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ABSTRACT Brain-Computer Interface (BCI) based on Local Field Potential (LFP) has recently been
developed to restore communication or behavioral functions. LFP provides comprehensive information, due
to its stability, robustness, and reach frequency content within the cognitive process. It has been demonstrated
that spatial attention can be decoded from brain activity in the visual cortical areas. However, whether
motion direction can be decoded from the LFP signal in the primate visual cortex remains uninvestigated,
as well as how decoding performance may be influenced by spatial attention. In this paper, these issues were
examined by recording LFP from the middle temporal area (MT) of macaque, employing machine learning
algorithms. The animal was trained to report a brief direction change in a target stimulus which moved
in various directions during a visual attention task. It was found that the LFP-gamma power was able to
provide significant information to reliably decode motion direction, compared with other frequency bands,
on a single-trial basis. Moreover, the results show that spatial attention leads to enhancements in motion
direction discrimination performance. The highest decoding performance was achieved in the high-gamma
frequencies (60–120Hz) when targets were presented inside the receptive field in opposite directions. Using
a feature selection approach, performance was improved by optimally selecting features where the highest
level of participation was observed in the gamma-band. Generally, the results suggest that in the MT area,
LFP signals exhibit appreciable information about visual features like motion direction, which could thus be
utilized as a control signal for cognitive BCI systems.

INDEX TERMS Motion direction decoding, local field potential, brain-computer interface, spatial attention,
visual area MT.

I. INTRODUCTION
Visual attention is a selective mechanism which aims to pri-
oritize behaviorally relevant information out of all subsets of
sensory stimulation. It focuses on spatial positioning (spatial
attention) or target-defining features (feature-based attention)
across the visual cortex [1], [2]. Visual attention as a cognitive
factor plays a substantial role in the higher-order mental
information processing that occurs in the brain [3], [4].

BCI technology is a computer-based system that decodes
and interprets brain signals in order to control an external
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device for performing intention or intended behaviors in
humans and non-human primates [5], [6]. One of the most
important issues for developingmore advanced cognitive BCI
systems is access to higher cortical cognitive functions, which
are considerably affected by psychological states [7], [8].
Numerous studies have suggested covert visual attention in
cognitive BCI applications [9]–[11].

Various BCIs have been made operational based on inva-
sive or noninvasive recording technologies. Among the
non-invasive techniques for recording brain activity, elec-
troencephalography (EEG) has been widely employed in
BCI applications [12]–[14]. At the neuroscience and neu-
roengineering levels, most current knowledge on the neural
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foundations of visual attention is based on brain activity
processing, which comes from invasive electrophysiologi-
cal studies in non-human primates. As invasive recording
sources, single units and local field potentials are employed
to extract practical features to drive BCI systems [15]–[17].

LFP is one of the brain activity aspects that provides a
dynamic flow of information for cognitive processing. LFPs
are low-frequency extracellular voltage fluctuations that are
thought to reflect the aggregate of synaptic activities in a
population of local neurons around a recording [18]. Pre-
vious studies have demonstrated that the composition of
spike activity recorded changes over time, probably due to
micro-motions of recording sites or the loss of neural tis-
sue near the electrode tips. This can lead to the decline of
static performance and require frequent calibration in BCI
systems [16], [19]–[21]. Moreover, the procedures regarding
spike processing, such as spike sorting and firing rate estima-
tion, are time-consuming and complex. Consequently, the use
of decoded information from LFP signals, due to their sta-
bility, robustness, and reach frequency content, has attracted
interest in brain structure and cognitive processing studies.
Thus, this type of brain activity may be presented as suitable
research topics for the problem solution of spike-based BCI
systems [15], [22]–[24].

The influence of visual attention on LFP signals has
been reported across different cortical sensory areas of mon-
key [25]–[30]. Numerous studies have demonstrated that
visual attention affects the modulation of neuronal pro-
cessing in a variety of perceptual tasks [31]–[34]. It has
been shown that spatial attention enhances the response
gain of sensory neurons when the stimulus is located in
the receptive field [25], [35]–[37]. In particular, switching
attention into the receptive field (RF) is associated with
a decrease in low-frequency oscillations, as well as an
increase in high-frequency oscillations, in LFPs of the visual
sensory areas [26]–[28], [38], whereas one study reported
different results [29]. In contrast, feature-based attention
(FBA) improves the perception of relevant stimulus fea-
tures (e.g., color, motion direction, or shape), at the expense
of behaviorally-irrelevant features, via modulation of the
feature-selective neurons’ responses throughout the visual
cortex [39]–[42].

