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ABSTRACT On account of an increase in the human-computer interface applications, the study of automatic
personality perception has become more and more prevalent than speech signal processing in recent years.
These studies have shown that personality traits derived from psychology theories mainly affect acoustic
features. However, some obstacles remain in the automatic personality perception classification, and themost
important one is to extract the features related to each personality trait. Previous studies have shown that the
personality effect differs from one acoustic feature to the others. Additionally, there aremany features one can
extract from speech signals. Curse of dimensionality in features also makes the classification difficult. This
paper aimed to introduce and examine a novel and efficient automatic feature extraction method to classify
the well-known big five personality traits. In this regard, three data augmentation methods for increasing
data samples were examined. Afterwards, 6,373 statistical features were extracted from the nonverbal
features of the SSPNet Speaker Personality Corpus. Finally, an innovative stacked asymmetric auto-encoder
was utilized to extract useful features automatically to improve classification results. Compared with the
conventional stacked auto-encoder and convolutional neural network, the proposed method exhibited an
average improvement of 12.40%(10.14%) and 14.36%(1.42%) in terms of the unweighted average recall
(accuracy), respectively. In comparison with other published works, classification results also revealed a
notable average enhancement (11.78%) for unweighted average recall for all five traits and an average
improvement of 5.1% for accuracy in two out of five personality traits.

INDEX TERMS Asymmetric auto-encoders, big five inventory, curse of dimensionality, data augmentation,
deep neural networks, feature extraction, semi-supervised learning, personality traits.

I. INTRODUCTION
The importance of Personality Perception (PP) from speech
has increased with the advancement of science and tech-
nology, since in today’s world of digital and cyberspace,
analyzing individuals’ perceived personality (not true person-
ality) can help to grow these spaces smarter [1]. Regarding
the field of the personality-related human-computer inter-
face [2], a wide range of interesting applications, such as in-
car voice assistants [3], personalization of user interfaces [4],
user-problematic behaviors in cyberspace [5], troubleshoot-
ing a cold start problem for new users of virtual service
provider systems [6] has been developed over the recent
years.

The associate editor coordinating the review of this manuscript and
approving it for publication was Maurizio Tucci.

In fact, the PP model describes the relationship between
a set of features of the speech signals and five measurable
personality traits derived from the psychology theory of the
Big Five Inventory (BFI) [7]. These traits are introduced as
Openness to experience (Ope.), Conscientiousness (Con.),
Extraversion (Ext.), Agreeableness (Agr.), and Neuroticism
(Neu.) [8], [9].

Aiming to find a significant relationship between speech
characteristics and personality traits, several audio features
were extracted manually by the data scientist (hand-crafted
features). In this regards, Mairesse et al. explored the corre-
lation between acoustic-prosodic, psychological features, and
personality traits [10]. In [11] and [12], the authors have clas-
sified personality by extracting statistical parameters from
speaking styles such as prosodic features, intonation, and
voice quality. The frequency-domain linear prediction and
Mel Frequency Cepstral Coefficient (MFCC) features were
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extracted in [13]. In [14], the acoustic and duration-related
features, such as silence ratio, speech duration ratio, and
speech rate features, were proposed. Moreover, Guidi et al.
evaluated the impact of median/mean of the fundamental
frequency of speech signal, the frame-to-frame jitter factor,
and the glottal flow spectral slope features on personality
recognition [15].

Studies were not limited only to the acoustic and nonverbal
features extraction. The lexical [8], [16], knowledge-based
features [14], and BFI questionnaire scores [17] were added
to this variety of features as well. The effort toward achieving
a wider variety of features reached 6,373 statistical feature
in [18].

Although the above-mentioned studies were an excellent
initiation for APP, they faced several challenges. Herein,
we described three important challenges in the field of Auto-
matic Personality Perception (APP) as follows and then intro-
duced our solution to overcome them:

1. Studies have indicated that a specific feature set and
model could not outperform all the five traits [19].
Therefore, the most critical challenge is to extract the
appropriate feature sets for classifying every five traits
individually.

