IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 28, 2021, accepted April 27, 2021, date of publication April 30, 2021, date of current version May 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3076833

Building Real-Time Ontology Based on Adaptive
Filter for Multi-Domain Knowledge Organization

JIANHUI ZHOU -, XIAOXIA SONG, YONG LI, YUN GAO, AND XULONG ZHANG

School of Computer and Network Engineering, Shanxi Datong University, Datong 037009, China
Corresponding author: Xiaoxia Song (sxx1y2002@ 163.com)
This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1701703, in part

by the Natural Science Foundation of Shanxi Province under Grant 201901D111311, and in part by the Science and Technology
Program of Datong City under Grant 2019165.

ABSTRACT Multi-domain knowledge organization is an effective way of correlating cross-domain knowl-
edge or intercommunicating between cross-domain knowledge systems. As a knowledge organization model,
ontology is widely used in information and management systems. To organize multi-domain knowledge,
ontologies in different domains correlate to each other directly or indirectly. Generally, matching and
integrating ontologies of different domain into a large scale ontology is the common way of directly
correlating, while building a top level ontology is the main method for indirectly correlating. As the scale
of domain ontologies get larger and larger, both direct and indirect methods become more difficult and
time-consuming. In order to improve the organization of multi-domain knowledge, this paper presents a
novel ontology organization method to build real-time ontology by adaptive filter while user presenting
requirements. Only the entities related to user requirements are integrated, while building a real-time
ontology. Firstly, the method searches domain ontologies that are related to user requirements. Then sub-
ontologies are extracted from search results by filter, and they are integrated into a new ontology under
direction of filter, i.e. real-time ontology. Finally, four criteria are introduced to evaluate real-time ontology.
The experiment results illuminate that real-time ontology perform excellently in accuracy, recall, correctness
and especially time-consuming.

INDEX TERMS Real-time ontology, multi-domain knowledge organization, ontology matching, ontology

integration, knowledge engineering.

I. INTRODUCTION

Knowledge organization is the important research topic in
knowledge engineering. As a knowledge organization model,
ontology defines domain concepts and their relationships,
which can effectively describe semantic information among
concepts [1]. With the rapidly increasing of knowledge and
the development of systems engineering, scale of ontology is
becoming larger and larger, and the requirement of organizing
multi-domain knowledge is increasing. Especially in system
of developing complex product (such as aircraft, vehicle,
watercraft, robot, etc.) [2], multi-domain knowledge organi-
zation is a fundamental tool, which can improve the effective-
ness and efficiency of knowledge management reasonably,
(such as knowledge retrieval, knowledge application, knowl-
edge sharing etc.).

The associate editor coordinating the review of this manuscript and

approving it for publication was Feng Xia

66486 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

There are two typical methods of organizing multi-domain
knowledge by ontology. One is to integrate each domain
ontology into an ontology who has lots and lots of con-
cepts and relationships [3]. This integrated ontology was
named as super-large ontology (SLO) in this paper. The other
is to build an ontology who has higher level concepts of
each domain, named as top-level ontology (TLO), by which,
domain ontologies can be correlated to each other [4].

Integrating each domain ontology into SLO is a very time-
consuming process, because the scale of SLO is too large.
Furthermore, the larger the scale of SLO is, the lower accu-
racy and recall rate of matching ontologies are, and ontology
matching is the key method of generating SLO.

Building TLO is a manual process normally. This pro-
cess requires the participation of multiple domain experts.
Maintaining and updating TLO is difficult and high-cost
particularly. To organize multi-domain knowledge, TLO and
the domain ontologies are applied together. Instantaneity of

VOLUME 9, 2021

https://orcid.org/0000-0002-6318-1393
https://orcid.org/0000-0002-9252-7146
https://orcid.org/0000-0002-8324-1859

J. Zhou et al.: Building Real-Time Ontology Based on Adaptive Filter

IEEE Access

application is low, because TLO and each domain ontology
need to be matched at the time of application.

To further improve multi-domain knowledge organization
and avoid the disadvantages of SLO and TLO, this paper
presents a novel ontology model and a method of building
it, whose name is real-time ontology (RTO). At the time
of application, RTO is generated automatically according to
the task. In this process, the entities related to the task are
selected, and then they are integrated into RTO. RTO has
higher instantaneity, higher correctness, acceptable complete-
ness, and it is low-cost particularly.

The main contributions made in this paper are as follows:

o The novel ontology model, i.e. RTO is presented for
multi-domain knowledge organization.

o The method of building RTO based on adaptive filter is
presented and verified.

o The relevancy decay function and adaptive threshold are
presented to improve the method.

The rest of the paper is organized as follows: Section II
describes the related works; Section III clarifies the knowl-
edge organization models including SLO and TLO, and
presents RTO; Section IV elaborates the process of building
RTO based on adaptive filter; Section V shows the exper-
imental results, and evaluates the RTO; finally, Section VI
draws the conclusions.

Il. RELATED WORKS

In the process of building RTO, technologies such as ontology
search, sub-ontology extraction, ontology matching and inte-
gration were implemented successively. In this section, the
research review of each technology is elaborated as follows.

A. ONTOLOGY SEARCH

As a semantic ontology search system, Swoolge contained
variety patterns of search configuration [5]. In general
pattern, feature vector was used to formalize ontologies.
Swoolge adopted the traditional inverted index model to
index the entities in ontology. Scores of each ontology in
query result set were determined by calculating TF/IDF of
feature vector in inverted index model [6]. OntoKhoj was the
API whose functions included building ontology, searching
ontology, visualizing ontology, and matching ontology [7].
In the function of searching ontology, OntoKhoj took Rain-
bow Tool as classifier, by which the descriptive texts of
ontology were classified to several categories [8]. OntoKhoj
calculated the similarities between search keywords and cat-
egories to determine the scores of each ontology. OntoSearch
was an ontology search system mainly for the ontology
resource in web [9]. It deployed the core components of
Google search engine. OntoSearch described ontology as
a set of 3-tuples, and saved all terms of 3-tuples. With
matching the terms and search keywords, target 3-tuples
were return to user. In OntoSearch, the search results, i.e.
target 3-tuples were merged by logical rules and visual-
ized as a graphic comprehensibly [10]-[12]. On this basis,

VOLUME 9, 2021

researchers developed OntoSearch2 which improved some
functions of OntoSearch [13]. Distributed memory was uti-
lized in OntoSearch? to enhance the efficiency of saving
3-tuples [14]. Class and Individual in ontology were saved in
different databases. OntoSearch2 introduced fuzzy DL-Lite
to reason 3-tuples of ontology, and interacted with external
semantic resource [15]-[18]. SQORE was another ontology
search engine based on 3-tuple. In SQORE [19], external
semantic resource was introduced as references. Using the
knowledge in references, the set of search keywords were
extended to a new superset who had more search key-
words. SQORE conversed search keywords and ontology to
a set of 3-tuples, and SQORE proposed a method of cal-
culating the similarity between 3-tuples. Scores of search-
ing ontology were determined by calculating the similarity
between the 3-tuples of keywords and the 3-tuples of ontolo-
gies [20]-[22].

