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ABSTRACT Bidding in the day-ahead market encompasses uncertainty on market prices. To properly
address this issue, dedicated optimal bidding models are constructed. Traditionally, these models have been
derived for generating units, in particular thermal generators. Recently, optimal bidding models have been
updated to account for specifics of energy storage, foremost battery storage. Batteries are significantly
different devices than generators. On one hand, a battery can both purchase and sell electricity with
practically instant change in its output power. On the other hand, a battery is energy-limited, which makes
its profit very sensitive to optimal scheduling. In this paper, we examine the existing and derive new robust
optimization-based optimal bidding models individually for a thermal generator and a battery storage.
The models are examined in terms of the expected profit by applying the obtained bidding curves and
(dis)charging schedules to actual realizations of uncertainty. Moreover, we examine the effect of the range
of uncertainty caused by the selection of input scenarios. Based on the presented case studies, we form
conclusions on the effectiveness of the robust optimization approach for this type of problems.

INDEX TERMS Optimal bidding, thermal generator, battery storage, robust optimization.

I. INTRODUCTION
Robust optimization technique has gained a lot of attention in
the power system research community since the introduction
of the linear reformulation method proposed by Bertsimas
and Sim [1]. It has been applied to both the power system
planning, e.g. [2], [3], and operation problems, e.g. [4], [5],
to address uncertainty of market prices, output of renewables
and long-term uncertainties. This paper focuses on optimal
price-taker bidding problems of a thermal generator and a
battery storage individually. We derive appropriate robust
optimization-based models, solve them, and derive conclu-
sions based on the performed case studies. To properly moti-
vate our work, in subsections I-A and I-Bwe first review these
two topics and then articulate the research gaps identified in
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the literature, finalizing with our contribution to the body of
knowledge.

A. BACKGROUND AND CONTRIBUTION ON THERMAL
GENERATOR BIDDING USING ROBUST OPTIMIZATION
Ever since the introduction of competitive electricity markets,
generation asset owners have been interested in maximizing
the benefit of their market participation. Generators whose
capacity is low as compared to the market size (i.e., over-
all electricity consumption) generally cannot affect market
prices. This paper focuses on such generators, i.e. the price-
takers. The only relevant uncertainty these generators face is
the uncertainty on the market prices. At first, this uncertainty
might seem trivial as a generator can offer to sell electric-
ity at its marginal production cost to protect against losses.
Furthermore, most day-ahead energy markets today operate
on the basis of a single market clearing price (as opposed to
pay-as-bid markets), where a price taker’s optimal bidding
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strategy is to offer electricity at its marginal generation cost.
Additionally, even the convex generation cost curve can be
accommodated in the bidding strategy as some markets allow
bidding a curve instead of only a price-quantity pair [6].
However, generators’ operation accommodates intertemporal
dependencies, such as ramp up and down limits, minimum up
and down times and startup costs. While startup costs only
need to be internalized in the bidding strategy across a number
of hours and at worst will reduce the generator’s profit, poor
modeling of ramp up and down limits as well as minimum up
and down times can result in infeasible generator operating
points. For example, a market clearing outcome indicating
that a generator whose minimum down time is two hours is
cleared at hour t , not scheduled at hour t+1, and scheduled to
operate again at hour t + 2 is unattainable for this generator.
Even if the minimum down time limit would not be violated,
the generator might prefer to operate at hour t + 1 with a loss
in order to avoid incurring the startup cost in the following
hour.

A detailed model of a thermal generator acting in the
day-ahead market is presented in [7]. The model includes
minimum and maximum power output constraints, ramp
limits, minimum up and down times, as well as stair wise
formulation of the start-up cost function. Furthermore, [8]
propose additional constraints on the upper bound and ramp
limits in the self-scheduling formulation. These inequalities
strengthen the linear-programming relaxation and speed up
the calculation time. Dynamic programming algorithms that
keep track of a set of functions that represent the overall cost
of generator schedules until each time step is presented in [9].
The results of the case study show linear scaling characteris-
tics that can speed up the state-of-the-art for piece-wise linear
and quadratic generation cost curve. An accurate model of
the detailed startup and shutdown cost of thermal generators
is developed in [10]. This model simulates dynamic unit
temperature and considers dynamic ramping and forbidden
zones. An overview of various generator scheduling formu-
lations and their impact on the unit commitment problem is
available in [11].