The impact of spatial attention and FBA on the response
modulations of visual cortical neurons have been investigated
together in a number of studies [43]–[45]. Furthermore, psy-
chophysical studies have confirmed the interaction between
spatial and feature-based attention by analyzing spike activi-
ties from lateral the intraparietal [46], V4 [47], and MT [48]
areas. These results demonstrate that attention to relevant
visual features located inside each neuron’s RF boosts FBA
gain modulations. Several studies have evaluated the feasi-
bility of decoding information about movement goals from
the LFP signals in the motor cortex [49]–[51]. Slutzky et
al. reported that LFP signals could be used for decoding the
forelimb movements of rats in the sensorimotor cortex [52].
Other studies showed that LFP signals recording from

multi-cortex (i.e. the primary motor cortex, the somatosen-
sory cortex, and the posterior parietal cortex) were utilized for
decoding reaching and grasping movements [53]. Moreover,
high decoding performance was obtained by combining the
high-frequency LFP signals from three-cortex studies com-
pared to single-cortex studies. These studies conclude that
LFPs are more robust and durable, thus providing an accurate
signal source for applications of BCIs.

Visual attention affects the frequency characteristics of
LFP activities, which leads to an appropriate signal for
decoding information during attention tasks. Several types
of research have employed LFP signals for decoding the
focus of attention during different visual tasks. For instance,
the effects of visual stimulus on decoding performance dur-
ing the object-detection task in the macaque inferior tem-
poral cortex have been studied [54], [55]. Some studies
have demonstrated the ability of LFP signals to decode
two-position spatial attention, while LFP was recorded from
the macaque MT area [56], [57]. In other studies, the pos-
sibility of predicting the allocation of covert attention has
been investigated in different areas of the monkey brain:
from the LFP [58]; spiking activity from the lateral prefrontal
cortex [59], [60]; and the frontal eye field [61]. Similarly,
decoding the focus of attention during the shape-tracking task
based on electrocorticogram (ECoG) recordings has been
examined [62]. Summarizing the survey mentioned above,
it can be seen that the brain activity recordings in different
visual cortex areas in certain frequencies contains valuable
information to decode the allocation of attention or visual
stimulus location. However, it remains uninvestigated as to
how the motion direction-related information can be decoded
from LFP signals in the primate visual cortex.

According to the above discussion, this paper aims to
investigate motion direction decoding by applying the LFP
signals recorded from the MT area of a monkey. For this
purpose, the animal had to report a brief direction change in a
target stimulus during a spatial-based visual attention task.
In addition, the decoding performance of motion direction
across different frequency sub-bands is examined by employ-
ing machine learning algorithms.

The results reveal that motion direction can be decoded
using LFP-power on a single-trial basis across different fre-
quency bands. Furthermore, high gamma-frequency oscilla-
tions carry substantial information about the stimulus motion
direction. This is consistent with results obtained from the
feature selection analysis, which has shown the largest por-
tion of this frequency range in motion direction decoding.
Noticeably, decoding performance is enhanced when the
monkey’s attention is directed to the stimulus direction inside
the neuron’s receptive field. In this study, it is suggested that
the LFP signals recorded from the MT visual cortex could be
utilized for cognitive information processing, such as covert
attention to motion direction, in order to be offered as a
control signal for cognitive BCI systems.

This paper is organized as follows. Section II briefly
explains the behavioral task, LFP recording, and data pre-
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processing. Section III provides the results, including eval-
uating LFP information content and decoding performance,
based on different analyses. The discussions are provided in
Section IV, and conclusions in Section V.

II. MATERIALS AND METHODS
All animal procedures in this study were conducted at the
German Primate Center in Göttingen, Germany, according to
all local applicable laws and regulations, and were approved
by the responsible regional government office [Niedersaech-
sisches Landesamt fuer Verbraucherschutz und Lebensmittel-
sicherheit (LAVES)].

A. BEHAVIORS TASK
In this study, extracellular neuronal activities are recorded
from the macaque MT area, which is a visual area largely
devoted to visual motion processing. Themalemacaquemon-
key was trained to fixate on a central fixation and directed
its attention to one of two coherently moving random dot
patterns (RDP). The animal had to press a lever to initiate each
trial while keeping the gaze on a central fixation point for 130
ms. In each trial, a cue appeared on the screen for 455 ms,
showing one of the upcoming moving RDP as a relevant
stimulus (target). After 325 ms, that the cue was removed,
and two pairs of moving RDPs were simultaneously shown
at a random time between 680–4250 ms, one located inside
the recorded neuron’s receptive field and the other located
in the opposite visual hemifield. Both RDPs moved in the
same direction in one of eight possible directions selected
randomly in each trial (0–360◦ with steps of 45◦). During
this time period, one or both of the stimuli could randomly
underwent a brief (130 ms) direction change. The monkey
had to detect a direction change in the target RDP within a
response time interval of 150–650 ms by releasing the lever
to receive a reward. The direction change could also happen
in the un-cued stimulus (as a distractor). Trials in which
the monkey responded to such changes were ended without
reward and considered errors (Fig. 1).