In general, indexing ontology was efficient to search ontol-
ogy. But in existed methods or systems, only URI, labels,
described text were indexing, which resulted in that the
accuracy and recall rate of methods were low. In this paper,
to improve the performance of searching ontology, more
information of entities in ontology were indexed for searching
ontology, such as its type, depth, number of relationships, and
frequency of labels.

B. SUB-ONTOLOGY EXTRACTION

Extracting sub-ontology is the approach to deal with large-
scale ontology and acquire key information in ontol-
ogy [23]-[25]. It eliminates lots of entities in ontology that
are irrelevant to the user requirements. Bhatt proposed a
distributed method of extracting sub-ontology [26]. Accord-
ing to user requirements, domain experts collaboratively
annotated entities in ontology to required entities or not
required entities. The required entities were regarded as ver-
texes. Edges between vertexes were generated by the algo-
rithm proposed by Bhatt. The result of integrating vertexes
and edges was the extracted sub-ontology. In [27], a grid
application service framework for extracting sub-ontology
was proposed, which consisted of the client, server, and
grid layers. The process of extracting sub-ontology included
two phases. In separation phase, user annotated required
node, not required node, and redundant node on client layer.
In optimization phase, sub-ontology extraction mechanism
removed, inserted, and moved entities in turn on server layer.
The results and the based ontology were stored on grid layer.
Flahive proposed Ontology as a Service (OaaS) [28], in which
ontology was reused and extracted as a service. This work
identified four sub-ontology operations whose names were
extend, add, merge, and replace [29]-[32]. In each opera-
tion, sub-ontology extraction was necessary. The algorithm
of sub-ontology extraction was presented in [33], it had two
method: maximum extraction method and minimum extrac-
tion method. The maximum extraction method aimed to
extract as many entities from the source ontology as possible
in the initial stage of removing requirements to revisit the

66487

IEEE Access

J. Zhou et al.: Building Real-Time Ontology Based on Adaptive Filter

source ontology. The minimum extraction method aimed to
extract as few entities as possible in the initial stage but
may require further services from the cloud. In these two
methods, entities in the source ontology were labeled to
selected, deselected, and undecided firstly, and then entities
were selected or deleted by the consistency rule they made.
As mentioned above, the existed methods of extracting
sub-ontology generally needed domain experts or users to
annotate the entities initially. But the process of building RTO
is accomplished automatically. Refer to our previous work
[34], and an adaptive filter is used in this paper to eliminate
the entities that irrelevant to user requirements. Based on
adaptive filter, building RTO automatically can be realized.

C. ONTOLOGY MATCHING AND INTEGRATION

The essence of ontology matching and integration is to
generate alignment between ontologies [35]. According to
alignment, ontologies can be integrated into a new ontology.
Agreement Maker Light (AML) was an automated ontol-
ogy matching system that was developed with both exten-
sibility and efficiency in mind [36], [37]. AML focused on
the lexical similarities between entities, and concerns with
efficiency. It was suitable for dealing with large-scale ontol-
ogy matching problem. ALIN was an ontology matching
system, which generate alignment interactively [38]. ALIN
utilized WordNet as the external resource, and took lin-
guistic matching technology to calculate similarity between
entities. Initial correspondences were generated automati-
cally, and then interactions were made with the experts to
modify correspondences. As an ontology matching system,
LogMap [39], [40] is efficient and scalable, and it utilized
several kinds of elements for its scalability, which include
lexical indexation, logic-based module extraction, propo-
sitional Horn reasoning, axiom tracking, local repair, and
semantic indexation. In matching process, sophisticated rea-
soning and repair techniques were deployed to minimize
the number of logical inconsistencies. POMap consisted of
semantic matcher, syntactic matcher, and structural matcher
[41]. In the initial phase, ontologies were indexed and pre-
processed to input POMap, and then POMap implemented
semantic matcher and syntactic matcher sequentially to find
correspondences between entities. On the basis of these cor-
respondences, structural matcher was implemented to extend
them. Lily utilized several ontology matching techniques to
facilitate alignment [42]. It deployed specific algorithms to
match ontology, which included Generic Ontology Match-
ing, Large-scale Ontology Matching, and Instance Ontol-
ogy Matching. Alignments were improved and verified by
ontology matching debugging and tuning in Lily. As the
main technique in Lily, Semantic sub-graph was developed
to capture the real meanings of ontology entities, and reduce
the negative effects of the matching uncertainty.

In process of building RTO, sub-ontologies were matched
and integrated into a new ontology, i.e. RTO. The scale
of these sub-ontologies was small. To satisfy the fea-
tures of RTO, appropriate method of ontology matching

66488

and integration should be automatic, efficient, and precise.
According to results of OAEI 2020 [43], AML was adopted
in this paper, who was an automatic method and low con-
sumption, and whose accuracy and recall were high enough.

IIl. PRELIMINARIES

A. DOMAIN ONTOLOGY

An ontology is represented as a set of entities who contains
concepts, relationships, and individuals. It can be denoted as
(C, R, I), where C, R, and I are the sets of concepts, rela-
tionships, and individuals, respectively. If entities in ontology
have common discourse domain, the ontology is named as
domain ontology. It can be denoted as follows:

DO ={C,R,I|C,R,I € D} 1)
where DO is a domain ontology, D is the discourse domain.

B. SUPER-LARGE ONTOLOGY (SLO)

SLO is an ontology that integrates multiple domain ontolo-
gies. The mainly technologies of generating SLO are ontol-
ogy matching and ontology integration. It is generally an
automatic or semi-automatic process. SLO application in
multi-domain knowledge systems is shown in Fig. 1. SLO
can be denoted as follows:

SLO =DO0; ® DO, ® - -- ® DO, ()

where DO; are domain ontologies who belong different dis-
course domains, and ® means the integrated operation.

Domain ontologies

Knowledge resource
organization model DO,
DO% o’{%%
®)
e

Ontology match and integration

support

FIGURE 1. Organizing knowledge by SLO and its application.

C. TOP-LEVEL ONTOLOGY (TLO)

TLO is an ontology whose entities contain the interdisci-
plinary core concepts. Building TLO is generally a manual
process, which is accomplished by domain experts. TLO
can be regarded as the bridge that connects each domain
ontologies. As shown in Fig. 2, TLO and domain ontologies
are applied together in multi-domain knowledge systems. For
simplicity, in this paper, TLO and domain ontologies are
considered as a whole object, who is denoted as follows:

TLO = {TLO, DO, DO, - - - , DO,} 3)

where DO; are domain ontologies who belong different dis-
course domains.