Considering the physical generator limits and the eco-
nomic framework described above, forecasting of mar-
ket prices is essential for successful market participation
of a thermal generator. A stochastic scheduling technique
that maximizes a producer’s profit taking into account the
stochastic nature of power prices was considered in [12]. The
results of the case study stress the importance of deriving
proper scenarios and their respective probabilities. Another
important work in this field is [13], where the authors present
a forecasting framework for estimating the probability den-
sity functions of the day-ahead market clearing prices. The
formulated bidding rule takes advantage of the expectations
of hourly market price values to build and submit appropriate
bidding curves into the market. The value of bidding curves,
as opposed to single price-quantity pair bidding, has been
proven in [14]. In many works, e.g. [15], uncertain prices
are addressed by deriving explicit stochastic scenarios and

obtaining expected profits. However, to quantify the risk and
protect against unlikely events, more meticulous methods are
used. Conditional value-at-risk is employed in [16] and [17]
to quantify a tradeoff between the profit and the risk. Another
approach that enables risk aversion by adjusting a robustness
parameter is robust optimization. In [18], the authors propose
a generator bidding strategy based on robust optimization.
This framework solves a series of robust mixed-integer lin-
ear programming problems for different price uncertainty
bounds. The solutions of these problems are then combined
into a set offering curves for each hour. Similar to the robust
optimization, which minimizes the cost of the worst-case
realization of uncertainty, is the min-max regret model that
minimizes the highest regret over all possible scenarios while
ensuring robustness. The min-max regret model formulated
in [19] is bilinear. After its conversion to a mixed-integer
linear program, the problem is solved using the Benders’
decomposition and generator bidding curves are derived.
A multistage robust unit commitment model with non-fixed
recourse is proposed in [20]. The proposed approach gen-
erates a least-cost generation schedule and ensures dispatch
nonanticipativity by solving a trilevel program.

Thework presented in this paper related to the thermal gen-
erator’s optimal bidding mainly extends the work from [18],
which is based on the robust model presented in [1]. The
robust formulation proposed in [18] assumes that in every
hour t ∈ T the actual market price λt lies within a known
range λt ∈ [λmin

t , λmax
t ]. This range is divided into K inter-

vals, each having the same upper limit that corresponds to
the most optimistic uncertainty realization, and the lower one
equal to λmax

t − δk (λmax
t − λmin

t ), where 0 ≤ δk ≤ 1.
The robust optimization problem at hand is solved K times,
once for each uncertainty interval, and always for budget of
uncertainty 0 = 24, which grants full protection but also the
most conservative solution. Note that this procedure ignores
the adjustment of the conservativeness level and always con-
siders the worst-case realization of uncertainty. Since gener-
ating units always favor the high market prices, this model
renders to a deterministic model with the market prices at
the lower bound. This procedure results in K price–quantity
pairs obtained for the lower price bound in each iteration. The
resulting price–quantity pairs are used to construct thermal
generator bidding curves for each hour. However, this proce-
dure may result in infeasible operating schedule of a thermal
generator since the price–quantity pairs used to construct the
bidding curves are obtained independently without imposing
ramp constraints between iterations. To this end, our paper
contributes to the thermal generator optimal bidding problem
in the following original ways:
• We formulate a robust optimization problem that
constructs market bidding curves immune to infea-
sible ramping requirements between the consecutive
hours.

• We obtain secure ramping optimal solutions by solving
only once the robust optimization problem that incorpo-
rates and coordinates the results of all K iterations.
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B. BACKGROUND AND CONTRIBUTION ON BATTERY
STORAGE BIDDING USING ROBUST OPTIMIZATION
Although thermal generators still take an important role in
power systems, we explore the implementation of the robust
optimization tool to more recent market participants. The
authors of [21] propose a robust optimization model to obtain
the most rewarding bidding strategy of a smart home aggre-
gator considering the uncertainty on the market prices, local
load and local photovoltaic output. Robust scheduling of an
EV aggregator aiming to maximize its profit and considering
the electricity price uncertainty is proposed in [5]. Virtual
power plant bidding using robust optimization was tackled in
[22] and [23]. Similarly to [21], in [22] the robust optimiza-
tion is used to address the uncertainty on market prices and
local wind generation. In the proposed two-stage procedure
the first stage decides on optimal bids in the day-ahead mar-
ket, while the second stage optimizes the bidding strategy in
the real-time market. This paper constructs bidding curves in
the same fashion as [18]. An adaptive robust upgrade of the
static virtual power plantmodel from [22] is presented in [23].
The adaptability of the model manifests by allowing adjust-
ments of the virtual power plant variables after the worst-case
realization of the wind power plant output. On the other hand,
uncertainty of market prices is modeled via stochastic sce-
narios allowing for derivation of the bidding curves. Robust
optimization was used in [24] to derive optimal bidding
curves for a concentrating solar plant combined with thermal
storage. The storage system provides an increased dispatch-
ability for the concentrating solar plant, which significantly
affects its overall profit. A two-stage adaptive robust program
that captures collaborative operation of residential microgrids
is constructed in [25] to derive a scheduling that minimizes
the microgrids’ operating cost under the worst realization of
photovoltaics output.