The behavior paradigm included two types of trials: ones
where attention was focused within the receptive field; and
ones where attention was diverted towards a stimulus placed
outside the receptive field. The monkey correctly released
the lever for the response to a target change in 86% of the
trials without fixation breaks. The incorrect response to the
distractor change occurred in 3% of trials. Also, the monkey
terminated the trial without performing any response in 11%
of trials (miss trial).

This data includes two components, single-unit activities
(SUAs) and LFP signals, which were recorded from the
MT area using a multichannel acquisition processor (MAP)
data acquisition system (Plexon, USA) and a 5-channel
Mini-Matrix driver (Thomas Recording, Germany). Signals
were recorded from up to all five electrodes (with the
impedance of 2 M� arranged linearly separated by 300
µm) simultaneously. Signals were amplified and filtered by
hardware filters. Spikes and LFPs were digitized at 40 kHz

and 1 kHz, respectively. Spikes were sorted using the Plexon
spike sorter (Plexon, USA). The sites located in the MT were
determined by direction selectivity of isolated cells and the
electrode position relative to the cortex.

B. DATA ANALYSIS
In this section, the aim is to describe data preprocessing,
which was carried out usingMATLAB software (Mathworks,
NatickMA). In an initial step, the LFP for each trial and chan-
nel was filtered by a 3rd-order Butterworth filter to remove the
50 Hz line noise implemented with zero phase-shift (‘filtfilt’
function in MATLAB) to prevent any phase distortion.

To investigate the information content relevant to motion
direction in each frequency band, a 3rd-order Butterworth
band-pass filter was used to divide the LFP frequency spec-
trum into the following bands: delta (1–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), beta (12–30 Hz), low-gamma (30–60 Hz)
and high-gamma (60–120 Hz). Then, The first and last
200 ms of the filtered LFP was dropped to avoid any possible
edge effects created by filtering at both ends of the signal
time segment. Therefore, the LFP signal was analyzed in the
period between (200 ms to 1200 ms) after the stimuli onset.

A total of 32 sessions were recorded, but only sessions
with the following conditions were included in the analy-
ses: (I) sessions with at least two electrodes within the MT
region; and (II) sessions with at least ten correctly performed
trials per condition, which had eight possible directions, i.e.
0◦–360◦ with steps of 45◦. Hence, the overall numbers of
selected recordings contained 20 sessions and 72 sites. The
power spectral density (PSD) of each single trial can be
estimated by computing themagnitude squared of the discrete
Fourier transform applied to the signal. Each trial PSD is
normalized by the overall PSD mean across trials from each
attention condition (i.e. trials of possible direction pairs) for
each site.

In this paper, decoding performance was considered on a
single-trial basis from LFP signals across each sub-band. The
use of artificial intelligence methods in BMI and BCI systems
is gradually increasing. Classification is often an essential
part of the process in many different fields, such as decoding
the attentional state of the monkey. Classifiers are usually
trained by applying some kind of supervised machine learn-
ing approaches, including generalized linear models, linear
regression, Bayes classification, or support vector machines
(SVM) [22].

In the next step, SVM [63] was applied to estimate clas-
sification accuracy using a 10 × 10-fold cross-validation
method to separate the two motion directions from the LFP
signal at each sub-band. The classification performance val-
ues were obtained by averaging over the folds and repeti-
tions of the cross-validation. The statistical significance of
decoding performance was assessed using a permutation test.
The target labels on the observed data points were randomly
shuffled. Then, classification performance was calculated as
above. This was repeated 100 times for each file. Eventually,
the mean and standard deviation were calculated from the
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FIGURE 1. Behavioral paradigm. The monkey had to touch a lever to start the trial, while fixating the central fixation spot for 130 ms. Then, a cue
appeared for 455 ms on the screen, indicating one of the upcoming relevant stimulus positions. After a blank screen period of 325 ms, two
moving RDPs were shown at a random time between 680–4250 ms. During this time period, one or both of the stimuli randomly underwent a
short direction change for 130ms. The monkey had to report a direction change in the target RDP within a response time interval of 150–650 ms
by releasing the lever to receive a reward.

generated distribution to set the 95% confidence intervals
for chance performance. In this paper, state-dependent dif-
ferences were computed using a repeated-measures analysis
of variance (ANOVA), followed by post-hoc Bonferroni test
for multiple comparisons (Figs. 2(d), 6). Permutation test
with false discovery rate (FDR) correction was employed for
examining the difference of curves among sensory conditions
(Fig. 3). Additionally, two-sidedWilcoxon rank-sum test was
performed for computing the difference between the two
conditions with FDR correction for multiple comparisons
(Figs. 4, 7).