VOLUME 9, 2021

J. Zhou et al.: Building Real-Time Ontology Based on Adaptive Filter

IEEE Access

Domain ontologies

Domain experts resource

E],

- ,
- S support x/, o ’ ﬂ
knowledge ‘ Rl S S ‘

Provide

Knowledge organization model

FIGURE 2. Organizing knowledge by TLO and its application.

Domain ontologies
resource

Input and
drive

Engine of
building RTO

support

Know ledge
or ion model

FIGURE 3. Organizing knowledge by RTO and its application.

D. REAL-TIME ONTOLOGY (RTO)

RTO is the ontology model proposed in this paper. As shown
in Fig. 3, unlike SLO and TLO, user requirements are the
input of building RTO, and RTO is an ontology who sat-
isfies user requirements and is lightweight. It only retains
the entities in domain ontologies who are related to user
requirements. In each domain ontology, the entities satisfying
user requirements are the sub-set of it. This sub-set of domain
ontology are named as sub-ontology in this paper. RTO is the
result of integrating sub-ontologies extracted from multiple
domain ontologies. Compare with SLO and TLO, the advan-
tages of RTO are summarized in Tab. 1, and RTO is denoted
as follows:

RTO = sub(DO1) ® sub(D02) ® - - - ® sub(DO,,)
sub(DO) = {Cs, Rs, Is|Cs € C,Rs C R, Is C I}

where Cs, Rg, and Ig are sub-set of C, R, and I in DO,
respectively.

“

IV. METHOD OF BUILDING RTO BASED ON ADAPTIVE
FILTER

RTO is built at the time of user presenting requirements. User
can present requirements in several ways, such as inputting
text, selecting work nodes in workflow, designing product
online, analyzing data in workspace, etc. These presented
requirements are transformed to a set of domain terms that is
input of building RTO, but the process of which is not focused
on in this paper. So, for simplicity, user requirements in this
paper are regarded as a set of domain terms, which is denoted
as follows:

T={t,t -, t,))

where ¢; are domain terms, T is user requirements, i.e. inputs
of building RTO.

VOLUME 9, 2021

TABLE 1. Building and application feature of SLO, TLO, and RTO.

knowledge

o SLO TLO RTO
organization model

before before at the time of

build time

application application application
build manner automatic manual automatic
consumption high - low
difficulty of update great great no need update
efficiency of low low high

application

“ Searching ontologies Step 1 = Lo

Related domain ontologles

7777777777777777777777777777777777

i
I

i

i

i

|

I

|

|

I

I

|

|

I

i i
| i
I i
I i
I |
I |
I i
I |
I i
I |
I i
! !
| present !
i I
! I
i I
! User input | 1
! requirements drive |
| I
! |
| I
! |
I response request I
! |
i i
I i
I i
I |
I i
I i
I |
I |
I |
| |
I i
I |
| i
! !
| I
! !
| I
! I
| I
! |
| !
|

! |
! |
| I
!]

impact
extracting sub-ontologies | Step 2 <=

2

Knowledge system

application
environment

Engine of
building RTO

FIGURE 4. Framework of building RTO based on adaptive filter.

The framework of building RTO is illustrated in Fig. 4.
As shown in it, the process includes three key
steps:

o Step 1: Searching related domain ontologies, and gener-

ating filter to impact or direct the subsequent steps.

o Step 2: Extracting sub-ontologies from the related

domain ontologies by filter.

o Step 3: Matching the sub-ontologies, and merging them

into RTO under the direction of filter.

The filter mentioned above is a set of 4-tuples.
A 4-tuple contains the URI of related domain ontology,
degree of importance of related domain ontology (Dol),
relevancy decay function (f-decay), and the threshold of
relevancy (8). The filter is denoted as follows:

Filter = {F(DOy), F(DO,), - - - , F(DO,)}

6
F(DO;) = (URL;, Dol;, f-decay;, 6;) ©

Dol equals to the score of domain ontology which is cal-
culated in Step 1, and f-decay is determined by Dol.

The pseudo-code of the framework is introduced in Algo-
rithm 1. Each step will be elaborated in the subsequent
sections.

66489

IEEE Access

J. Zhou et al.: Building Real-Time Ontology Based on Adaptive Filter

ontologies

{thermodynamics(0.9, 0.625, 0.36, 0.83); ‘
mechanics(0.9, 0.75, 0.45, 0.72); ==«+-* h

{aerodynamics(0.9, 0.5, 0.65, 0.9); ‘
mechanics(0.9, 0.42, 0.38, 0.63); *=---*)

FIGURE 5. Example of domain ontology index.

FIGURE 6. Example of entity depth in ontology.

A. STEP 1: SEARCHING RELATED DOMAIN ONTOLOGIES
The target of this step is to search the domain ontologies
which are related to the set of domain terms and generate
filter. It is the key element that calculating the scores of
related domain ontologies. Domain ontologies were indexed
to improve the efficiency of this step, in which the weights of
entities in domain ontology were calculated.

To calculate the weights of entities in ontology reason-
ably, four kinds of information about entities were utilized,
which are type, depth, number of relationships, and fre-
quency of labels. For simplicity, in this paper, the weights
of them are denoted as WoT, WoD, WoR, and WoF, respec-
tively. As shown in Fig. 5, e.g., combustor was an entity in
domain ontology namely thermodynamics, and 0.9, 0.625,
0.36, 0.83 were the WoT, WoD, WoR, and WoF values of
combustor in thermodynamics, respectively.

In domain ontology, there are three types of entities,
namely concept, relationship, and individual. Generally, the
higher the level of abstraction is, the better the generalization
ability is, and the more important the entities are. So, the
importance of concept > relationship > individual, and WoT
is valued as formula (7). 0.5, 0.6, 0.9 are determined by
experience.

0.5 iftypeofris/
WoT(tr) = 1 0.6 if type of ¢ is P (7)
0.9 iftypeoftisC

The depth of entities reflects their scope of description in
domain ontology. The lower the depth is, the more represen-
tative the entities are, and the more importance they are. WoD
is calculated by formula (8).

depth,,, — depth(z)
depth
where ¢ is label of an entity; depth(?) is the depth of ¢ in

ontology; and depthpax is the maximum depth in ontology,
e.g., as shown in Fig. 6, depth(?) is 3, and depthp,y is 4.

WoD(t) =

®)

max

66490

In domain ontology, if an entity had a good deal of relation-
ships to other entities, it is very important for the ontology.
According to this idea, WoR is calculated by formula (9).

WOR(H) = (1) x \[(S r(t)?) [©)

where ¢ is label of an entity; r(¢) is the number of relationships
t has; ;s are all entities in ontology; and »n is the number of
all entities in ontology.