Affinely adjustable robust optimization bidding model of
a solar power plant paired with battery storage is proposed
in [26]. This is a two-stage robust optimization model that
considers uncertainty of the solar power plant output and
prices in two consecutive markets. Affinely adjustable robust
formulation was applied to the day-ahead scheduling of a
multi-energy system in [27]. The proposed robust formula-
tion includes piece-wise linear decision rules, stressing their
potential use for real-time control. A microgrid robust opti-
mization bidding model is presented in [28]. The uncertain
output of intermittent distributed generation and day-ahead
market prices are modeled using stochastic scenarios, while
real-time market prices are addressed using robust optimiza-
tion. Although [26] and [28] both use battery as a stor-
age device, the presented models use only generic energy
storage formulation and ignore specifics of battery energy
storage, such as reduced charging capability at high states of
energy.

Considering the literature on battery energy storage bid-
ding using robust optimization, this paper delivers the follow-
ing contributions:

• We formulate two robust optimal bidding models for
battery storage. The first one uses two budgets of uncer-
tainty, one for the discharging process and one for the
charging process. This model is extremely optimistic
for low values of uncertainty budgets and allows a finer
control over the level of conservatism. The second one
uses a single budget of uncertainty and relies on the
average price as the best-case price. In this model both
the upward and downward deviations are possible.

• Instead of using a generic energy storage model,
we adopt a more detailed battery charging model that
considers the reduced charging power at high battery
state of energy. This results in an improved accuracy
of the battery operation and quantifies the expected rev-
enues more accurately.

C. PAPER ORGANIZATION
The rest of the paper is organized as follows. In Section II
the robust thermal generator bidding problem is presented
using two formulations, denoted by RobGen_1 and Rob-
Gen_2. This Section also presents a case study and compares
results obtained using both formulations. Section III focuses
on robust battery storage bidding problem and presents two
different models, RobBat_20 and RobBat_0, which are com-
pared in an additional case study. The relevant conclusions
on usefulness of the robust optimization in optimal bid-
ding problems are articulated in Section IV. Additionally,
the Appendix presents a general bilevel robust formulation of
the profit maximization problem used throughout this paper
and its linear reformulation based on the work of Bertsimas
and Sim [1].

II. ROBUST THERMAL GENERATOR BIDDING PROBLEM
A. NOMENCLATURE
1) SETS AND INDICES

k Index of iterations running from 1 to K .
l Index of generator output segments running from
1 to L.

t Index of periods running from 1 to T .

2) PARAMETERS
cF Thermal generator fixed cost [e].
cSD Generator shutdown cost [e].
cSU Generator startup cost [e].
dkt Price difference between the upper and lower

bound in iteration k , calculated as (λmax
t −

λmin
t ) · k/K [e].

NOFF/ON Number of hours the generator has been
off/on prior to the first period.

Pmax Generator power capacity [MW].
Pmin Generator’s minimum stable output [MW].
Rdown/up Ramp down/up limit [MW].
RSD/SD Shutdown/startup ramp limit [MW].
T down/up Minimum down/up time [h].

VOLUME 9, 2021 66831



M. Vidan et al.: Individual Thermal Generator and Battery Storage Bidding Strategies

u0 Initial commitment status (value 0/1).
αl Cost slope of generation block l [e/MW].
λmax
t Upper price bound at hour t [e/MWh].
λmin
t Lower price bound at hour t [e/MWh].
ρl Size of generator block l [MW].

3) VARIABLES
ct Operating costs in period t [e]
cpt Production costs in period t [e]
cSD/SUt Shutdown/startup costs in period t [e]
pt Power output in period t [MW]
pt,l Power output within generation segment l in

period t [MW]
ut Binary variable (1 if unit is online at t,

0 otherwise)

B. RobGen_1 FORMULATION
RobGen_1 formulation is acquired from [18] and used as
a baseline robust model. The problem is solved K times,
where every iteration uses different prices. It suggests that
in each hour the price lies inside the interval [λmin

t , λmax
t ],

where λmax
t is the upper bound and is constant in all iterations,

while λmin
t is the lower bound that decreases linearly in each

iteration. In all iterations the robustness parameter 0 is set to
24, representing full conservativeness, which results in prices
equal to λmin

t in all time periods as this is the worst case
for a generator bidding in the market. RobGen_1 problem is
formulated as follows for each iteration k:

