculate the small common-mode currents excited by the
coupling between the normal-mode and common-mode cur-
rents, it is necessary to perform numerical calculations using
an exact RPIE including delay.

Finally, wemention the late-time instability (LTI), which is
still a problem in numerical calculations of integral equations
in the time-domain [17]. The LTI means that high-frequency
oscillation with exponentially increasing amplitude becomes
dominant at late times in numerical calculations. We observe
the LTI for some values of the parameters α and Nx . The
LTI can occurs even when α ≥ 1, where the Courant-
Friedrichs-Lewy (CFL) condition is satisfied. On the other
hand, as shown in Fig. 5, when the LTI does not occur, the
numerical results tend to converge.

IV. CONCLUSION
We formulated the coupled integral and partial-differential
equations describing the signal propagation including the

radiation effects in multi-conductor coaxial lines, and gave
a numerical method for derived equations using the col-
location and FDTD methods. We developed a method to
calculate the exact RPIE without using the thin-wire approx-
imation, which has been commonly used in previous studies.
Using the thin-wire approximation, even in the time domain,
the unphysical oscillation of the line charge density occurs at
the edges of conductors when the spatial mesh size is smaller
than the radius due to the ill-posed problem. On the other
hand, using the exact RPIE, it is possible to compute a sharply
rising behavior of the line charge density at the ends of the
conductors without oscillations.

In a two-conductor coaxial line system, due to asymmetry
of the geometry of the two lines, the common-mode current
is excited even if the input is made only for the normal-mode
current. Although the amplitude of this common-mode cur-
rent is much smaller than the amplitude of the normal-mode
current, the proposed method using the exact RPIE is able to
provide a numerical solution of this common-mode current
without the oscillatory behavior. Even if the amplitude of
the common-mode current is several orders of magnitude
smaller than that of the normal-mode current, the contribution
from the common-mode current may be larger in the radiated
emission [5], [6].

It would be important to apply the present method for two
parallel conductor lines, where the axial symmetry does not
hold any more, and the formulation and numerical calcula-
tions become cumbersome. Here, we have to describe both
the potentials and charge and current as functions of the x
position, but also the φ directions of the two lines. Even for
the multiple-conductor coaxial lines there are many interest-
ing problems as the behaviors of the electromagnetic fields
inside and outside of the inner hollow conductor. We can per-
form the lossy conductors using the Ohm’s law instead of the
perfect conductor relations. In this study, only the open-end
boundary condition were considered, but it is important in
applications to consider more general boundary conditions
such as connecting lumped-element circuit to the boundary.
They are to be performed in near future.

APPENDIX A
NUMERICAL CALCULATION FOR THE CURRENT I
We use the equation (27) to calculate the unknown currents
In,ik (i = 1, . . . ,Nx − 1) from the known vector potentials and
currents. We separate the boundary conditions and the known
quantities in (27) as

Nc∑
l=1

Nx−2∑
j=1

Ln,n,i,jk,l In,jl = An,ik − Ā
n,i
k − Ã

n,i
k . (50)

Here, Ān,ik is obtained by the boundary conditions,

Ān,ik =
Nc∑
l=1

∑
j∈{0,Nx−1}

Ln,n,i,jk,l In,jl (51)
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and Ãn,ik is obtained from the past currents,

Ãn,ik =
Nc∑
l=1

Nx−1∑
j=0

n−1∑
m=0

Ln,m,i,jk,l Im,jl . (52)

We write the above relation using the matrix representation.

Inl =

 In,1l
...

In,Nx−2l

 , An
l =

 An,1l
...

An,Nx−2l

 (53)

Ān
l =

 Ān,1l
...

Ān,Nx−2l

 , Ãn
l =

 Ãn,1l
...

Ãn,Nx−2l

 (54)

Lk,l =


Ln,n,1,1k,l · · · Ln,n,1,Nx−2k,l
...

. . .
...

Ln,n,Nx−2,1k,l · · · Ln,n,Nx−2,Nx−2k,l

 (55)

Here, we drop the superscript n and write Lk,l , since it does
not depend on n.
We further introduce matrices using the above relations as

follows

In =

 In1
...

InNc

 , An
=

 An
1
...

An
Nc

 (56)

Ān
=

 Ān
1
...

Ān
Nc

 , Ãn
=

 Ãn
1
...

Ãn
Nc

 (57)

L =

 L1,1 · · · L1,Nc
...

. . .
...

LNc,1 · · · LNc,Nc

 (58)

Using the above expressions, we can represent the equa-
tion (50) as follows

LIn = An
− Ān

− Ãn (59)

We obtain In by solving the equation (59).