III. RESULTS
The feasibility of the motion direction decoding was evalu-
ated based on LFP signals recorded from the MT area of a
macaque monkey in a target change-detection task. During
the task, the monkey had to detect a brief motion direction
change in one of two moving RDPs (target stimulus) and to
ignore the other one (a distracter). The RDPs could move in
one of the possible eight directions (0◦–360◦ with steps of
45◦), and both had the same direction in each trial. In half
of the trials, the monkey was cued to attend to the target
stimulus, inside the RF, and in the other half of trials, it was
cued outside the RF.

For the decoding of LFP-directional information, each trial
was analyzed on a period between 200 ms to 1200 ms after
stimulus onset. In this processing, there were a total of 28
possible pairs of motion directions (0◦ vs. 45◦, 0◦ vs. 90◦, 0◦

vs. 135◦ . . . 270◦ vs. 315◦), depending on the eight different
target directions.

A. THE LFP DIRECTION OF MOTION INFORMATION
ANALYSIS
We investigated how the difference in LFP-power changed
as a function of the target direction differences. To evaluate

this case, first, LFP-power was calculated in each of the eight
directions during the period of 200–1200 ms after stimulus
onset within the frequency range of 1–120 Hz for each trial.
Then, these values were averaged across trials and sites corre-
sponding to each direction. Second, the difference in powers
of all 28 pairs of directions and across frequency bands were
computed separately.

To assess the quantitative magnitude of differences, the
base-10 logarithm of the ratio between the powers in two
target directions was computed during all trials relevant to
each direction pair. Then, these relative powers (i.e. log-ratio)
were averaged across trials and recording sites. To present a
smoothed outcome, the PSD and relative power were con-
volved with a Gaussian function (σ = 2) (Fig. 2). Exam-
ples of the LFP signal power (mean ± SEM) in a frequency
range for direction 0◦ versus four target directions (45◦, 90◦,
135◦, and 180◦) are illustrated in Fig. 2(a). As observed, the
power curves corresponding to the two directions diverge in
specific frequency ranges.

Fig. 2(b) shows examples of mean relative power across
frequencies for direction 0◦, compared with other directions.
Positive values of the average relative power indicate that
the power amplitude of direction 0◦ is stronger than the
other direction. Examples of time-frequency maps of the
LFP-power differences between directions of 0◦ − 45◦ and
directions of 0◦ − 180◦ are illustrated in Fig. 2(c). The plot
showed clear differentiations in terms of information content
between different time courses and frequency bands.

The result is evident that the difference in LFP-power in
the high-gamma significantly increases compared with other
sub-bands. Also, the greatest amount of direction-related
information was provided in the time periods of 200-400 ms
and 850-1200 ms.

To assess the effect of motion direction on LFP-
power, repeated-measures ANOVA was used, followed by
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FIGURE 2. LFP analysis for the different target directions at different frequencies. a. The plots show the normalized mean LFP power for the
direction 0◦ versus four target directions (out of 7) located inside the RF for the recording sites (n = 72). b. The mean relative power, calculated as
the base-10 logarithm of the ratio between the powers in the two target stimuli. The relative power (log–ratio) was computed during trials of two
directions and then averaged across trials and sites. c. Representative time-frequency maps of the LFP-power differences between directions
of 0◦-45◦, and directions of 0◦ − 180◦. The data were aligned to the starting point of the stimulus (t = 0 ms) and analyzed over the period
of 0-1200ms. d. Mean LFP-power difference for direction differences of 45◦, 90◦, 135◦ and 180◦ across frequency ranges. Star indicates significant
difference between frequency bands in each sensory condition (∗p < 0.05, ∗∗p < 0.001, repeated measures ANOVA, with a post-hoc Bonferroni’s
multiple comparison test). Error bars indicate SEM.

post-hoc Bonferroni test with frequency bands (delta,
. . . high-gamma), spatial-attention, and direction differences
(45◦, 90◦, 135◦, 180◦) as subject factors (Fig. 2(d)). Quanti-
tative analyses of power differences revealed significant main
effect of direction difference (F(3,699) = 30.67, p� 0.0001).
Repeated-measures ANOVA also showed significant fre-
quency bands × direction difference interaction (F(15,699) =
23.36, p� 0.0001), as well as a spatial-attention× direction
difference interaction effect (F(3,699) = 24.18, p � 0.0001).
As shown in Fig. 2(d), the difference in LFP-power in the
high-gamma range significantly increases, compared with
other sub-bands for all direction differences across attention
conditions (repeated-measures ANOVA with post-hoc Bon-
ferroni test).

