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ABSTRACT The smart grid is emerging as a future paradigm for power networks. While it has many
successful applications, peer-to-peer trading in the local energy market (LEM) is still challenging due to
the lack of security and trading mechanisms. In this paper, we design a data-driven, secure, and smart
solution DS? to address this problem. We first propose a five-layer design of LEM based on blockchain.
We then model peer-to-peer trading in LEM as a cost minimization problem and derive an efficient online
solution leveraging matrix factorization and integer linear programming. DS is implemented and evaluated
on a private Ethereum blockchain. We show that DS? achieves a mean absolute percentage error (MAPE)
of 12.8% compared with the offline optimal method through extensive simulations on the real-world dataset.

INDEX TERMS Smart grid, LEM, P2P trading, blockchain.

I. INTRODUCTION

With the prosperity of IoT and distributed renewable energy
technologies, the smart grid has achieved rapid development
in recent years, enabling various applications such as smart
metering and peer-to-peer energy trading [1]—[5]. Unlike the
traditional electricity grid where customers can only pur-
chase electricity from utility companies, the smart grid allows
households to generate, store renewable energy and trade
their excess energy with neighbors in a local energy market
(LEM). The widespread use of the smart grid can not only
improve the utilization efficiency of energy but also help to
mitigate global warming by reducing the emission of green-
house gases [3], [6], [7].

Despite its advantages, the design and implementation
of the smart grid system raise new challenges. On the one
hand, a smart grid system usually consists of numerous IoT
devices such as wireless sensors and smart meters, making
it vulnerable to security attacks. For example, smart meter
data can be compromised on the fly by malicious users to
under-report energy usage, leading to revenue loss for utility
companies [8]. On the other hand, since most participants
in the LEM are ordinary users with no expert knowledge,
peer-to-peer transactions should be executed automatically
without user intervention.
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In this paper, we investigate the design and implementation
of the smart grid system in LEM. We propose a data-driven,
secure, and smart infrastructure DS? based on blockchain
technology. The main features of DS? are:

o Secure. DS’ is built upon a private Ethereum
blockchain. Each block in the chain is associated with a
unique hash-based fingerprint and the previous block’s
hash. As a result, to alter a specific block’s content,
the attacker has to recompute the hash of every subse-
quent block and compromise 51% of peer nodes to alter
stored records, which is computationally infeasible [9].

o Smart. DS? utilizes the most significant feature of
Blockchain 2.0, i.e., smart contract [10] to accomplish
automatic trading. Once pre-defined rules in smart con-
tracts are triggered, trading actions will be directly per-
formed without intervention.

« Data-driven. Most existing approaches [11], [12] rely
on fixed or known power demand, ignoring the fact that
households’ power consumption varies with both time
and space. Different from these studies, DS? proposes
to capture the spatio-temporal correlations of power
demand and leverage the results to facilitate trading.

Specifically, in this study, we first present the layered
design of the Blockchain-based Local Energy Market
(BLEM). The peer-to-peer (P2P) trading in BLEM is mod-
eled as an online optimization problem. We then propose
to adopt matrix factorization techniques to represent the
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correlation of power demand data accurately. We construct
a bipartite graph based on prediction results and transform
the original BLEM problem to an integer linear program
(ILP). By solving the ILP problem, we can obtain the optimal
trading scheme. Smart contracts on the private blockchain are
then triggered to execute transactions based on the optimal
scheme.

Our main contributions are summarized as follows:

o We propose a five-layer design of BLEM and implement
it on a private Ethereum blockchain.

o We model the P2P trading problem in BLEM as an
online optimization problem and design efficient algo-
rithms based on matrix factorization and integer linear
programming.

o We validate DS? using real-world data from 370 users.
And the results show that DS’ achieves a MAPE
of 12.8% compared with the offline optimal method.

The rest of this paper is organized as follows. Section II

introduces related works. The detailed design of DS? is pre-
sented in Section III. Section IV presents experiment settings
and evaluation results. Finally, we conclude this paper in
Section V.