APPENDIX B
SINGULAR INTEGRAL OF THE LOCAL DELAY IMPEDANCE
Wewrite the detail of the method to treat the singular integral
of Zn,ik,l (30). We consider the case α < 2, c1t ≤ 2ak . When
k = l, i = 0, n = 0, (30) becomes

Z0,0
k,k = ζ

x+0∫
x−0

π∫
−π

g0(Rkk (x, φ)/c)
Rkk (x, φ)

dφdx , (60)

where

Rkk (x, φ) =
√
x2 + {2ak sin(φ/2)}2 . (61)

from (7), and x±0 = ±1x/2. We can write g0 from (31) as
follows,

g0(t) =

{
1 0 ≤ t < 1t ,
0 otherwise .

(62)

Since the integrand is an even function, we can write

Z0,0
k,k = 4ζ

x+0∫
0

π∫
0

g0(Rkk (x, φ)/c)
Rkk (x, φ)

dφdx , (63)

Taking φ = 2ψ ,

Z0,0
k,k = 8ζ

x+0∫
0

π/2∫
0

g0(rk (x, ψ)/c)
rk (x, ψ)

dψdx , (64)

where

rk (x, ψ) =
√
x2 + (2ak sinψ)2 . (65)

The function rk (x, ψ)/c in (64) is the delay time, and
from (62), the integrand is non-zero only for the case 0 ≤
rk (x, ψ)/c < 1t . Let ψk (x) be a value of ψ such that the
delay time is 1t for given x. Thus, from rk (x, ψ)/c = 1t ,
we get

ψk (x) = arcsin

√
(c1t)2 − x2

2ak
. (66)

We can then write Z in (64) as

Z0,0
k,k = 8ζ

x+0∫
0

ψk (x)∫
0

1
rk (x, ψ)

dψdx , (67)

where we separate the integral in two terms by using
ψk (x

+

0 ) = ψ
+

k .

Z0,0
k,k = 8ζ [I0 + I1] (68)

I0 =

x+0∫
0

ψ+k∫
0

1
rk (x, ψ)

dψdx (69)

I1 =

x+0∫
0

ψk (x)∫
ψ+k

1
rk (x, ψ)

dψdx (70)

We can then find the singularity only in I0, and consider the
integral I0.

I0 =

ψ+k∫
0

x+0∫
0

1√
x2 + (2ak sinψ)2

dxdψ (71)

=

ψ+k∫
0

[
log(x +

√
x2 + (2ak sinψ)2

]x+0
0
dψ (72)
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FIGURE 7. An example of the mutual term of local delay impedance.
(a) x–φ plane. (b) x–τ plane.

We rewrite this as

I0 = I00 + I
1
0 (73)

I00 = −
∫ ψ+k

0
log(sinψ)dψ (74)

I10 =

ψ+k∫
0

log
(
x+0 +

√
(x+0 )

2 + (2ak sinψ)2
)
dψ

−ψ+k log 2ak (75)

The integral I00 with the singularity can be written by using
the formula [18],

I00 = −
∫ ψ+k

0
[log(sinψ)− log(ψ)]dψ −

∫ ψ+k

0
log(ψ)dψ

(76)

The first non-singular term is calculated numerically, and
the second singular term is obtained analytically as follows∫ ψ+k

0
log(ψ)dψ = ψ+k logψ+k − ψ

+

k (77)

The other non-singular terms (I10 , I1) can be obtained with
good accuracy using numerical integration methods such as
the Gauss-Legendre quadrature.

APPENDIX C
INTEGRATION REGION OF MUTUAL LOCAL DELAY
IMPEDANCE WITH THE DELAY EFFECT
Here, we explain the delay effect on the numerical integration
of mutual terms of local delay impedance. Figure 7(a) shows
a typical example where the integrand is discontinuous in the
calculation of the mutual term of (30). The blue region shows
the integration region of (30) in the x–φ plane for some i.
The green region shows the region where the pulse function
gn is 1 in the numerator of (30) for some n. Therefore, only
in the red region where the blue and green regions intersect,
the integrand is not zero. On the other hand, it becomes 0 in
the other integration region. Hence, the integrand becomes a
discontinuous function. Fig. 7(b) shows the integration region
in the x–τ plane, where the y-axis in Fig. 7(a) is replaced

by the delay time from φ. Here, from (30), the delay time
τkl(x, φ) is written as

τkl(x, φ) = Rkl(x, φ)/c . (78)

In Fig. 7(b), the blue line shows the value of the delay time
for φ = 0, and the orange line shows the value of the
delay time for φ = π . The blue, green and red regions
correspond the regions with the same colors in Fig. 7(a). If
numerical integration is performedwith the integration region
as the blue region, the integrand becomes a discontinuous
function, and many nodes are required to obtain the required
accuracy. Therefore, by using the red region as the integration
region, the integrand becomes a continuous function, and the
accuracy of the numerical integration is improved.
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