To examine the relationship between the angular difference
and difference in power, the power differences between each
direction pair were computed in the gamma frequency range.

The absolute value of these differences was then averaged
separately across direction pairs in which the angular dif-
ferences between directions pairs were 45◦, 90◦, 135◦, and
180◦ (Fig. 3). It is visually evident that increasing the direc-
tion pair differences leads to significant differences in high-
gamma power. According to Fig. 3, the magnitude of power
differences for a 180-degree difference is significantly greater
than a 45-degree difference in directions.

B. DECODING OF MOTION DIRECTION
This paper mainly focused on the discrimination of target
motion direction within every possible pair of directions.
To investigate which LFP frequency bands contained the
maximum motion directional information, the PSD of each
sub-band was computed as a feature in every single trial.
Then these features were fed to an SVM classifier with an
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FIGURE 3. LFP-power in the direction differences configurations in the
high-gamma band (60–120 Hz). The curves represent power differences
as a function of direction differences. Results are shown for the various
direction differences (45◦-blue, 90◦-red, 135◦-black, and 180◦-green).
Colored lines on top of the traces indicate significant differences in
power between conditions, 45◦–90◦, cyan; 90◦–135◦,
magneta;135◦–180◦, orange (permutation test, FDR corrected for multiple
comparisons). Error bars indicate SEM.

FIGURE 4. Decoding performance of motion direction in different
frequency bands at each spatial attention condition. The star indicates a
significant difference in decoding performance between inside the RF and
outside the RF (∗p� 0.001, two-sided Wilcoxon rank-sum test; #p < 0.05,
FDR corrected for multiple comparisons). Error bars indicate SEM.

SMO solver and an RBF kernel function for motion direc-
tion decoding. First, each pair of directions was classified
separately by the SVM classifier using the 10 × 10-fold
cross-validation procedure. Then, the average classification
accuracy in all 28 possible pairs was expressed as the decod-
ing performance value, and this process was examined for
each sub-band, and also at each target location condition
(inside the RF/outside the RF).

The results indicated that the classification performance in
all frequency sub-bands was significantly higher than chance
level (permutation test, p < 0.05). It was found that the
high-gamma band reached the highest performance in decod-
ing motion direction, compared with other frequency bands
(88.11% ± 2 (SD)) (p < 0.05, Wilcoxon rank-sum test,
FDR corrected for multiple comparisons; Fig. 4). Moreover,
the next highest performance was obtained in the beta and

FIGURE 5. Decoding performance in the high-gamma frequency band
(60–120 Hz), in direction difference configurations. Decoding accuracy
was calculated for all pairs with direction differences of 45◦, 90◦, 135◦
and 180◦ in each behavior condition. The star denotes a significant
difference in performance between conditions (two-sided Wilcoxon
rank-sum test). Error bars indicate SEM.

low-gamma bands with 83.48% ± 3 (SD) and 75.88% ±
3 (SD), respectively, which were significantly smaller than
the highest performance in the high-gamma band (beta &
high-gamma band, p� 0.0001, low- gamma & high-gamma
band, p� 0.000001, two-sidedWilcoxon rank-sum test). It is
thus suggested that the high-gamma band contains valuable
information for the direction of motion decoding.

To examine how spatial attention affected motion direction
decoding, significant differences in decoding performance
were evaluated separately between two target positions across
frequency bands. It was observed that only in the high-gamma
band, the direction decoding in these two position conditions
differed significantly (inside RF: 88.11% ± 2 (SD), outside
RF: 84.66% ± 2 (SD), p � 0.001, two-sided Wilcoxon
rank-sum test) (Fig. 4). It is therefore inferred that the decod-
ing performance of the motion direction in the high-gamma
band was affected by spatial attention. Based on the obtained
results, since the highest decoding performance was achieved
in the high-gamma range (and only in this frequency band),
the effect of location on decoding performance can be
observed; decoding performance in all pairs of directions
has therefore been evaluated in this sub-band. By decoding
analysis in the high-gamma band, the highest and lowest
performance, reached at angular differences 180◦ (90◦ vs.
270◦, in RF / out RF) and 45◦ (0◦ vs. 45◦ in RF & 0◦ vs.
315◦ out RF), respectively. Furthermore, it was found that
attention inside the RF is associated with increased decoding
performance of all direction pairs in this frequency sub-band
(Table 1).