Max
T∑
t=1

[λmax
t · pt − ct (pt )]− z · 0 −

T∑
t=1

qt (1.1)

subject to : z+ qt ≥ dt · yt ∀t ≤ T (1.2)

z, qt , yt ≥ 0 1 ≤ t ≤ T (1.3)

pt ≥ yt 1 ≤ t ≤ T (1.4)

ct (pt ) = cpt + c
SU
t + c

SD
t ∀t ≤ T (1.5)

cpt = cF · ut +
L∑
l=1

αl · pl,t ∀t ≤ T (1.6)

pt =
L∑
l=1

pl,t + Pmin
· ut ∀t ≤ T (1.7)

pl,t ≤ ρl − ρl−1 ∀t ≤ T , 2 ≤ l ≤ L (1.8)

pl,t ≥ 0 ∀t ≤ T , l ≤ L (1.9)

cSUt ≥ c
SU
· (ut − ut−1) ∀t ≤ T (1.10)

cSDt ≥ c
SD
· (ut−1 − ut ) ∀t ≤ T (1.11)

cSDt , cSUt ≥ 0 ∀t ≤ T (1.12)

pt ≤ Pmax
· ut ∀t ≤ T (1.13)

pt ≤ pt−1 + Rup · ut−1 + RSU · (ut − ut−1)

+ Pmax
· (1− ut ) ∀t ≤ T (1.14)

pt≤Pmax
· ut+1 + RSD · (ut − ut+1) ∀t≤T−1

(1.15)

pt−1 − pt ≤ Rdown · ut + RSD · (ut−1 − ut )

+ Pmax
· (1− ut−1) ∀t ≤ T (1.16)

M∑
t=1

(1− ut ) = 0 (1.17)

t+T up
−1∑

n=t

un≥T up
· (ut−ut−1)

∀t : M+1≤ t≤T−T up
+1 (1.18)

T∑
n=t

[un−(ut−ut−1)]≥0

∀t : T−T up
+ 2≤ t≤T (1.19)

H∑
t=1

ut = 0 (1.20)

t+T down
−1∑

n=t

(1− un) ≥ T down(ut−1 − ut )

∀t : H + 1 ≤ t ≤ T − T down
+ 1 (1.21)

T∑
n=t

[1− un − (ut−1 − ut )] ≥ 0

∀t : T − T down
+ 2 ≤ t ≤ T (1.22)

where:

M = Min {NT, (T up
− NON) · u0},

H = Min {NT, (T down
− NOFF) · (1− u0)}.

Derivation of robust constraints (1.2)–(1.4) is explained in
Appendix at the end of the paper. Thermal generator total
operating costs in eq. (1.1) consist of production costs, startup
costs and shutdown costs, where production costs, defined
in (1.5), consist of the no-load costs and piecewise linear
approximation of variable costs with monotonically increas-
ing slopes.
The overall thermal generator output in eq. (1.7) consists of

the sum of piecewise outputs and minimum stable generation
if the generator is online. Constraint (1.8) limits piecewise
power outputs for the first and the remaining output segments,
while (1.9) imposes nonnegativity on power output variables.
Startup and shutdown costs are modeled using a single binary
variable in (1.10)–(1.12). Constraints below represent the
feasible operating region. Constraint (1.13) limits the power
output, while constraints (1.14)–(1.16) impose operational,
startup and shutdown ramp limits. Constraints (1.17)–(1.19)
model generator minimum up times, while constrains
(1.20)–(1.22) model generator minimum down times.

C. ROBGEN_2 FORMULATION
In order to eliminate the risk of obtaining offering curves
that violate ramp constraints, we propose an alternative
approach in which the K individual robust counterparts con-
sidered in RobGen_1 model are linked together. Specifically,
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we propose to solve one single robust counterpart:

Max
K∑
k=1

T∑
t=1

(λmax
t − dkt )− ct (p

k
t ) (2.1)

pk1t ≤ p
k2
t−1 + R

up
· uk2t−1 + R

SU
· (uk2t − u

k2
t−1)

+Pmax
· (1− uk2t ) ∀k1, k2 ≤ K : k1 6= k2, t ≤ T

(2.2)

pk2t−1 − p
k1
t ≤ R

down
· uk2t + R

SD
· (uk2t−1 − u

k2
t )

+Pmax
· (1− uk2t−1) ∀k1, k2 ≤ K : k1 6= k2, t ≤ T

(2.3)

Constraints (1.2)− (1.22) (2.4)

where all the variables have additional dimension k that
denotes the iterations. Different iterations have different input
parameter dkt , setting the height of the uncertainty range. Con-
straints (2.2) and (2.3) disallow ramp violations between the
power output of different iterations, i.e. protect against infea-
sible production schedules caused by deriving bidding curves
based on results of independently obtained solutions. There-
fore, instead of solving multiple robust problems and obtain-
ing unrelated solutions (RobGen_1 formulation), we solve
the entire problem in a single shot and obtain a ramp-limit-
safe solution.