2. A high-dimensional feature set poses a curse of dimen-
sionality problem. This phenomenon deteriorates the
model’s performance through irrelevant features [20].

3. By increasing the number of features, the trainable
model parameters increase, and more samples would
be needed for the complete training process as a result.

In this regard, some techniques such as a sequential direct
search algorithm [21], the correlation-based feature selection
method [22], mutual information [18] and feature selection
based on classification/statistical dependence [23] were intro-
duced to mitigate the problem of dimensionality curse and
reduce the trainable parameters of the model to extract appro-
priate feature sets. Although the classification results were
improved, the performance was still insufficient.

Before the advent of deep learning methods (DLMs),
the lack of effective methods to cope with high-dimensional
data and automatic feature extraction methods were obvious.

The development of DLMs in PP applications had been
growing in popularity afterwards. The Deep Belief Net-
works (DBNs) and Auto-Encoder (AE) were applied to
the low-level features in [24], and the results outperformed
compared with some baseline methods. In [25], Stacked
Auto-Encoder (SAE) and Long Short-Term Memory (LSTM)
on four hand-crafted feature sets were applied. The outcomes
exhibited an average improvement of 2% for all of the dataset,
except for one of them, for which no improvement was
specified.

Classifying prosodic features by Support Vector Machine
(SVM) were compared with applying the LSTM to MFCC
features in [26].

The authors in [27] employed a two-modality dataset
(video and audio) for APP. A VGG-face model together with

the Convolutional Neural Networks (CNN) were used for
processing the video dataset. In audio processing, however,
the deep learning techniquewas applied on log filter bank fea-
tures. This trend was the first-place winner of the ChaLearn
2016 APP competition [28].

Thereafter, the CNN method was employed for feature
extraction on the raw audio data of ChaLearn 2016 dataset
in [27]. Although the outcomes were notable, they were
diminished for all the traits in comparison with the first
winner of the competition.

Despite the ability of feature extraction of DLMs, con-
sidering published works in APP confirmed that the DLMs
were applied on the hand-crafted audio features, not on the
raw speech signals. The main reason is that DLMs need a
large dataset to outperform. However, one major obstacle
in APP has been to provide a suitable, available and anno-
tated dataset [19], which has limited the study of various
methods [19], [28]. In this paper, recently published data
augmentation methods were used to cope with the limited
samples of the dataset.

The other mentioned problems are extracting the appro-
priate feature sets and pose a curse of dimensionality issue.
DLMs sift all inputs to find patterns (unsupervised learning)
in a way that no one would normally be able to obtain [29].
To the best of our knowledge, there are different types of
patterns in speech signals related to emotion detection [30],
deception detection [31], and speech recognition [32]. There
is no need to extract all patterns but the appropriate ones
for our target (supervised learning). On the other hand,
fine-tuning of DLMs parameters causes the vanishing gra-
dient problem, which seriously dominates the extraction
of target-appropriate patterns [33]. To mitigate the learn-
ing problems of deep methods and curse of dimensionality,
we proposed a Stacked Asymmetric Auto-Encoder (SAAE)
as semi-supervised feature extractor from the hand-crafted
audio features.

The rest of this paper is ordered as follows: related works
are presented in section II; the dataset and the three data aug-
mentation methods are defined and introduced in section III;
section IV outlines the feature extraction based on the pro-
posed strategy; the results of the simulations are given in
section V; to evaluate the efficiency of our novel method,
comparison table is discussed in this section; finally, the con-
clusions are debated in section VI.

II. RELATED WORKS
Classifying personality traits in a two-way dialogue was
the aim of the article [34]. By applying the coupled Hid-
den Markov Model (HMM) classification to the correlation
between BFI scores and linguistic features, the obtained accu-
racy lied between 59.5% and 86.8%.