To examine the effects of the direction difference on the
decoding performance, all cases with direction differences
of 45◦, 90◦, 180◦, and 135◦ were analyzed. As expected,
when the two targets had 180◦ direction differences, decod-
ing performance was significantly higher than when the
direction differences were 45◦ (inside RF: 45◦-difference,
85.24% ± 2 (SD); 180◦-difference, 91.74% ± 2 (SD), p
� 0.0001, two-sided Wilcoxon rank-sum test). It is inferred
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FIGURE 6. Time course of the single-trial decoding performance. The data were aligned to the onset of the stimulus (t = 0 ms) and
analyzed in the period 0-1200 ms. The blue and red curves illustrate the temporal dynamics of motion direction decoding of LFP signals
for attention inside the RF and attention outside the RF, respectively. Decoding accuracy was computed based on the high-gamma
power for analysis windows of 100 ms (a) and 200 ms (b). ‘‘#’’ denotes significant differences in performance between time intervals.
The solid circle, star, and plus show significant differences in performance between two attention conditions (repeated-measures
ANOVA with a post-hoc Bonferroni’s multiple comparison test). Error bars indicate SEM.

TABLE 1. Performance of high gamma-band power (60–120Hz), in motion direction decoding. Decoding accuracy was calculated in each possible
direction pair and each spatial attention condition (Attention In, cyan; Attention Out, gray). The maximum and minimum performance values are shown in
yellow and magenta boxes, respectively.

that the greater the angular difference in the pair of directions,
the higher the decoding performance (Fig. 5).

C. TIME COURSE OF DECODING PERFORMANCE
To examine the temporal evolution of decoding performance,
classification accuracy was estimated using data within slid-
ing 100 and 200 ms time windows, starting immediately
from stimulus onset. In each time step, the power spectral
density of the high-gamma band was calculated across trials
in each direction. These PSDs are considered as features
which can discriminate motion direction. Therefore, the num-
ber of extracted features was 60 for each window size. For
classification, the SVM was utilized with SMO solver and

RBF kernel function (σ = 3). Classification performance
was obtained by averaging all accuracy values (28 possible
direction pairs), calculated in both spatial positions (inside
the RF / outside the RF).

To determine statistical differences between classification
performances for two attention conditions across time inter-
vals, repeated-measures ANOVA with post-hoc Bonferroni’s
multiple comparison test was performed. Time-course analy-
sis showed that there was a significant main effect of time
intervals (window size: 200 ms, F(5,390) = 71.80, p �
0.0001; window size: 100 ms, F(11,858) = 95.3, p� 0.0001).
Post-hoc analysis indicated a significant difference in perfor-
mance between two attention conditions during all time inter-
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vals for 200 ms window size; for a window size of 100ms,
significant differences were observed across time intervals
except intervals of 0-100 ms and 1000-1100 ms (Bonferroni
post-hoc test).

It was found that the lowest performance was obtained at
time intervals of 0-100 ms (p� 0.0001, Bonferroni post-hoc
test; Fig. 6(a)) and 0-200ms (p < 0.001; Bonferroni post-hoc
test; Fig. 6(b)) after the stimulus onset, for window lengths
of 100 ms and 200 ms, respectively. This is probably due to
the delay in MT neuronal response, since it takes time for the
neuron populations to propagate the response at the extrinsic
terminators [64]. In addition, performance reached its peak in
the first time window, starting from 200 ms after the stimulus
onset, which is evident in Fig. 6(b) (p � 0.0001, Bonfer-
roni post-hoc test). Also, the performance almost remained
constant in a time interval of 400-800 ms after the target
presentation until prior to change onset. Moreover, it was
observed that performance increased during the change epoch
occurring about 815 ms after stimulus onset (the starting time
of the change epoch varied across trials).