Il. RELATED WORK

In recent years, a lot of efforts have been made to improve the
security and scalability of the smart grid [13]-[17]. Accord-
ing to the implementation methodology, existing studies can
be classified into the following categories:

A. OPTIMIZATION-BASED APPROACHES

The authors in [4] design a linear programming-based opti-
mization model to evaluate end-user benefits of electricity
storage in the local energy market. Two distinct market
designs are then proposed with the combination of P2P
trading and battery storage. The analysis shows that the com-
bined features produce savings of up to 31% for the end-
users. [5] presents a mixed-integer linear programming model
for rooftop solar photovoltaic (PV) distributed generation
with battery storage. It investigates the economic benefits
of renewable source participation in P2P energy trading.
Through a simulation of 500 households, the results show
that savings up to 28% can be achieved by households.
The authors in [18] focus on multi-class energy manage-
ment in which energy is treated as a heterogeneous prod-
uct based on attributes of its source. The proposed P2P
trading platform then coordinates energy trading between
prosumers with heterogeneous (i.e., beyond purely financial)
preferences. The objective is to minimize costs associated
with losses and battery depreciation using distributed convex
optimization [19]. Further in [20], a two-stage aggregated
battery control scheme is proposed for P2P energy sharing
in community Microgrids. The first stage runs constrained
non-linear programming to minimize the total energy cost
of the community. The second stage conducts a rule-based
control to adjust the control set-points according to the real-
time measurements of the net load.
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B. GAME THEORY-BASED APPROACHES

The authors in [21] propose a game-theoretic model for
P2P energy trading. It assumes that buyers can adjust the
energy consumption behavior based on the price and quan-
tity of electricity. It then models the seller selection com-
petition among buyers as a non-cooperative game and price
competition among sellers as an evolutionary game. Two
iterative algorithms are designed to solve the games, respec-
tively. Morstyn et al. [22] study a scalable market design
for P2P energy trading using bilateral contract networks.
They present the utility-maximizing preferences for each type
of participant. A scalable process for the agents to select
utility-maximizing contract bundles is also designed. [23]
investigates credit rating management for energy trading.
It models the problem as a multi-leader and multi-follower
game and proves the existence of the equilibrium strategy.
It also designs a best-response algorithm to make participants
of the market achieve the equilibrium iteratively.

C. BLOCKCHAIN-BASED APPROACHES

In [24], Luo et al. study a distributed electricity trading
system for electricity prosumers in active distribution net-
works. The system consists of two layers. In the upper layer,
the prosumers are modeled as a multi-agent system, and a set
of electricity trading negotiation protocols are designed based
on a multi-agent coalition. In the lower layer, a blockchain-
based electricity transaction settlement system is proposed
to enable trustworthy and secure electricity trading in the
upper layer. Kang et al. [25] focus on localized P2P electricity
trading among Plug-in Hybrid Electric Vehicles (PHEVs).
A trading system based on a consortium blockchain named
PETCON is designed to optimize electricity pricing as well as
the amount of traded electricity. [26] also exploits consortium
blockchain technology to design a unified P2P trading frame-
work. In order to reduce transaction confirmation delays,
it proposes a credit-based payment scheme that supports fast
and frequent energy trading. In addition, it also presents an
optimal pricing strategy using the Stackelberg game to max-
imize the utility of credit banks. [27] tackles the problem of
secure transaction in decentralized energy trading. The pro-
posed scheme PriWatt is not assumed to rely on any trusted
third party. It provides transaction security and identity secu-
rity based on cryptographic techniques, enabling agents to
anonymously negotiate energy prices and trade energy own-
ership using distributed smart contracts. Further blockchain
technology applications can be found in [28]-[31].

Either optimization-based or game theory-based approac-
hes can solve the security issues in LEM. Meanwhile, unlike
existing blockchain-based studies, we propose a data-driven
approach to address the problem.

1ll. SOLUTION
A. BLOCKCHAIN PRELIMINARIES

As illustrated in Figure 1, blockchain is a distributed database
that maintains an ordered list of records linked together
through chains of blocks, each storing a group of transactions.
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FIGURE 1. The organization of a blockchain.

Transactions are organized in a particular data structure called
Merkle Tree [32], whose leaf node is labeled with the hash of
a transaction while a non-leaf node is labeled with the hash of
the labels of its child nodes. The root hash is further stored in
a block’s header, where a hash address of the previous block
is also computed and stored. Since a slight change in data
will lead to a drastic change of a hash fingerprint, attackers
will have to alter every block that comes after the one they
compromised, which is computationally challenging due to
the infeasible-to-invert characteristic of cryptographic hash
algorithms.