The speaker’s automatic trait prediction was studied based
on the acoustic and prosodic features extraction from speech,
using the neural network classifier [35]. The reported accu-
racy did not exceed the range of 68.68% to 81.63%.
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The SVM classifier was applied to acoustic and lexical
features [16]. The Unweighted Average (UA) recall results
were 74%–80%. In another study, the spearman correla-
tion was applied to deceptive and non-deceptive speech
as a feature selection method, and Sequential-Minimal-
Optimization (SMO) classification was considered. Finally,
the range of UA was 37%–44% [16]. These authors’
advanced paper was [36], in which they used the normal-
ized forms of the same dataset and features. They examined
separate models for each gender and test results by Weka’s
SVM classifier. The results exhibited a significant accuracy
improvement.

The purpose of [25] was to predict the speaker’s behavior
by nonverbal features. The authors considered the relation-
ship between the speech signal and personality traits using
spectral properties. The K-Nearest Neighbors (KNN) clus-
tering results were compared to the SVM, and the range of
accuracy was between 60% to 92%.

In a series of researches [37]–[39], the authors classified
the personality traits by extracting nonverbal features. They
improved the accuracy of classification results to the range
of 70.1%–88.8% through the SVM classifier and logistic
regression. Although the accuracy results were significant,
the confusion matrix in the article [12] showed that the recall
average of the low and high class was between the 53% and
65% range. They also expressed the effect of the number
of the BFI questionnaire evaluator variation on classification
and regression results.

The [26] manifests APP from speech signals by a
skip-frame LSTM system. the LSTM was applied on a
low-level feature set, and the empirical results showed out-
performs. Obviously, the LSTM system can learn person-
ality information better than the traditional SVM system
via extracting time-series information. In [26], deep learn-
ing performance on six sub-traits of BFI was examined and
discussed.

In [9], the variance of unknown differences in judgment’s
perception of modified speech targets with hierarchical clus-
tering reduces. Before the feature extraction step, three filters
were applied to the audio clips to avoid the uncertain effects
of noise, silence, and pitch. Some features, such as pitch,
pause rate, and power roll-off, are classified by three clas-
sifiers (SVM, KNN, and logistic regression). The accuracy
results are between 65.3% and 76.3%.

The unsupervised cross-modal feature learning algorithm
was proposed in [24]. In this model, the low-level features
were extracted first. Feature learning from the first set was
then employed based on DBNs and AE to recognize the three
modalities’ personality traits. The accuracy results demon-
strated that the proposed method outperforms compared with
the baseline methods.

The ChaLearn 2016 personality perception competition
was done, whose results are presented in [28]. The goal was
APP from amultimodal dataset. The outcomes of the success-
ful nine team’s approaches from 42 teams were presented and
discussed.

The first-place team proposed two separate models for
video and audio. Subsequently, they used a late fusion
method. For the video modality, A VGG-face model with
two layers of the CNN and a fully connected layer as the
output was used for pre-training (Transfer learning method).
The video dataset of completion fine-tuned the model. In the
audio processing step, log filter bank features were fed to a
fully connected layer with sigmoid activation functions [27].

The second-place team extracted the statistical parameters
from the spectral features for audio modality. The video clips
were preprocessing with face alignment. The output was fed
to a Recurrent CNN (RCNN) and trained end-to-end. The
audio features were fused with the video features. Therefore,
personality traits were predicted by RCNN [40].

The authors of [25] tried to classify personality traits
using DLMs. They applied SAE and LSTM. The low-level
descriptor features, two lexical dictionaries features and word
embedding feature set were extracted. The implementation
was done on two datasets. The accuracy results indicated no
improvement in one dataset compared with the state-of-the-
art works, but in the other dataset, average accuracy increased
by about 2%.