The results show that there was a significant difference
in performance between window lengths of 700-800 and
800-900 ms (p < 0.01, Bonferroni post-hoc test; Fig. 6(a)),
and also between the window lengths of 600-800 and 800-
1000 ms (p � 0.0001, Bonferroni post-hoc test; Fig. 6(b)).
This could be due to the onset of a change in stimulus
direction. To compare the performance results in all windows
fitting within the time interval (0-1200 ms), the maximal
accuracy values were selected for each window length for
two attention positions. It was observed that applying a win-
dow width of 1000 ms resulted in the highest classifica-
tion performances, while shorter analysis windows led to
performance reduction during the time course (p < 0.05,
Wilcoxon rank-sum test, FDR corrected for multiple compar-
isons; Fig. 7). In general, for each size of the analysis win-
dow, covertly attending to the target direction inside the RF
significantly enhanced decoding performance (p � 0.001,
two-sided Wilcoxon rank-sum test).

D. DECODING PERFORMANCE ANALYSIS BASED ON
FEATURE-RANKING METHOD
It was also examined whether the feature selection method
could lead to improvements in decoding performance, and
which subset of features was more informative for decoding
motion direction. For this analysis, a scalar feature-ranking
method based on the Wilcoxon criterion was utilized, select-
ing optimal informative features to increase classification
accuracy.

Briefly, the PSD of the LFP signal was calculated for fre-
quency bands ranging from 1Hz to 120 Hz for each direction.
This provided 120 components of the power spectrum, which
was proposed as a classifier input for the direction of motion
decoding. This feature ranking method was applied for each
direction pair. To do this, all features were ranked separately
according to the p-value; then, these features were fed into
the SVM classifier sequentially. At each stage, the average

FIGURE 7. Dependence of the decoding performance on the time window
size. This figure represents the maximal decoding performances for each
window size. The maximum accuracies were obtained for window lengths
of 100 ms, 200 ms, and 1000 ms regarding the time intervals
of 200-300 ms, 200-400 ms, and 200-1200 ms, respectively. Stars denote
significant differences in performance between conditions (∗p� 0.001,
two-sided Wilcoxon rank-sum test; #p < 0.05, FDR corrected for multiple
comparisons). Error bars indicate.

decoding accuracy was computed by applying a 10×10-fold
cross-validation procedure. Finally, according to 28 possible
pairs, the classification accuracy was estimated via the aver-
age accuracy values across all direction pairs.

Fig. 8 shows the mean decoding accuracy of the Wilcoxon
criterion-based feature selection algorithm for an increasing
number of features across two spatial attention conditions.
As seen in Fig. 8, for the target located inside and outside
the RF, the numbers of selected features regarding maximum
classification accuracy were 88 and 103, respectively. For
attention inside the RF, performance with and without feature
selection was 91.76% ± 1.7 (SD) and 87.1% ± 1.6 (SD),
respectively. For Attention outside the RF, performance with
and without feature selection was 87.13% ± 1.7 (SD) and
83.71% ± 1.6 (SD), respectively (Fig. 8). It is obvious that
this feature selection algorithm improved the classification
performance across both behavior conditions (all features
& selected features: inside the RF & outside the RF, p �
0.0001, two-sided Wilcoxon rank-sum test).

In this paper, selecting a lower number of features is pre-
ferred to slightly higher improvement in performance. There-
fore, the optimal trade-off between the number of selected
features and classification accuracy is provided by the fol-
lowing equation:

Error %1 =

(
Accuracy(Max) − Accuracy(i)

Accuracy(Max)

)
< 0.01 (1)

where i indicates the number of features. According to this
equation, the optimal subset of features is selected when the
normalized difference between the average accuracy of these
selected features and the maximum average accuracy is less
than 1%. Consequently, the numbers of selected features for
attention inside the RF and outside the RF are 62 and 80,
respectively.
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FIGURE 8. Feature selection analysis-based decoding performance. The
curve illustrates the decoding accuracy as a function of selected features,
with increasing number of features in two behavior conditions. The
square (cyan) and the solid circle (yellow) in each graph show the
maximum performance and performance value corresponding to
optimally selected features, as calculated with equation (1). Error bars
indicate SEM.

Noticeably, with the number of optimally selected features,
the average decoding performance across 28 direction pairs
for the target position inside the RF was significantly higher,
compared to the target position outside the RF (inside the RF:
90.85%± 2 (SD) & outside the RF: 86.26%± 1.8 (SD), p�
0.0001, two-sided Wilcoxon rank-sum test) (Fig. 8).

E. THE CONTRIBUTION OF FREQUENCY SUB-BANDS TO
SELECT INFORMATIVE FEATURE
The optimally selected features were evaluated for deter-
mining frequency bands containing informative features in
decoding motion direction. Thus, according to the optimum
number of features, a total of 1736 features and 2240 features
were obtained across 28 directions pairs for inside and outside
the RF, respectively. The participation ratio of each frequency
band in the classification, based on the number of selected
features, demonstrates that the gamma band had the highest
contribution out of all frequency bands in decoding motion
direction (Fig. 9). This is consistent with the study’s previous
observations, which showed the high direction-related infor-
mation content of the gamma band in decoding performance
(Fig. 4).