Each participant of a blockchain network stores a local
copy of the whole blockchain (usually called ledger) and
communicates with each other through public key infrastruc-
ture (PKI). Transaction broadcasted to the network will be
stored into blockchain only when consensus over the validity
is reached among all peer nodes. As a result, even if attackers
could manage to tamper with a single ledger, they will have
to take control of more than 50% of peer nodes to affect the
whole blockchain. A smart grid structured in this way could
gain self-organized resistance from malicious actions.

A blockchain like Ethereum also enables the use of smart
contract, which serves as an agreement signed by trading
parties in the form of executable programs. When a specific
condition according to the contract is met, a smart contract
will be triggered and executed automatically, accomplish the
pre-defined agreement. For example, a contract linked with
the smart meter could alert the customer when the balance
falls below a certain threshold and automatically reactivate
the power supply when a customer in debt pays the bill.

B. SYSTEM ARCHITECTURE
The proposed system architecture is illustrated in Figure 2.
It is composed of five layers from bottom to top:

« Power grid layer is the existing power grid infrastruc-
ture. This layer is in charge of electric power trans-
mission and distribution, physically connecting all the
participants together.

« Data layer is responsible for the data storage and chain
management as described above. It includes modules
like hashing function, Merkle Tree, chain structure, efc..
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FIGURE 2. The layered design of BLEM.

« Network layer inter-connects nodes using peer-to-peer
communication protocols. Each node in the network
represents a participant in a smart grid system, such as
a consumer, a retailer, or a supplier. A node is able to
advertise itself to peer nodes and accept connections
from others. Thus, node discovery and data transfer are
achieved in this layer.

« Consensus layer is responsible for the management of
block orders and validation of newly generated blocks.
Instead of the widely used Proof-of-Work (PoW) pro-
tocol, we adopt the Practical Byzantine Fault Toler-
ance Algorithm (PBFT) [33] as the default consensus
scheme. The difference is that PoW requires every node
to solve a mathematical puzzle (usually called mining)
to compete for the right to add a new block, which is
computationally intensive, while PBFT is based on the
voting mechanism and is able to tolerate no more than
33% node failures. Since participants in our system are
not guaranteed to have powerful computing resources,
PBFT is more suitable than PoW.

o Application layer is where smart contracts are
deployed. Typically, a smart contract consists of a
piece of program code, a storage file, and an account
balance. The program code defines a set of rules,
which cannot be changed after deployment. The stor-
age file is used to store necessary data in the smart
contract. It is persistent such that single node failure
would not affect the smart contract. We set an account
balance in order to restrain the over-consumption of
computing and storage resources. As long as a smart
contract is deployed, it is executed by all consensus
nodes.
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FIGURE 3. The working scheme of BLEM.

C. PROBLEM FORMULATION

As illustrated in Figure 3, we model the P2P trading prob-
lem in Blockchain-based Local Energy Market as follows.
Consider a community of households 7{. All households are
connected through the local electricity distribution network.
If h € H is a prosumer, the household is equipped with solar
photovoltaic panels, and it can sell its surplus solar energy
to the neighbors. If £ is a consumer, it does not have energy
generation technologies and has to buy electricity from either
the grid or prosumer households. For each household #4;,
the renewable energy production at time slot 7 is denoted as
g;»and the electricity demand at time slot 7 is d; ;. Suppose s, ;
is the amount of electricity sold from household 4; to h; with
price p§ at time slot z. The objective of BLEM is to minimize
the cost of electricity transactions.

min ), D si*p M
hieH hjeH i#j
The cost minimization is subject to the following constraints.