The purpose of [41] was to examine the contribution of
multi modalities to personality perception. The authors inves-
tigated different modalities and different fusion methods to
compare the two winners of the ChaLearn 2016 competition.
They implemented CNN to raw data of all the modalities for
feature engineering. The performance, however, decreased
compared with the first-place winner.

III. DATASET
One remaining challenge with speech-based personality per-
ception is the limitation in the dataset, which has been dis-
cussed frequently in academic conferences for a decade [42].
Some reasons behind these limitations are: 1) most of them
are not public, 2) some of them are not prosodically anno-
tated, 3) labeling is an expensive process, 4) training annota-
tors is a difficult trend, and 5) at least one psychologist must
be employed to supervise the annotating process.

A standard dataset that has been used mostly in APP
studies is described below.

A. THE PERSONALITY CORPUS
The SSPNet Speaker Personality Corpus (SPC) includes
640 speech clips in the French language. Each clip is recorded
in 10 seconds (short clip) because many studies have shown
that people form a first impression about a person charac-
teristics within the first 10s of a meeting. The number of
subjects was 322. 11 assessors (annotators) evaluated each
clip, who did not understand French and were not influenced
by linguistic cues. This evaluation was based on the BFI-10
questionnaire. The average of the 11 questionnaire scores was
the final scores for each clip [8].

The final scores equal to or over 50 got high labels (got 1
in the target vector), and the scores below 50 got low tags
(got 0 in the target vector). Thus, our algorithm’s target was

VOLUME 9, 2021 68597



E. J. Zaferani et al.: Automatic Personality Traits Perception Using Asymmetric Auto-Encoder

a vector like [0, 1, 1, 0, 1] for each audio clip representing
five personality traits. For instance, it means one can be at a
high level of Openness, Extraversion, and Conscientiousness
traits and be at a low level for the others simultaneously or
any other combination of 0 and 1.

Table 1 indicates the clip’s number of the SPC dataset at
the high and low levels in each trait.

TABLE 1. Number of short audio clips at high and low levels in each trait
at SPC dataset.

The SPC dataset is a suitable dataset for comparing our
novel method to the others since several published works
are based on it. Nevertheless, it contains insufficient samples
(640 samples) for Deep Neural Network (DNN) training.

One approach to solving this problem involves the use
of data augmentation techniques. Data augmentation is a
technique to expand the size of the current training dataset
artificially [43].

B. DATA AUGMENTATION
Data augmentation is a popular method in image enhance-
ment, especially when there is not another data resource.
Some transformations such as rotation, scaling, cropping, and
flipping are applied to copies of original images while the
label is preserved.

Regarding the study of PP, the use of data augmentation
methods is not as easy as in image processing. Because the
prosodic content of speech must be preserved during trans-
formations. So, those transformations must be examined to
ensure if the speaker personality differences maintained [42].

Recently, some methods have been proposed for audio
data augmentation in emotional classification [44] and speech
recognition [37], [45]. These data augmentation types are
based on the spectrogram of the audio signals [46].

The spectrogram is a frequency-time visualization of a
signal, represented in a 2-D color image in which the inten-
sity of the colors indicates the amplitude of the respective
frequencies components (see Fig.1-a) [30].

To illustrate the spectrogram, a speech signal x(n) with
N samples is proposed. x̂(n) is the Discrete Fourier Trans-
form (DFT) of a finite duration signal calculated by (1). The
inverse of it (IDFT) is presented by (2).

x̂(n) =
∑N−1

n=0
x(n)e−i

2πk
N n k = 0, . . . ,N− 1 (1)

x(n) =
1
N

∑N−1

k=0
x̂(k)e−i

2πk
N n n = 0, . . . ,N− 1 (2)

x(n) is divided into consecutive frames with m samples
(m < N ). The frame overlap is m-2. Every single frame
contains

[
x[j], x[j+ 1], . . . , x[j+m− 1]

]T samples, where

j is the sample number by which the frame starts. Placing the
frames together, one can obtain X as:

X =


x [1] x[2] . . . x[N-m]
x[2] x[3] . . . x[N-m+1]
...