In domain ontology, usually, the entities have some
descriptive text to specify itself, i.e. label of one entity may be
presented in descriptive texts of other entities. The frequency
of label of entity in descriptive texts can directly reflects
its importance to domain ontology. WoF was calculated by
formula (10), who referred to TF/IDF of words.

N(@) N(©)

WoF(t) = — x 1
oF(t) N XOgN(Ct)

(10)

where ¢ is label of an entity; N(#) is the number of ¢ in all
descriptive texts; N is the number of all terms in all descrip-
tive texts; N(C) is the number of all entities in ontology;
and N(C}) is the number of entities whose descriptive texts
contain ¢ in ontology.

Notice that, WoR and WoF may bigger than 1. They are
normalized to O-1. But this operation is ignored in formulas
and algorithms.

The comprehensive weight of ¢ is finally determined by
formula (11).

W) = wiWoT(t) + woWoD(¢t) + w3 WoR(¢) + w4 WoF(t)
(11)

where wi, wa, w3, wg are weights of each items. They are
determined by experience generally.

In search phase, the score of related domain ontology is
calculated by formula (12).

score(DO) = i 2:21 W(t) (12)

where #;s are the terms that domain ontology corresponds in
index.

The pseudo-codes of indexing and searching domain
ontologies are introduced in Algorithm 1 and Algorithm 2,
respectively.

B. GENERATING FILTER ADAPTIVELY
If the score of domain ontology was higher, the degree of its
relevancy to user requirements was higher, and it had more
entities related to user requirements. That is, the scale of sub-
ontology extracted from it should be little larger. Therefore,
the core idea of adaptive filter is that the higher the score of
domain ontology is, the slower the decay speed of relevancy
is, and the lower the threshold of relevancy is.

Accordingly, f-decay and § in filter are calculated by for-
mula (13) and (14), respectively. Variable k means the kth

VOLUME 9, 2021

J. Zhou et al.: Building Real-Time Ontology Based on Adaptive Filter

IEEE Access

Algorithm 1 Indexing Domain Ontologies

Algorithm 2 Searching Related Domain Ontologies

Input: domain ontologies (List < Onto > DO)
Output: index of domain ontologies (HashMap < String, List
> index)
/*This algorithm is executed before searching domain
ontologies™/
HashMap < String, List > index //saving the index results
for i = 0 to length(DO):
for each entity e in DOIi]:
term = e.label //label is regarded as the name of entity
onto = DO[i].URI //URI is the unique ID of ontology
calculate WoT, WoD, WoR, WoF of e by (7), (8), (9), (10)
index.key = term
index.value.add(onto)
index.value.add(WoT)
index.value.add(WoD)
index.value.add(WoR)
index.value.add(WoF)
end for
end for
return index

iteration in the process of extracting sub-ontology, and it will
be elaborated in next sections.

fd © 1 4 Dol; 13
— decay; =
. 1+ Dolf
5 (—ol (14)
 exo(Dol
R S

After the filter was generated, f -decay and § will be utilized
to impact the process of extracting sub-ontologies in Step 2.
Dol will be utilized to direct the process of merging sub-
ontologies in Step 3.

C. STEP 2: EXTRACTING SUB-ONTOLOGIES BY FILTER

In the previous section, related domain ontologies user
searched. From which, sub-ontologies are extracted in this
step.

The target of this step is to find the entities related user
requirements in domain ontologies. In one domain ontology,
the entities whose label existed in user requirements are
initialized to start entities, which are added into related set,
and the other entities that have relationships to start entities
are added into candidate set. Entities in candidate set are
moved into related set if the relevancy of between them and
entities in related set is greater than threshold, and they are
taken as new start entities. Related set is updated by perform-
ing the above operations iteratively until it does not change
anymore, and final related set is the extracted sub-ontology.
The pseudo-code of this step is introduced in Algorithm 3.
Generally, in the k™ iteration, the relevancy between entities
is calculated by (15).

R(er, ec; k, DO;) = sim(e1, e2) X f — decayi(k) (15)

VOLUME 9, 2021

Input: user requirements (List < String > T');
index of domain ontologies (HashMap < String, List
> index)
Output: a set of related domain ontologies (List < Onto >
relatedDO)
List < Onto > relatedDO //saving the search results
HashMap < String, Double > ontoScore
/Isaving the scores of related domain ontologies
Double wl, w2, w3, wd
for i = 0 to length(T):
for each item x in index:
if T[i] == x.key:
String onto = x key
Double score = wl*x.value.get(WoT) +
w2*x.value.get(WoD) +
w3*x.value.get(WoR) +
wéd*x.value.get(WoF)
ontoScore.key = onto
ontoScore.value = score + ontoScore.value
end if
end for
end for
for each item o in ontoScore:
Onto O = getOnto(o.key) /Ontology can be obtained
by its URI
relatedD0.add(O)
end for
return relatedDO

where er and ec are entity in related set and candidate set,
respectively; R(er, ec; k, DO;) is the relevancy between er
and ec in DO; at the k' iteration; sim(eg, ec) is the similarity
between er and ec, and sim(eRr, ec) was introduced in our
previous work. If R(er, ec; k, DO;) is greater than §; in the
filter, ec is added into related set.

D. STEP 3: INTEGRATING SUB-ONTOLOGIES UNDER
DIRECTION OF FILTER

In the previous section, a set of sub-ontologies was extracted
from the domain ontologies that were related to user require-
ments. In this step, the sub-ontologies are matched firstly
to generate alignments between each pair of them, and then
according to these alignments, the sub-ontologies are inte-
grated into a new ontology, i.e. RTO.

In the first phase, an automated ontology matching method
namely Agreement Maker Light (AML) [36] is deployed to
match sub-ontologies. The time-consumption of AML is low,
and the accuracy and recall rate of AML are great enough. Itis
suitable for building RTO.

In the second phase, as shown in Fig. 7, alignments are
merged into a global alignment, and the entities that exist in
the global alignment are merged into a new ontology, called
the skeleton of RTO; and then, the other entities are added

66491

IEEE Access

J. Zhou et al.: Building Real-Time Ontology Based on Adaptive Filter

Algorithm 3 Extracting Sub-Ontologies by Filter

Input: a set of related domain ontologies (List < Onto >
relatedDO);
user requirements (List < String > T);
Filter (List < 4-tuple > filter)
Output: a set of sub-ontologies (List < Onto > sub_DO)
List < entity > relatedSet
List < entity > candidateSet
List < Onto > sub_DO
for i = 0 to length(relatedDO):
for each entity e in relatedDOIi]:
if e.label exists in 7':
relatedSet.add(e) //initialize relatedSet

if e has relationship to entity ec in relatedDOIi]:

candidateSet.add(ec) //initialize candidateSet
end if
end if
end for
while relatedSet != NULL.:
k=1
for each entity e in relatedSet:
for each entity ec in candidateSet
if R(e, ec, k, relatedDOVi]) > filter[i].threshold:
/IR is calculated by (15)
relatedSet.add(ec)
candidateSet.remove(ec)
end if
end for
sub_DOVi].addEntity(e)
relatedSet.remove(e)
end for
k=k+1
end while
end for
return sub_DO

To merge the entities into the skeleton of RTO, three rules are
regulated as follows:

o IF A =B, THEN merge A and B.
o IF A C B, THEN A is the sub-entity of B.
o IFA 1 B, THEN A and B have the common super-entity.