First, the total amount of electricity sold by household A;
should never exceed its supply at time slot t:

> osii<en 2)
hjEH
Then, the net amount of electricity purchased by household
h; should satisfy its demand:

Z S;c,i * '(pk,i > di,t + Z sij’ 3)

hy€H k#i /’leH,i#j

where 1; ; is the distribution network loss from household 5;
to hj, which is proportional to the distance between h; and h;.
The left term of equation (3), " sfc ;%W i is the amount
heeH ki
of electricity purchased by h;, and )" s . is the amount
et iz
of electricity sold by ;.
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Utility Grid

If h; cannot purchase enough electricity from peer house-
holds, it has to buy electricity directly from the grid. In partic-
ular, the grid can also be treated as a special participant in the
BLEM with unlimited supply and no demand at every time
slot, i.e., gt = 400 and d;; = 0.

D. DEMAND PREDICTION

The existing studies on power demand prediction are mainly
based on linear models such as auto-regressive integrated
moving average (ARIMA) [34]-[36]. In recent years, meth-
ods based on deep learning have also been proposed to predict
power consumption [37]-[40]. These approaches, however,
are mainly applied to small or synthetic datasets. In this
paper, we address the power consumption prediction prob-
lem in a BLEM, which involves hundreds or thousands of
households. Such a task is more difficult due to the following
challenges.

o Data incompleteness. Smart meter readings are often
gathered using low power wide area network (LPWAN)
technologies such as NB-IoT or Lora [41]. Data packets
might be lost during wireless transmission.

« Computational complexity. A typical BLEM may con-
tain hundreds of smart meters. Predicting such a large
number of time series with complex models is computa-
tionally impractical.

« Spatio-temporal correlations. Power consumption from
various houses is usually correlated with each other.
Thus, it is unwise to predict power consumption
independently.

To address these challenges, we propose to adopt the Tempo-
ral Regularized Matrix Factorization (TRMF) model [42] for
city-wide power consumption prediction.

Problem 1: 1 Assume the power consumption data gath-

ered from smart meters is denoted by a matrix D € RVN*T.
D = [dy;d>;--- ;dn] is a multi-dimensional time series.

VOLUME 9, 2021
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TABLE 1. The definition of symbols.

System Definition

H the set of households in the BLEM
h; the household i, h; € H
T time slots
g}b.5 the renewable energy production of household h;
at time slot ¢
dit the electricity demand of household h; at time slot ¢
sﬁ’ j the amount of electricity sold from household h; to h;
p’f the unit price of electricity sold by household h;
Vi j the distribution network loss from household h; to h;

Demand Prediction

D the electricity demand of all households over time
Dec RN xT
d; the power consumption data of household h;, d; € R1*T
the matrix of latent spatial embeddings, FF € RE*N
fi the latent embedding of d;, f; € R<*1
X the matrix of latent temporal embeddings, X € RE*T
Tt the latent temporal embedding at time ¢, z¢ € REX1
the set of lag indices
b the order of TRMF model
w the set of coefficient matrices,
W = {W;|W; € RF*K 1 <j <b}
Q the set of observed entries in matrix D
Ry (F) the regularizer for F’

Ryw(W)  the regularizer for W

R (X) the temporaldependencies among time series data
Bipartite Graph Trading

G the bipartite graph

Vp the vertex set of prosumers

Vo the vertex set of consumers

E the edge set

pgf the electricity supply of prosumer vertex v;

pdjt- the electricity demand of consumer vertex v;
Cij the unit cost of v; purchasing electricity from v;
dist; j the euclidean distance between v; and v;

Each row

di=(d1,di2,---,dit), 1<i<N @

represents the power consumption data collected from the i-th
consumer, where the j-th entry djj is the power consumption
of consumer i at time j. Given a partially observed matrix D
at time t, the goal is to predict the power consumption at time
t+ 1, e, [di+1.d2g41, -+ 5 AN 1]

The matrix D can be factorized with two matrices follow-
ing TRMF:

D~FTX, 5)

where F € RX*N and X e RX*T. The matrix F =
[fi > - - fv]consists of N column vectors {f;|f; € REK*1 1 <
i < N}, where f; is a latent embedding for d;. Similarly,
the matrix X = [x; xp --- x7] is composed of 7' column
vectors {x;|x; € REXL 1 < < T}, where x; is the latent
temporal embedding at time . Thus, the power consumption
of consumer i at time ¢ can be represented by the product of
latent embeddings

di =fl-Txt- (6)
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We then assume that x; is a linear combination of previous
states with random noise. The temporal dependencies among
{x;} can be expressed explicitly:

b
X = Z Wixi—i; + €, @)
j=1
where b is the order of this model, £ = {l1, L, ..., [;, ..., Iy}

is the set containing the lag indices, each W;in W = {W;|W; €
REXK 1 < Jj =< b} is the coefficient matrix, and ¢; is a
Gaussian noise vector with zero mean.