D. CASE STUDY
This case study compares RobGen_1 and RobGen_2 on the
same input data used in [18]. We compare both the objective
function values and the shape of the obtained bidding curves.
Generator data are provided in Table 1, while Figure 1 shows
energy price data obtained as lower and upper bounds of the
EPEX spot prices on Mondays from March 19 to June 25,
2018 [29]. All scenarios are grouped relatively close together
except the outlier for April 30, 2018, when the prices were
negative for the most of the day. The price range is divided
in 100 intervals, which means that model RobGen_1 is solved
100 times, while model RobGen_2 imposes ramp constraints
among the output of all 100 intervals.

TABLE 1. Generator technical and economic data.

A selection of generated bidding curves is displayed in
Figure 2. Generally, bidding curves obtained using the Rob-
Gen_1 model cover a wider output range than the ones
obtained using the RobGen_2 model and they are mostly

FIGURE 1. Fifteen market price scenarios used to create the upper (thick
dashed orange line) and the lower (thick dashed blue line) price bounds.

spread across the entire operating range of the thermal gen-
erator. This may cause infeasible hourly transitions in case
of fluctuating prices. For instance, if the price changes from
e54/MWh in hour 17 to e39/MWh in hour 18, the thermal
generator would need to change its output from the maxi-
mum 294 MW to 179 MW. However, this would violate its
ramp-down limit of 70 MW/h. On the other hand, the Rob-
Gen_2 model produces more narrow bidding curves. Its out-
put in hour 17 will be in the range 112–162 MW, depending
on the price. In the following hour, its output range slightly
extends to the range 112–172 MW (note that ramp-up limit is
60 MW). In hour 19, the prices keep increasing and the Rob-
Gen_2 formulationmoves the lower output bound to 142MW
and keeps the upper one at 172MW, as otherwise the ramp-up
constraint with respect to the previous hour might not be
satisfied. In hour 20, the offering curve of RobGen_2model is
very narrow with offers ranging from 192 to 202 MW, which
enables it to further increase the output range in hour 21 to
174–252 MW, still respecting the ramp-up constraint. After
hour 21, the RobGen_2 bidding curves slowly move to the
left again as the market prices decrease.

In order to quantify the difference between RobGen_1 and
RobGen_2 models and assess how often the ramp constraints
would actually be violated, we apply the generator bidding
curves obtained by both formulations on the actual price
curves used to define the robust bounds. The resulting profit
as well as the number of ramp-constraint violations per sce-
nario are shown in Figure 1. Generally, generator’s profit
for RobGen_1 is always higher than for RobGen_2 model.
While for scenarios 3, 4, 6 and 8 these differences are rather
low, in the remaining scenarios they are more significant.
Furthermore, scenario 7, which is the outlier since its prices
are very low and actually negative for the most of the day,
incurs negative profit for the RobGen_2 model, while Rob-
Gen_1 model allows the generator to stop producing electric-
ity when the prices are low or negative. On the other hand,
RobGen_2 prevents the generator to shut down because of the
ramp constraints. For example, in hour 17, electricity price
ranges from -48.6 e /MWh in scenario 7 to 51.5 e /MWh in
scenario 13. Since the output across all scenarios must be
feasible, the generator cannot just shut down or reduce its
output, as it can in RobGen_1.
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FIGURE 2. Offering curves obtained using RobGen_1 (in blue) and RobGen_2 (in orange) formulations for hours 17–24.

The expected profit across all 15 scenarios for the Rob-
Gen_1 model is e106,141 with standard deviation e11,250.
On the other hand, the expected profit for RobGen_2 model
is 12% lower, e93,665, with standard deviation e9,683. The
higher expected profit obtained using the RobGen_1 model
is a result of ramp-constraints violations in 11 out of 15 sce-
narios. The ramp constraints in some scenarios are violated
quite frequently, up to five times, as shown in Figure 3.

FIGURE 3. Profits and number of ramp-constraint violations per scenario
for RobGen_1 and RobGen_2 models.

Introducing additional ramp constraints in RobGen_2 and
simultaneously solving the problem does not increase the
overall solution time. Actually, on a computer equipped with
a 4-core i7 processor clocking at 1.8 GHz and 16 GB RAM
solving the RobGen_1 model 100 times take 45 seconds,
while solving the RobGen_2 model once takes under
5 seconds.