Obviously, confliction exists in the process of merging
entities ineluctably. As shown in Fig. 6, e.g., entity 3 is the
sub-class of entity 2, entity 10 is the sub-sub-class of entity 8,
but, entity 2 equals to entity 8, entity 3 is disjoint to entity 8.
In the filter, if Dol; is greater than Dol,, the relationship
in sub(DOj) is maintained preferentially. So, entity 10 is
modified to the sub-class of entity 8 in the skeleton of RTO.

After the skeleton of RTO is generated, the other entities in
sub-ontologies are added into the skeleton by recovering their
relationships. Similarly, confliction exists in process all the
same. It is dealt with according to the filter too. As shown in
Fig. 6, e.g., entity a is the super-class of entity 1, and entity b
is the super-class of entity 5, but, entity 1 equals to entity 5.
If Dolj; is greater than Dolj, entity b is selected preferentially
in the RTO.

The pseudo-code of integrating sub-ontologies into RTO is
introduced in Algorithm 4.

V. EVALUATION

A. EXPERIMENTAL PREPARATION

To evaluate the proposed method of building RTO, we built
10 domain ontologies about robot under the guidance of
WordNet2.0, that is a lexical database for English. The
domains of ontologies are different with each other. The
entities in 10 domain ontologies were collected from Word-
Net2.0, and the details of domain ontologies is shown in
Tab. 2.

TABLE 2. Instances of domain ontologies about robot.

Alignments between each pair
of sub-ontologies

)
sub(DO,) - ﬁS)
7 Q

skeleton of RTO

sub(DO3)

FIGURE 7. The process of merging sub-ontologies.

into the skeleton of RTO in proper order, the result of which

is RTO.

There are three kinds of correspondence in alignment, that
are equivalence (=), subsumption (<), and disjointness (L).

66492

DO Domain Number of Nurpber Qf

concepts relationships
DO, Mechanics 1027 3859
DO, Structure 952 4142
DO; Electronics 493 1825
DO, Cybernetics 917 3581
DOs Dynamics 826 3479
DOg¢ Bionics 1840 5571
DO, Telecommunications 884 2950
DOy Computer Science 1129 3510
DO, Materials Science 1359 3847
DO,y Artificial Intelligence 586 1865

As the inputs of experiment, we designed 9 sets of terms.
The sizes of each set were 2-10, and the terms in one set
came from different domains. For each set of terms, we col-
lected the related words from WordNet2.0 as the references

VOLUME 9, 2021

J. Zhou et al.: Building Real-Time Ontology Based on Adaptive Filter

IEEE Access

TABLE 3. Lists of domain ontologies for each set of terms.

Inputs Domains ontologies that contained terms of T;
T, DOs, DO,
T, DO,, DO,, DOs
Ts DO,, DOs, DO, DOg
Ty DO;, DOg, DO7, DOy, DOy
Ts DO, DO;, DO4, DOs, DOg, DOy
Ts DO,, DO4, DOs, DOs, DO, DOs, DOy
T, DO, DO;, DO4, DOs, DO;, DOg, DOy, DO
Ts DO, DO,, DO, DO4, DOg, DO, DOs, DOy, DOy
Ty DO, DO,, DO, DO4, DOs, DOg, DO7, DOs, DOy, DOy

of experiment. The domain ontologies that contained terms
in each set are listed in Tab. 3.

B. EVALUATION CRITERIA
In this paper, we introduce the evaluation criteria of the
method of building RTO. They are accuracy, recall, correct-
ness, and run-time.

Accuracy and recall are utilized to evaluate the effective-
ness of the method of building RTO. They are calculated by
formula (16), and (17), respectively.

N(CRTO N Cref)

accuracy = ——— (16)
N(Cr10)
N(C NG
recall = N(Crro N Crer) a7
N(Cref)

where N(Crto N Crer) is the number of the concepts that
both RTO and reference have; N(Crro) is the number of all
concepts in RTO; and N(Cyef) is the number of all concepts
in reference.

Correctness is utilized to evaluate the quality of the RTO.
It is calculated by formula (18).

N(R
correctness = M (18)

N(Rrt0)
where N(Rcorrect) 18 the number of the relationships in RTO
that were consistent to the relationships in reference; N(Rrto)
is the number of all relationships in RTO.
Run-time is no need to be calculated, it is tested by system
directly. Run-time is utilized to evaluate the efficiency of the
method of building RTO.

C. EVALUATION RESULTS

We tested the method of building RTO by each input.
As shown in Tab. 4, RTO[T;] means the RTO with the T;
as its input. We visualized partial data in Tab. 4 as Fig. 8.
It is indicated that accuracy and recall decreased gradually
as the value of i increase. Nevertheless, they did not fluctuate
much. Correctness almost stayed constant. So, in aspect of the

VOLUME 9, 2021

Algorithm 4 Integrating Sub-Ontologies into RTO

Input: a set of sub-ontologies (List < Onto > sub_DO);
Filter (List < 4-tuple > filter)
QOutput: a new ontology (Onto RTO)
/* The first phase */
List < Align > Alignment
//saving the match results between each pairs in sub_DO
//Align is 5-tuple in this paper: {eq, ez, 1, O1, Oz}
/le.g. {entity 2, entity 8, “=", sub(DO1), sub(DO;)}
k=0
for i = 0 to length(sub_DO) — 1:
for j =i+ 1 to length(sub_DO):
Alignment[k] = ontoMatch(sub_DOi], sub_DOJj])
//IAML is deployed to match ontologies [36]
k=k+1
end for
end for
/* The second phase */
/* The function of Onto:
addEntity(e): add the entity e into ontology
addRelation(e): add the relationships that e has into
ontology
addSuperClass(e): add the entity e into ontology as
super-class
addSubClass(e): add the entity e into ontology as
sub-class
getSuperClass(e): obtain the super-class of entity e

*/
Onto skele //saving the skeleton of RTO
for i = 0 to length(Alignment):
swith Alignment.r
case “="":
if filter(Alignment.O1).Dol > filter
(Alignment.02).Dol:
skele.addEntity(Alignment.e1)
end if
case “C”:
if filter(Alignment.O1).Dol > filter
(Alignment.02).Dol:
skele.addEntity(Alignment.el)
Alignment.el.addSuperClass(Alignment.e2)
skele.addRelation(Alignment.O1.el)
end if
case “1":
if filter(Alignment.O1).Dol > filter
(Alignment.02).Dol:
skele.addEntity(Alignment.el)
Alignment.el.getSuperClassaddSubClass
(Alignment.e2)
skele.addRelation(Alignment.O1.el)
end if
end swith
end for
//Because the elements in sub_DO had been ranked by score of
//themselves, it is no need to deal with the conflictions.
for i = 0 to length(sub_DO):
for each entity e in sub_DOVi]:
if e is not in skele:
skele.addEntity(e)
skele.addRelation(e)
end if
end for
end for
RTO = skele
return RTO