Thus, the objective is to solve the following problem:

min > (di = f;T00)? g Ry (F)+ R (W) + 2 Re(X),
U (,0eQ

®)

where €2 is the set of observed entries in matrix D, Ry (F)
and R, (W) are regularizers for F' and W to avoid overfit-
ting. In specific, R, (X) are introduced to model the temporal
dependencies among time series:

2
b
n
=) Wiy 5 ) Il ©)
= !

where [, = max(L)+ 1. We solve the problem by alternat-
ing minimization. The parameters are initialized randomly,
and then iteratively updated as follows:

T

&m=%§:

t=lmax

F = argmin Z (die — fTx)* (10)
(i.1)eQ
X = argmin Z (die — [Tx)* + ARe(X) (1)
X (e
W = argmin AR, (X) + ARy (W) (12)
w

The detailed algorithm for power usage prediction is illus-
trated in Algorithm 1. First, we train the prediction model
by alternatively minimizing F, X, and W. Then, the missing
entries are imputed by the product of learned F and X.
We further infer the latent temporal embedding x74; based
on temporal dependencies described in equation (7) and thus
derive the power usage data at time 7 + 1.

E. TRADING ON BIPARTITE GRAPHS

After precise predicting household demands, we then con-
struct a bipartite graph G' = (Vp, V¢, E) as follows. A house-
hold h; is defined as a prosumer if its power generation is
larger than its own demand at time slot . We create a node
v; € Vp, and its electricity supply is defined as:

pgi =g —d!. (13)

Oppositely, a household #; is defined as a consumer if its
power generation is larger than its own demand. We create a
node v; € V¢, and its electricity demand is defined as:

pd} =dj —gj. (14)
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Algorithm 1 Power Usage Prediction Algorithm

Input: D € RVXT  max_iter

Output: pred = [di, 741, d2, 741, -+, dn,7+1]

1: /I train model

2: initialize W, F, X

3: for iter < 1 to max_iter do

4:  update F by solving (10)

5:  update X by solving (11) using GRALS [43]

6:  update W by solving (12) using Cholesky
factorization [44]

7: end for

8: // impute missing values
9: fori < 1toN do
1. forz <« 1toT do

11: if D; ; == nan then
12: D;, :fl.Tx,

13: end if

14:  end for

15: end for

16: // predict future power usage
b

17: X741 = 3y Wixr1—g;

18: pred = F - x741

19: return pred

We assume that households with equal electricity gener-
ation and demand do not participate in the P2P transac-
tions at the current time slot. Since the distribution network
loss v ; is proportional to the distance between h; and #;,
we define the unit cost of A; purchasing electricity from h;
as

Cij = pi* Vij = ap; * dist; j, (15)

where dist; ; is the euclidean distance between h; and h;. The
optimization problem then can be defined as follows:

minimize E E S ;K Ci,j

ie[1,m] je[1,n]

subject to Z s;j <pg, Viel[l,m]
Jell,n]

Y styjzpdl. Vjellnl
ie[l,m]

si;eN, Vie[l,m], Yje[l,n] (16)

where m = |V,| and n = |V,|.

The optimization problem (16) is an integer linear program
(ILP). In order to solve it efficiently, we first transform it into
a linear program (17) by relaxing the integrality constraints
of si i And then we prove that these two problems are equiv-
alent, i.e., the optimal solution of (17) is also the optimal
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pragma solidity 70.4.17;
contract PowerPromotion {

function update(uint p, uint q) public {
require(owner == msg.sender);

power = q;
u_price = p;

ExchangeOracle oracle = ExchangeOracle(exchange);
oracle.update(u_price, power);

}

function sell(uint up) payable public {
require(msg.value < power * u_price);
require(up == u_price);

owner.transfer(msg.value);
emit PowerDelivered(msg.sender, msg.value / u_price);
power = power - msg.value / u_price;
if (power == 0) {
emit PowerOut(owner);

h

ExchangeOracle oracle = ExchangeOracle(exchange);
return oracle.update(u_price, power);