III. ROBUST BATTERY STORAGE BIDDING PROBLEM
As opposed to a thermal generator, which only sells electric-
ity and thus prefers high prices at all time periods, battery
storage in some time periods purchases electricity, acting as
a consumer, in some time periods it sells electricity, acting as
a generator, and in time periods with average daily prices it

usually remains idle. Thus, when it sells electricity it prefers
upward deviation from the average price, while the downward
deviation is preferred when it purchases electricity. Having
this in mind, we formulate two types of robust battery stor-
age bidding models. The first one considers that the most
favorable prices are located at the upper bound when selling
electricity and at the lower boundwhen purchasing electricity.
This model thus includes two budgets of uncertainty, 0dis

and 0ch, one is the downward deviation from the upper
bound when discharging and selling, and the other one is the
upward deviation from the lower bound when charging and
purchasing electricity. We refer to this model as RobBat_20.
The second model we formulate assumes that the best-case
scenario is when the price of electricity moves along the
points equally distant from the upper and the lower bound at
each time period. This formulation, denoted RobBat_0, uses
a single budget of uncertainty indicating in how many hours
the prices deviate from this assumed middle scenario in an
unfavorable way for the battery storage. Both models are for-
mulated in the following subsections after the nomenclature.

A. NOMENCLATURE
1) SETS AND INDICES
j Index of breakpoints of the battery charging

curve running from 1 to J .
t Index of hours running from 1 to T .

2) PARAMETERS
dt Market prices uncertainty range (difference

between the upper and the lower bound)
[e/MWh].

Fj Maximum amount of energy that can be
charged at specific state of energy breakpoint
Rj as a portion of Pmax.

Pmax Maximum battery power [MW].
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Rj Capacity of each state of energy segment j
as a portion of the maximum state of energy
SoEmax.

SoE init Initial state of energy [MWh].
SoEmax Maximum state of energy [MWh].
SoEmin Minimum state of energy [MWh].
λavt Average of the upper and lower price bounds

at hour t [e/MW].
λmax
t Upper price bound at hour t [e/MW].
λmin
t Lower price bound at hour t [e/MW].

3) VARIABLES
pcht Charging power in period t [MW].
pdist Discharging power in period t [MW].
SoEt Battery state of energy in period t [MWh].
SoEseg

t,j State of energy of segment j in period t
[MWh].

ut ] Binary variable equal to 1 if battery is charg-
ing at t and 0 otherwise.

B. FORMULATION OF THE RobBat_20 MODEL
The robust optimal battery bidding problem with two budgets
of uncertainty, one for selling electricity and one for purchas-
ing electricity, is formulated as follows:

Max
T∑
t=1

{[λmin
t + d(t)] · p

dis
t − λ

min
t · p

ch
t }

− zch · 0ch
− zdis · 0dis

−

T∑
t=1

qcht −
T∑
t=1

qdist (5.1)

subject to: zdis + qdist ≥ dt · y
dis
t ∀t ≤ T (5.2)

pdist ≤ y
dis
t ∀t ≤ T (5.3)

zdis, qdist , y
dis
t ≥ 0 ∀t ≤ T (5.4)

zch + qcht ≥ dt · y
ch
t ∀t ≤ T (5.5)

pcht ≤ y
ch
t ∀t ≤ T (5.6)

zch, qcht , y
ch
t ≥ 0 ∀t ≤ T (5.7)

pcht ≤ P
max
· ut ∀t ≤ T (5.8)

pdist ≤ P
max
· (1− ut ) ∀t ≤ T (5.9)

SoEt = SoE init
+ pcht · η − p

dis
t /η t = 1

(5.10)

SoEt = SoEt−1 + pcht · η − p
dis
t /η

∀t : 2 ≤ t ≤ T (5.11)

SoEmin
≤ SoEt ≤ SoEmax

∀t ≤ T (5.12)

SoET ≥ SoE init, (5.13)

SoEt =
J−1∑
j=1

SoEseg
t,j ∀t ≤ T (5.14)

SoEseg
t,j = (Rj+1−Rj)·SoE

max
∀j≤J−1, t≤T

(5.15)

pcht ·η≤ F1 ·SoE
max
+

J−1∑
j=1

SoEseg
t−1,j

·
Fj+1−Fj
Rj+1−Rj

, t≤T (5.16)

The objective function (5.1) maximizes the battery storage
profit by selling electricity at maximumprice, λmin

t +d(t), and
purchasing it at minimum price, λmin

t . The second line in the
objective function (5.1) contains robust counterparts of the
charging and discharging processes.When there is a deviation
from the best-case price related to charging, the correspond-
ing two negative terms take values and thus deteriorate the
objective function value. Similarly, an undesired deviation
from the upper-bound price when discharging causes the two
terms related to discharging to take values.

Variables zdis/ch, qdis/cht , ydis/cht and constraints (5.2)–(5.7)
are a result of the dualization adopted to eliminate the robust
subproblem according to [1]. Constraints (5.8) and (5.9) limit
the charging and discharging power and disable simultaneous
charging and discharging. State of energy for the first and
the remaining time periods is calculated using eqs. (5.10) and
(5.11). Minimum and maximum state of energy are imposed
by the constraints (5.12), while constraint (5.13) ensures that
the battery at the end of the optimization horizon is at least
equally charged as at the beginning.