66493

IEEE Access

J. Zhou et al.: Building Real-Time Ontology Based on Adaptive Filter

accuracy
1 -
0.8
0.6 |
04 |
02
O 1 1 1 1 1 1 1 1 J
RTO[T1-T9]
(a)
correctness

08 ‘—‘\0/‘\0\’/‘\0——0

0.6 F

04

RTO[T1-T9]

©

recall
1 -
08 F
0.6 F
04
02 F
O 1 1 1 1 1 1 1 1 J
RTO[T1-T9]
(b)
run-time
150
100
50
0]
RTO[T1-T9]

(d

FIGURE 8. Evaluation results of RTO[T; -Tg]. (The stability of accuracy, recall, and correctness are great; but run-time increases exponentially).

QOOG

OStepl B Step2 OStep3 | |I:| Stepl B Step2 O Step3 |

|I:| Stepl B Step2 O Step3 | |I:| Stepl B Step2 O Step3

(2) RTO[T?] (b) RTO[Ts]

(c) RTO[Ty] (d) RTO[Ts]

FIGURE 9. The run-time of RTO[T,], RTO[T5], RTO[Tg], RTO[Tg]. (As the number of domains increases, Step 3 is the most time-consuming, i.e.

the computation complexity of Step 3 is the highest).

effectiveness, the stability of the method was great. As shown
in Fig. 8, run-time increased exponentially as the value of i
increase. Because, while the number of domain ontologies
that related to T; increased, ontology matching was executed
more times in Step 3. Even so, the average of run-time is low,
it is indicated that the efficiency of the method is great also.
In addition, RTO is really lightweight. The number of entities
in RTO is few very much.

We deployed several excellent methods of ontology match-
ing which were reported by OAEI to integrate all domain

66494

ontologies into SLO, such as AML, LogMap, POMap, Lily.
SLO[AML] means the SLO built by AML. As shown in
Tab. 4, comparing with SLO and TLO, the scale of RTO
reduced by 1-2 orders of magnitude almost. A great deal
of entities that unrelated to T; were eliminated in RTO.
Notice that, we did not build TLO, because it is a manual
process. The data in Tab. 4 about TLO meant the data of
the set of all domain ontologies, referring to formula (3).
And by the reason for this, we compared correctness and
run-time with only SLO. The average of correctness of RTO

VOLUME 9, 2021

J. Zhou et al.: Building Real-Time Ontology Based on Adaptive Filter

IEEE Access

TABLE 4. Evaluation results of RTO, SLO, and TLO.

RTO Accuracy Recall Correctness Run-time(s) Number of concepts Number of relationships
RTO[T,] 0.91 0.8 0.86 2.6125 47 151
RTO[T] 0.88 0.78 0.85 3.1749 87 223
RTO[T;] 0.88 0.72 0.82 5.2585 106 294
RTO[T4] 0.75 0.64 0.88 8.3574 122 397
RTOI[Ts] 0.78 0.68 0.84 14.9563 135 395
RTO[T] 0.73 0.66 0.74 26.5468 140 391
RTO[T] 0.62 0.59 0.86 33.5487 149 452
RTO[Ts] 0.69 0.58 0.81 59.2153 164 486
RTO[To] 0.62 0.55 0.82 135.2458 196 534

SLO[AML] - - 0.76 854.1025 7615 24963
SLO[LogMap] - - 0.68 569.2548 7529 21647
SLO[POMap] - - 0.43 2156.2974 7758 24610

SLO[Lily] - - 0.51 2685.2541 7954 26509

TLO - - - - >10013 >34629

accuracy recall correctness

B f-decay DOf-linear BEf-quadratic @ f-trigonometric

B f-decay [Of-linear

accuracy

recall correctness

B f-quadratic @ f-trigonometric

(a) Results with T; input

(b) Results with Ts input

0.8 | i
0.6 |
04 F
02 F %
0 \
accuracy recall correctness
@ f-decay DOf-linear BEf-quadratic B f-trigonometric

[Af-decay [If-linear

accuracy

recall

correctness

B f-quadratic B f-trigonometric

(c) Results with T; input

(d) Results with Ty input

FIGURE 10. Results of accuracy, recall, and correctness among different filters. (f-decay introduced in this paper is little greater than others).

was higher than which of SLO. In fact, the lager the scale
of ontologies is, the lower the correctness of integration

result is.

VOLUME 9, 2021

We chose RTO[Tz], RTO[Ts], RTO[Tg], and RTO[T9] to

tested the run-time of each step in the method. The results
were illustrated in Fig. 9. The time-consumption of Step 3

66495

IEEE Access

J. Zhou et al.: Building Real-Time Ontology Based on Adaptive Filter

was the highest, because ontology matching was a time-
consuming process in Step 3. Yet for RTO, the scales of sub-
ontologies to be matched were much smaller in Step 3, which
is the key reason why building RTO took less time.

In addition, we also test the f-decay of the filter in this paper
comparing with other decay functions, such as linear decay
function, quadratic decay function, and trigonometric decay
function. They are represented as formula (19), (20), and (21),
respectively. As shown in Fig. 10, f-decay in this paper is little
better than others.

f-linear;(k) = 1 — (1 — Dol,)k (19)
f-quadratic,(k) = 1 — ((1 — Dol)k)*> (20)
f — trigonometric;(k) = 1 — sin((1 — Dolj))k) (21)

VI. CONCLUSION

To resolve the problem of correlating ontologies for multi-
domain knowledge organization, this paper presented a novel
ontology model namely RTO. Different from SLO and TLO,
RTO took the user requirements as inputs; it only retained
the entities that related to user requirements. The method of
building RTO based on adaptive filter is presented in this
paper. It includes three steps. The details of each step were
illustrated in the paper. The evaluation criteria of RTO were
introduced, and the experiment was conducted to evaluate
RTO. Comparing with SLO and TLO, the correctness of RTO
was higher and the time-consumption of RTO was lower.
This paper had built 10 domain ontologies and designed
9 user requirements as inputs to evaluate RTO built by each
input. With the increasing of the number of relevant domain,
it was demonstrated that the accuracy and recall of RTO
decreased; the correctness of RTO was stable; and the run-
time of RTO increased. In addition, we compared 4 kinds of
relevancy decay functions in filter, and the experiment results
demonstrated that the exponential decay function used in this
paper is little better than others. In future, it will improve the
RTO that how to recognize user requirements intelligently
and reduce the run-time of ontology matching.