IV. DISCUSSION
This study investigated whether it was possible to decode
target motion direction with reliable performance by using
LFP recorded from the MT visual cortex. For this purpose,
the animal had to attend to the target stimulus, which was
moved in one of the possible eight directions (0–360◦ with
steps of 45◦), placed inside or outside the RF during the
target change-detection task. The outcomes indicated that
the mean difference of LFP-power in the high-gamma band
for all 28 pairs of motion direction was stronger, compared
with those observed in lower frequency ranges (Fig. 2).

FIGURE 9. The plot depicts the participation ratio of the different
frequency bands in motion direction decoding. The participation ratio in
the frequency range of 1-120 Hz was calculated according to the
repetition of features regarding each frequency sub-band (from among
1736 selected features for attention inside and 2440 selected features for
attention outside the RF).

In agreement with the present results, previous findings have
reported LFP gamma-power modulation during the motion
direction detection task [28]. It was also found that, as the
angular difference between the direction pairs increases,
the magnitude of these differences in the high-gamma band
also enhances (Fig. 3).

In the next step, the motion direction over a wide range
of frequencies was decoded utilizing LFP-power, where the
best performance across frequency bands was obtained in
the high- gamma band in both spatial attention conditions
(Fig. 4). It demonstrated that high-gamma power provides
valuable information regarding the prediction of motion
direction. Previous studies have demonstrated gamma-band
synchronization with spatial and feature attention during
visual processing [26], [27], [38], [65], [66]. Additionally,
the functional role of high-frequency oscillations has been
reported in the allocation of attention decoding [58], [62],
spatial attention decoding [57] in the visual cortex area, and
also in performance enhancement of movement directions
decoding in the motor cortex [49], [50]. The significant per-
formance of the high-gamma band might be due to the high
correlation between LFP and spike responses, in terms of
direction tuning across visual attention [28], [67]. In line
with this hypothesis, several studies have reported functional
connections between these neurophysiological signals in dif-
ferent cortical areas [27], [58], [68], [69].

The present study’s observation further reveals that when
attention is directed toward a stimulus located inside the
RF, the classification accuracy in the high-gamma band is
significantly higher than when the stimulus is located out-
side the RF, suggesting spatial attention efficacy on motion
direction decoding in the visual system. This observation is
in accordance with previous studies indicating that decoding
the matching status of two directions from the spike activity
was affected by the position of spatial attention in the lat-
eral intraparietal area [46]. Supporting this finding, previous
investigations have described similar observations concern-
ing the impact of spatial attention on perceptual performance
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during the process of directing attention into the neurons’
RF [35]–[37], and the attention-dependent modulation of
gamma frequency LFPs in the visual cortical areas [26]–[29].

Along with the above deductions, the present results also
illustrated that performance tended to increase in relation to
the increasing angular difference of direction pairs, so that
decoding performance was best for two targets with 180◦-
discrepancies (Fig. 5). This is congruent with other studies
reporting the dependence of discriminating angular separa-
tions on directions differences using the single-unit activity
of MT area neurons [70].

The comparison of performances based on temporal win-
dows of different lengths in high-gamma frequency allowed
the inference to be made that using longer analysis windows
results in an increase in information content and, conse-
quently, an improvement of decoding performance. Thus,
decoding accuracy is maximal within analysis windows of
1000 ms width in both attention conditions (Fig. 7). Fur-
thermore, attentional information is most apparent in the
time interval starting from 200 ms after the onset of target
presentation.

In the current study, it was derived that using optimally
selected features leads to improvements in the decoding per-
formance of motion direction in visual attention (Fig. 8).
It was observed that the gamma band contains the highest
proportion of these features, compared to other frequency
bands, in target direction decoding (Fig. 9). This indicates
the high information content in the gamma band, which is
compatible with attentional modulation observations in this
frequency range [26]–[28].

V. CONCLUSION
This study demonstrated the ability for reliably decoding
motion direction using LFP signals from the MT area of the
macaque visual cortex during spatial-based attention task.
It was found that the best performance was achieved in
gamma-frequency oscillations, which reflected a high level of
coded attentional information in this frequency range. Impor-
tantly, the results indicated the influence of spatial attention
on target direction decoding, so that directing attention inside
the RF was correlated with improved performance. Overall,
these findings suggest that the visual information of LFP
signals can be utilized for developing cognitive BCI systems.
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