Constraints (5.14)–(5.16)model the dependency of the bat-
tery charging power on its state of energy. This dependency
manifests as reduced battery charging capacity at higher
states of energy, which is a consequence of its operation in
the constant-voltage part of the charging curve. This convex
curve is piecewise linearized using the breakpoints (Fi, Ri) at
which the maximum battery charging power further reduces.
In order to model this linearization, we use battery state of
energy linear segments SoEseg

t,j , which constitute battery’s
overall state of energy SoEt , in a same way that piecewise
linear thermal generator output segments pl,t constitute over-
all generator output pt (see [30] for details on this battery
charging model).

C. FORMULATION OF THE RobBat_0 MODEL
This formulation considers average prices λavt for both battery
discharging and charging as the most optimistic scenario, i.e.
for 0 = 0. However, once 0 takes positive values, at least
one of the remaining two terms in (6.1) take value differ-
ent than zero and deteriorate the objective function value.
Constraints (6.2)–(6.4) are derived directly from the robust
subproblem, while the remaining constraints are identical to
the RobBat_20 model.

Max
T∑
t=1

[λavt · (p
dis
t − p

ch
t )]− z · 0 −

T∑
t=1

qt (6.1)

subject to: z+ qt ≥ 1dt · yt ∀t ≤ T (6.2)

− yt ≤ pdist − p
ch
t ≤ yt ∀t ≤ T (6.3)

z, qt ≥ 0 ∀t ≤ T (6.4)

Constraints (5.8)− (5.16) (6.5)
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D. CASE STUDY
We conduct four different analysis where the RobBat_20 and
RobBat_0 models are applied to two sets of prices, one using
the full uncertainty range from Table 2 and Fig. 1 and the
other using a reduced uncertainty set that omits the outlier
scenario (the one at the lower bound, far below all the other
scenarios). Objective function values for all four cases and
0 = 0 are provided in Table 2. Objective function values
both with and without the outlier scenario are approximately
five times higher for the RobBat_20 model as its initial
assumptions on purchasing and selling prices are much more
optimistic than the ones of the RobBat_0 model, i.e. selling
at the upper-bound prices and purchasing at the lower-bound
prices as opposed to both buying and selling at the average
prices. However, as the obtained objective function values
in robust optimization generally do not reflect the expected
profits, we obtain charging and discharging schedules for
both models under both the full and reduced uncertainty
range for all values of 0 and apply those schedules on the
available market price scenarios. As a result, the optimal
value of the uncertainty budget is not known ahead of the
bidding process. Instead, it is assumed based on the historical
data. In this case study, we evaluate the expected profit for
individual uncertainty budgets on a number of realizations of
uncertainty, i.e. scenarios.

TABLE 2. Objective function values in the battery case study for 0 = 0.

Expected profits over all scenarios for the RobBat_20
model with and without the outlier scenario are presented
in Figures 4 and 5. The highest expected profit when the
outlier scenario is considered is achieved for 0ch

= 0 and
0dis in the range from 19 to 23. The expected profit equals
e9,235. However, 76 out of 576 combinations of0ch and0dis

result in a negative profit. This means that a poor selection of
uncertainty budgets would cause losses to the battery storage.
The highest loss equal to -e11,648 is obtained for 0ch

= 7
and 0dis

= 24. This poor performance is caused by the

FIGURE 4. Expected profit over all scenarios for the RobBat_20 model
when the outlier scenario is considered.

FIGURE 5. Expected profit over all scenarios for the RobBat_20 model
when the outlier scenario is not considered.

outlier scenario having an opposite gradient as compared
to the remaining scenarios over most hours. For instance,
in hours 8–11 the prices of the outlier scenario are increasing,
while the prices of all the other scenarios are decreasing (see
Figure 1). This causes a poor selection of hours for battery to
discharge and charge and results in massive losses.

When observing the reduced uncertainty range with no
outlier scenario, profit is positive for all combinations of
uncertainty budgets. The highest expected profite8601.32 is
achieved for 0ch

= 0 and 0dis in the range from 17 to 24. The
lowest profit is 0, when the battery storage never charges nor
discharges.