REFERENCES

[1]1 G. Sirin, E. Coatanéa, B. Yannou, and E. Landel, “Creating a domain
ontology to support the numerical models exchange between suppliers and
users in a complex system design,” in Proc. Int. Design Eng. Tech. Conf.
Comput. Inf. Eng. Conf., Feb. 2014, pp. 1-13.

[2] T. Langner and M. Krengel, “The mere categorization effect for complex
products: The moderating role of expertise and affect,” J. Bus. Res., vol. 66,
no. 7, pp. 924-932, Jul. 2013.

[3] E.Lee, B. Ko, C. Choi, and P. Kim, “A design of sensor data ontology for
a large scale crop growth environment system,” Scalable Information Sys-
tems (Lecture Notes of the Institute for Computer Sciences, Social Infor-
matics and Telecommunications Engineering), vol. 139. Berlin, Germany:
Springer-Verlag, 2014, pp. 91-96.

[4] J. M. Ruiz-Martinez, R. Valencia-Garcia, R. Martinez-Béjar, and
A. Hoffmann, “BioOntoVerb: A top level ontology based framework to
populate biomedical ontologies from texts,” Knowl.-Based Syst., vol. 36,
pp. 68-80, Dec. 2012.

[5] L. Ding, R. Pan, and T. Finin, “Finding and ranking knowledge on the
semantic Web,” in Proc. 4th Int. Semantic Web Conf. Berlin, Germany:
Springer, 2005, pp. 156-170.

[6] P.Qin, W. Xu, and J. Guo, “A novel negative sampling based on TFIDF for
learning word representation,” Neurocomputing, vol. 177, pp. 257-265,
Feb. 2016.

66496

[7]

[8]

[9]

(10]

(1]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

C. Patel, K. Supekar, Y. Lee, and E. K. Park, “OntoKhoj: A semantic Web
portal for ontology searching, ranking and classification,” in Proc. 5th
ACM Int. Workshop Web Inf. Data Manage. (WIDM), Jul. 2003, pp. 1-8.
S. Zhao, K. Prenger, L. Smith, T. Messina, H. Fan, E. Jaeger, and
S. Stephens, “Rainbow: A tool for large-scale whole-genome sequencing
data analysis using cloud computing,” BMC Genomics, vol. 14, pp. 1-11,
Dec. 2013.

Y. Zhang, V. Wamberto, and S. Derek, ““‘Ontosearch: An ontology search
engine,” in Proc. Int. Conf. Innov. Techn. Appl. Artif. Intell. London, U.K.:
Springer, 2004, pp. 58-70.

S. K. Rajapaksha and N. Kodagoda, “Internal structure and semantic Web
link structure based ontology ranking,” in Proc. 4th Int. Conf. Inf. Autom.
Sustainability, Dec. 2008, pp. 86-90.

S. Gilani, C. Quinn, and J. J. McArthur, “A review of ontologies within
the domain of smart and ongoing commissioning,” Building Environ.,
vol. 182, Sep. 2020, Art. no. 107099.

A. Anikin, D. Litovkin, M. Kultsova, and E. Sarkisova, “Ontology visu-
alization: Approaches and software tools for visual representation of large
ontologies in learning,” in Proc. Conf. Creativity Intell. Technol. Data Sci.
Cham, Switzerland: Springer, Aug. 2017, pp. 133-149.

J.Z.Pan, E. Thomas, and D. Sleeman, ‘“Ontosearch2: Searching and query-
ing Web ontologies,” in Proc. IADIS Int. Conf., Jan. 2006, pp. 211-218.
B. Fazzinga, G. Gianforme, G. Gottlob, and T. Lukasiewicz, ““‘Semantic
Web search based on ontological conjunctive queries,” J. Web Semantics,
vol. 9, no. 4, pp. 453-473, Dec. 2011.

D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, and G. Vetere,
“DL-Lite: Practical reasoning for rich DLs,” in Proc. Int. Workshop
Description Logics, Jun. 2004, pp. 1-8.

J. Pan, E. Thomas, Y. Ren, and S. Taylor, “Exploiting tractable fuzzy
and crisp reasoning in ontology applications,” IEEE Comput. Intell. Mag.,
vol. 7, no. 2, pp. 45-53, May 2012.

F. Bobillo, M. Delgado, and J. Gémez-Romero, ‘“‘Reasoning in fuzzy OWL
2 with DeLorean,” in Uncertainty Reasoning for the Semantic Web, 2nd ed.
Berlin, Germany: Springer, 2010, pp. 119-138.

U. Straccia, “Answering vague queries in fuzzy DL-Lite,” in Proc. 11th
Int. Conf. Inf. Process. Manage. Uncertainty Knowl.-Based Syst., EDK,
Paris, 2006, pp. 2238-2245.

R. Ungrangsi, C. Anutariya, and V. Wuwongse, “SQORE: An ontology
retrieval framework for the next generation Web,” Concurrency Comput.,
Pract. Exper., vol. 21, no. 5, pp. 651-671, Apr. 2009.

R. Ungrangsi, C. Anutariya, and V. Wuwongse, “SQORE-based ontology
retrieval system,” in Proc. Int. Conf. Database Expert Syst. Appl. Berlin,
Germany: Springer, Sep. 2007, pp. 720-729.

M. Gao, C. Liu, and F. Chen, “An ontology search engine based on
semantic analysis,” in Proc. 3rd Int. Conf. Inf. Technol. Appl. (ICITA),
Sydney, NSW, Australia, Jul. 2005, pp. 256-259.

R. Ungrangsi, C. Anutariya, and V. Wuwongse, ‘‘Enabling efficient knowl-
edge reuse in the semantic Web with SQORE,” in Proc. 3rd Int. Conf.
Semantics, Knowl. Grid (SKG), Xi’an, China, Oct. 2007, pp. 92-97.

T. Uchibayashi, B. O. Apduhan, and N. Shiratori, “Experiments and
functional analysis in integrating sub-ontology extraction and tailoring,”
in Proc. Int. Conf. Comput. Sci. Appl., Jun. 2011, pp. 143-149.

T. Uchibayashi, B. O. Apduhan, and N. Shiratori, “A domain specific
sub-ontology derivation end-user tool for the semantic grid,” Telecommun.
Syst., vol. 55, pp. 1-11, Jan. 2013.

A. Flahive, D. Taniar, W. Rahayu, and B. O. Apduhan, “Ontology tailor-
ing in the semantic grid,” Comput. Standards Interfaces, vol. 31, no. 5,
pp. 870-885, Sep. 2009.

M. Bhatt, A. Flahive, and C. Wouters, “A distributed approach to sub-
ontology extraction,” in Advanced Information Networking and Applica-
tions, vol. 1. Los Alamitos, CA, USA: IEEE Computer Society, Mar. 2004,
pp. 636-641.