FIGURE 4. Example code snippet of a prosumer’s smart contract.

solution of (16).

minimize Z Z Si % Cij
ie[1,m] jell,n]
subject to Z st <pg» Viell,m]
Jell,n]
t t
- Z Sij = —pd;,
iell,m]

sf’j >0, Viel[l,m], Vjel[l,n] @17)

Vj e [1,n]

Lemma 1: The coefficient matrix in (17) is totally
unimodular.
Proof: By definition, a matrix is totally unimodular if
the determinant of each square sub-matrix is 0, or £1. The
linear constraints of (17) can be written as:

As < b, (18)
where s = [s1 1512 s’in. sfn] ;12 T is the

column vector of unknowns A is the coefflclent matrix and
b is the column vector of constant terms. Without loss of
generality, suppose m = 3 and n = 2, and the matrix A is
of the following form:

1 1 0 0 0 0
0 0 1 1 0 0
A=10 0 0 0 1 1
—1 0 -1 0 -1 0

0 -1 0 -1 0 -1

We can observe that matrix A has the following properties
for any m and n:

VOLUME 9, 2021
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o Each entry of A is either 0 or +1.

o Every column of A has at most two non-zero entries.

o The row indices [1, m] can be partitioned into two dis-
joint sets My and M>, such that for each column j,
ZieM. Ai,j = ZieMz Ai,j-

According to [46], if a matrix satisfies these properties, it is
totally unimodular. Therefore, the coefficient matrix in (17)
is totally unimodular. |

Theorem 1 [47]: If the coefficient matrix of a linear pro-

gram satisfies the totally unimodular property, the polytope
of feasible solutions of the linear program is integral, i.e., all
the vertices of the feasible set are integer.

Theorem 2: The optimal solution of problem (17) is also

the optimal solution of (16).
Proof: Suppose the optimal solutions of problem (16)
and (17) are denoted as OPTjp and OPT.p respectively.
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On the one hand, since problem (17) is a relaxation of
problem (16), we have OPT p <= OPTp. On the other
hand, according to Theorem 1, the elements of vector s*
corresponding to OPTyp are all integers. Thus, s* is also a
solution of problem (16), and OPT; p <= OPTrp. As a
result, we can get OPT; p = OPTyp. O

Algorithm 2 Trading on Bipartite Graphs

1: fort < 1, T do
2: /I bipartite graph construction

3 Ve =0, Ve =0,E=10
4 for household #; € H do
5 if ¢! > d! then

6: create node v;

7 Vp = Vp U {v;}

8 pg; =8 — di

9 else if g} < d! then
10: create node v;

11: Ve = Ve U{v;}

12: pd! =df —g!

13: end if

14:  end for
15: for v; € Vpdo

16: for v; € Vc do

17: create edge e = (v;, vj)

18: E =E U/{e}

19: the unit cost of sending electricity through e is
Cij =op;* diSl‘iyj

20: end for

21:  end for
2: G=(Vp,Vc,E)

23: [/l trading
24:  solving problem (17) with Hungarian method [45]
25:  the optimal trading scheme at time slot 7 is
st =argmin Y > siikci
[s;)  iellmljell.n]
26: end for

Based on previous analysis, at each time slot 7, we first
construct a bipartite graph based on households’ electricity
demand and generation. And then, we solve the optimization
problem (17). s* = argmin ) ) sﬁ,j*ci, j is the trading

si;} iellm]jell.n]
scheme that minimizes trading cost. The detailed algorithm is
illustrated in Algorithm 2.

F. IMPLEMENTATION

We implement DS? on a private Ethereum blockchain. Each
household in the BLEM is associated with a unique address
as its digital account. The address of the digital account is
further attached with a smart contract which is responsible for
depositing and withdrawing money. Transactions are accom-
plished via smart contracts deployed by both prosumers and
customers. At the end of each time slot, a prosumer’s smart
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FIGURE 8. Electricity demand prediction by DS2. We randomly select 2 households from the dataset.

contract updates its power supply, and a consumer’s smart
contract places orders for the next time slot. Smart con-
tracts are implemented with Solidity program [48] running in
Ethereum Virtual Machine. We utilize the JavaScript API pro-
vided by Ethereum to handle the interactions between smart
contracts. In order to accelerate transactions, we use PBFT
(Practical Byzantine Fault Tolerance) algorithm [33] for con-
sensus, which is more time-efficient than PoW. We also
assume that there are no transaction costs and compensation
for miners. Figure 4 presents a code snippet of a prosumer’s
smart contract.