Figure 6 shows profit per scenario (red dots) for the
RobBat_0 model for all values of 0 resulting in at least some
battery charging/discharging activity (profit per scenario for
values of 0 higher than presented is always zero), while the
blue line shows the expected profit, i.e. the weighed average
of all scenarios (red dots). In case when outlier scenario is
taken into account (Figure 6a), for all 0 values higher than
7 the objective function is zero, thus the profit is zero as no
charging or discharging is scheduled. The highest profits are
achieved for the outlier scenario (top row of red dots). The
schedule for 0 = 0 results in e56,384 profit. While in Rob-
Gen models the outlier scenario brings losses, in RobBat_0
the outlier brings maximum profit. That is because at negative
prices the battery can charge and be paid for it, making further
profit when selling this electricity at positive prices. However,

FIGURE 6. Profit per scenario and the expected profit for the RobBat_0

model.
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considering the outlier scenario has negative effects as well as
it causes negative profits in 34 out of 120 scenario realizations
for different uncertainty budgets. This effect increases for
higher values of 0.
When the outlier scenario is not considered (Figure 6b),

the expected profit for all uncertainty budgets is lower, but
no scenario realization results in losses. The highest expected
profite20,342 is achieved for0 = 1. It is obvious the highest
profit when considering the outlier scenario is significantly
higher. The point of discussion is whether this higher profit is
worth the risk of operating with losses. Overall, the expected
battery profit with the outlier scenario is e6,012 and without
it e8,284.
Both battery bidding models are solved very quickly, under

1 second. The solution times lower than for the thermal
generator bidding models are a direct consequence of the
reduced number of binary variables and constraints.

IV. CONCLUSION
The presented thermal generator and battery storage bidding
strategies using robust optimization formulations were used
to address the salient features of using these formulations in
the day-ahead market. The following conclusions are drawn
based on the case studies:

1) The RobGen_1 formulation from [18] results in more
aggressive bidding and uses a wider range of output
power than the proposed conservative RobGen_2 for-
mulation. However, the violation frequency of genera-
tor ramp constraints is severe, which inflicts balancing
costs. Therefore, risk-averse bidders should rely on the
RobGen_2 model.

2) In the RobBat_20 model the best results are achieved
for 0ch

= 0 and high values of 0dis, indicating
the importance of pinpointing the periods with lowest
prices, regardless on how much those prices actually
are. The realistic conservatism is achieved with the
discharging prices descending from the upper bound
using high 0dis values.

3) Regardless on the battery bidding formulation, scenar-
ios used to set the price bounds should be carefully
examined. An outlier scenario can significantly change
the bidding strategy. Although the expected and max-
imum profits increase, the minimum profits decrease,
which can often result in monetary losses.

To conclude, using robust optimization to produce optimal
bidding strategy is a delicate task as the scenario character-
istics are omitted. This is particularly the case for battery
storage where it is imperative to choose the hours with the
lowest prices to purchase electricity. Therefore, pure robust
formulation without any uncertainty characterization should
be avoided and some type of scenario-based approach should
be used instead. Assuming that the market players pursue
maximum expected profit, the stochastic optimization is a
much more suitable tool for daily bidding schemes. Instead,
robust formulation is appropriate for investment problems

where the investors want to secure against the worst-case
realization of uncertainty that could jeopardize their business
venture.

APPENDIX
We briefly review here how to apply the methodology pro-
posed in [1] to tackle uncertainty in the bidding problems
we consider. A profit-maximization problem with a threat
of maximizing the damage by altering the uncertain mar-
ket prices is a bilevel problem with the following objective
function containing the lower-level problem and its two con-
straints (dual variables of the lower-level problem constraints
are separated by a colon):

Max
NT∑
t=1

λt · pt −Max
NT∑
t=1

1λt · |pt | · bt (A.1)

subject to
NT∑
t=1

bt ≤ 0 : z (A.2)

0 ≤ bt ≤ 1 ∀t ≤ T : wt (A.3)

Since the two maximizations in the objective function are
contradictory (the lower-level problem maximization comes
with a negative sign), the lower-level problem needs to be
dualized. The resulting dual is:

Max
NT∑
t=1

λt · pt −Min
[
z · 0 +

NT∑
t=1

wt
]

(A.4)

z+ wt ≥ 1λt · |pt | ∀t ≤ T (A.5)

where z ≥ 0 and wt ≥ 0. Now the two problems in
the objective function have coinciding directions (negative
minimization is identical to maximization), we can omit the
lower-level minimization to achieve the final objective func-
tion (A.6) The only remaining issue is the absolute value in
(A.5) since pt is now a variable (it was a parameter when only
the lower-level problem was observed). This is linearized as
in (A.7) and (A.8). The final equivalent of problem (A.1)–
(A.3) is thus:

Max
NT∑
t=1

λt · pt − z · 0 −
NT∑
t=1

wt (A.6)

z+ wt ≥ 1λt · yt ∀t ≤ T (A.7)

−yt ≤ pt ≤ yt ∀t ≤ T (A.8)

with z ≥ 0 and wt ≥ 0.
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