T. Uchibayashi, B. O. Apduhan, and N. Shiratori, “A domain specific
sub-ontology derivation end-user tool for the semantic grid,” Telecommun.
Syst., vol. 55, no. 1, pp. 125-135, Jan. 2014.

A. Flahive, D. Taniar, and W. Rahayu, “Ontology as a service (OaaS):
Extracting and replacing sub-ontologies on the cloud,” Cluster Comput.,
vol. 16, no. 4, pp. 947-960, Dec. 2013.

M. Bhatt, A. Flahive, C. Wouters, W. Rahayu, and D. Taniar, “MOVE:
A distributed framework for materialized ontology view extraction,” Algo-
rithmica, vol. 45, no. 3, pp. 457-481, Jul. 2006.

A. Flahive, D. Taniar, W. Rahayu, and B. O. Apduhan, “A methodology for
ontology update in the semantic grid environment,” Concurrency Comput.,
Pract. Exper., vol. 27, no. 4, pp. 782-808, Mar. 2015.

VOLUME 9, 2021

J. Zhou et al.: Building Real-Time Ontology Based on Adaptive Filter

IEEE Access

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

A. Flahive, D. Taniar, and W. Rahayu, “Ontology as a service (OaaS):
A case for sub-ontology merging on the cloud,” J. Supercomput., vol. 65,
no. 1, pp. 185-216, Jul. 2013.

A. Flahive, D. Taniar, W. Rahayu, and B. O. Apduhan, “Ontology expan-
sion: Appending with extracted sub-ontology,” Log. J. IGPL, vol. 19, no. 5,
pp. 618-647, Oct. 2011.

A. Flahive, J. W. Rahayu, D. Taniar, and B. O. Apduhan, “A distributed
ontology framework in the semantic grid environment,” in Advanced
Information Networking and Applications, vol. 2. New York, NY, USA:
IEEE Press, 2005, pp. 193-196.

Y. Li, J. Zhou, J. Liu, and Y. Hou, “Matching large scale ontologies
based on filter-and-verification,” Math. Problems Eng., vol. 2020, pp. 1-8.
May 2020.

J. Euzenat and P. Shvaiko, “Part II: Ontology matching techniques,” in
Ontology Matching, 2nd ed. Berlin, Germany: Springer, 2013, pp. 73-84.
I. F. Cruz, F. P. Antonelli, and C. Stroe, “AgreementMaker: Efficient
matching for large real-world schemas and ontologies,” Proc. VLDB
Endowment, vol. 2, no. 2, pp. 1586-1589, Aug. 2009.

D. Faria, C. Pesquita, E. Santos, I. F. Cruz, and F. M. Couto, “Agree-
mentMakerLight 2.0: Towards efficient large-scale ontology matching,” in
Proc. Int. Semantic Web Conf. (Posters Demos), Oct. 2014, pp. 457-460.
J. Da Silva, K. Revoredo, F. Baido, and J. Euzenat, “Alin: Improving inter-
active ontology matching by interactively revising mapping suggestions,”
Knowl. Eng. Rev., vol. 35, pp. 1-22, 2020.

E. Jimenez-Ruiz and B. C. Grau, “LogMap: Logic-based and scalable
ontology matching,” in Proc. Int. Semantic Web Conf. (ISWC), Oct. 2011,
pp. 273-288.

E. Jimenez-Ruiz, B. C. Grau, Y. Zhou, and I. Horrocks, ‘‘Large-scale
interactive ontology matching: Algorithms and implementation,” in Proc.
Eur. Conf. Artif. Intell. (ECAI), vol. 242, 2012, pp. 444-449.

M. A. Khoudja, M. Fareh, and H. Bouarfa, “Ontology matching using
neural networks: Evaluation for OAEI tracks,” in Proc. Int. Symp. Mod-
elling Implement. Complex Syst. Cham, Switzerland: Springer, Oct. 2020,
pp. 262-276.

P. Wang, “Lily-LOM: An efficient system for matching large ontolo-
gies with non-partitioned method,” in Proc. CEUR Workshop, vol. 658,
Nov. 2010, pp. 69-72.

H. Li, A. N. P. Mina, Y. Li, and L. Patrick. (2020). Results
for OAEI 2020—Anatomy Track. Athens. [Online]. Available:
https://oaei.ontologymatching.org/2020/results/anatomy/index.html

JIANHUI ZHOU received the B.S. and M.S.
degrees in mechanical engineering and automation
and the Ph.D. degree in aerospace manufactur-
ing engineering from Beihang University, China,
in 2008, 2012, and 2018, respectively.

He is currently a Lecturer with the School
of Computer and Network Engineering, Shanxi
Datong University. His research interests include
ontology matching, data mining, and knowledge
engineering technology.

Dr. Zhou is a member of the China Computer Federation (CCF). He was a
recipient of the Journal of Computer-Aided Design and Computer Graphics
Excellent Student Paper Award, in 2016.

VOLUME 9, 2021

XIAOXIA SONG received the B.S. degree in com-
puter science from Yanshan University, China,
in 1998, the M.S. degree in computer software and
theory from Guangxi Normal University, China,
in 2005, and the Ph.D. degree in intelligent infor-
mation processing from Xidian University, China,
in 2013.

She is currently a Professor with the School
of Computer and Network Engineering, Shanxi
Datong University. Her current research interests

include data mining, compressed sensing theory, and optimization calcula-
tion. She is a Senior Member of the China Computer Federation (CCF).

YONG LI received the B.S. degree in computer
science from Yanshan University, China, in 1998,
the M.S. degree in computer science from the
Beijing Institute of Technology, China, in 2005,
and the Ph.D. degree in communication and infor-
mation system from Xidian University, China,
in 2015.

He is currently a Professor with the School
of Computer and Network Engineering, Shanxi
Datong University. His research interests include

wireless networks, information theory, and big data. He is a member of the
China Computer Federation (CCF).

YUN GAO received the B.S. degree in computer
science education from Shanxi University, China,
in 1998, and the M.E. degree in computer appli-
cation technology from Tianjin University, China,
in 2006.

She is currently a Lecturer with the School
of Computer and Network Engineering, Shanxi
Datong University. Her research interests include
deep learning, machine learning, and big data
analysis. She is a member of the China

Computer Federation (CCF).

XULONG ZHANG received the M.Sc. and Ph.D.
degrees from the College of Computer Sci-
ence, Chongqing University, in 2011 and 2017,
respectively.

He is currently a Lecturer with the School
of Computer and Network Engineering, Shanxi
Datong University, Datong, China. He has
published more than eight academic articles in
peer-reviewed international journals. His research
interests include computer virus propagation

dynamics, wireless sensor networks, and big data. He is a member of the
China Computer Federation (CCF).

66497