IV. EVALUATION
In this section, we evaluate the performance of DS 2 and com-
pare it with both the offline optimal method and a baseline
algorithm AR-ILP.

A. METHODOLOGY

1) DATASET

The data used in our experiment is extracted from UCI Elec-
tricity Load Diagrams 2011-2014 Dataset [49]. It contains
electricity consumption data of 370 clients across four years.
The data of each client is recorded for each 15-minute time
slot. We aggregate the raw dataset and transform it into an
hourly dataset.

2) EVALUATION METRIC

The total cost of BLEM consists of two parts. The first part
is the sum of transaction costs among all prosumers and
consumers as defined in equation (16). The second part is the
prediction cost, which is the deviation of demand prediction.
We take it into account because an inaccurate prediction
results in either electricity waste or additional purchase.

cost = a - COStyan + B - COStyred,

where
COStyran = Z Z S;j * Ci j,
ie[l,m] je[l,n]
Z,' |di,t - di,tl
Z,‘ |di,t|

COStpred =
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3) EXPERIMENT SETUP

The smart contracts are implemented using Solidity, which
is an object-oriented and high-level programming language
targeting the Ethereum Virtual Machine (EVM). For the con-
venience of development, we use solcjs as the compiler for

Solidity. The simulations are performed on a server running
Ubuntu 16.10 with an i7 CPU and 64 GB RAM.

4) BASELINE ALGORITHMS

The ground-truth is obtained by an offline optimal method
which solves problem (16) with known electricity demand
data. It is worth noticing that we cannot get the offline optimal
results in practice since we do not have future data. We also
implement a baseline algorithm AR-ILP. The main idea of
AR-ILP is first to use an autoregressive model to predict
hourly electricity demand and then optimize the integer linear
programming problem (16).

B. EXPERIMENT RESULTS

1) SYSTEM PERFORMANCE

For comparison, we present the system performance of DS?,
AR-ILP as well as the groundtruth in Figure 5. By running
the three algorithms for ten times independently, we obtain
that compared with the ground truth, the mean absolute per-
centage errors (MAPE) of DS? and AR-ILP are 12.8% and
24.9% respectively, where

MAPE(DSZ) _ l i |cost(DS 2y — cost(groundtruth)|

r cost(groundtruth)
2) ANALYSIS OF costpred
Figure 6 shows the comparison results of costy.q. The elec-
tricity demand in both algorithms is predicted using 30 days
of historical data. We can find the DS? achieves less predic-
tion cost than AR-ILP. The average costyq values are 0.28
and 0.43 respectively.

3) ANALYSIS OF PREDICTION ACCURACY

We first compute the cumulative distribution function of pre-
diction deviation |d;, —d; +|/\d; ;| of all households. As shown
in Figure 7, the median value of prediction deviation is 0.14,
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and the 90th percentile is 0.34. Then Figure 8 depicts the
demand prediction results of DS? by randomly selecting two
households from the dataset.

V. CONCLUSION AND FUTURE WORK

This paper proposes DS?, a data-driven, secure, and smart
power grid system in BLEM. By utilizing blockchain struc-
ture, DS? enables both secure transaction data storage and
smart execution of transactions. We prototype DS> on
the Ethereum blockchain. To demonstrate its effectiveness,
we solve the local energy market (LEM) problem by reducing
it into an optimization problem and implement the proto-
cols using smart contracts. The evaluation shows that DS>
achieves a MAPE of 12.8% compared with the offline optimal
method.

Currently, we mainly focus on the P2P trading problem in
this paper. Besides the trading mechanism, there are many
other issues to be considered in the LEM. For example, given
a LEM where there is no sufficient power supply, it is not clear
how prosumers can price their generated electricity and trade
with consumers to guarantee fairness. We will leave these
problems for future study.
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