...
...

...

x[m-1] x[m] · · · x[N]


In this paper, three audio augmentations, including time

warping, time masking and frequency masking methods, are
utilized as follows.
Time Warping: In this method, a random point along the

time axis of the spectrogram is chosen. The spectrogram
is warped to the left or right by a distance of w in the
range of (w,N− w) [45], [47]. To be specified, the warping
method employs per-pixel flow vectors. It is applied to the
spectrogram specified by a flow field over time. It defines a
pixel value in the output image corresponding to that pixel
in the origin spectrogram (image). By this trend, the location
of a new point does not necessarily map to an integer index.
For instance, the pixel value (t,f) in the original spectrogram
is (t-flow(t,f),f) in the new spectrogram. So, the pixel value
is captured by calculating the bilinear interpolation around
(t-flow (t,f),f). Put simply, this method squeezes and stretches
the spectrogram through the time axis by interpolation tech-
niques (Fig. 1-b) [43], [48], [49].
Time Masking: t consecutive time steps are masked,

replaced by a minimum intensity, at a random point along the
spectrogram’s time axis in the range of [t0, t0 + t), where t0
is chosen from [0,N− t) randomly [45], [46]. The vertical
black strip with a bandwidth of t in Fig. 1-c is the visual
illustration of the time masking method.
Frequency Masking: f consecutive frequency channels are

masked, replaced by a minimum intensity, at a random
point along the spectrogram’s frequency axis in the range of
[f0, f0 + f), where f0 is picked from [0, ν − f) and ν indicates
the number of frequency channels [45], [46]. The horizontal
black strip with a bandwidth of f in Fig. 1-d displays the
frequency masking effect on the spectrogram.

The time masking and frequency masking methods are like
the cutout data augmentation technique. According to Fig. 1,
the minimum intensity means −80 dB. The sound intensity
is calculated by (3).

sound intensity (dB) = 10 log
(
P2
P1

)
(3)

where P1 and P2 are the powers of the sound, the P1 is the
reference power, and the P2 is the studied power. In our study,
P1 and P2 refer to the value in matrix X̂. From Fig. 1, it is
evident that themaximum intensity illustrated by 0dB. So, the
P1 is the maximum power (reference power). Therefore it can
be concluded from (3) that P1 = 108P2 for sound intensity
−80 dB. If considering P1 related to value 1, the P2 is related
to value 10−8 (near to zero).
To analyze the three data augmentation effects, the recon-

structed signals of these three methods are illustrated
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FIGURE 1. Three audio data augmentation methods. a) Displaying the original spectrogram. b) Showing the time
warping method applied to the spectrogram. c) Representative time masking method applied to the spectrogram.
d) Exhibition of the frequency masking method applied to the spectrogram.

FIGURE 2. Original speech signal (a) in comparison with reconstructed speech signal affected by (b) time warping (c) time masking
methods, and (d) frequency masking.

in Fig. 2. As noted, the spectrogram is calculated by applying
the DFT to X, which makes the X̂ matrix as:

X̂ =


ˆx[1] ˆx[2] . . . ˆx[N−m]
ˆx[2] ˆx[3] . . . ˆx[N−m+ 1]
...

...
...

...
ˆx[m− 1] ˆx[m] · · · ˆx[N]


For reconstructing a speech signal from the spectrogram,

the IDFT is applied on the X̂ by (2). Note that DFT and IDFT
are applied to the columns of X and X̂, respectively.

Fig. 2 shows an original signal compared with the
reconstructed signals affected by time warping (Fig. 2-b),
time masking (Fig. 2-c), and frequency masking (Fig. 2-d)
methods.

Comparing Fig. 2-b with Fig. 2-a, it can be concluded
that the time warping method shifts the DFT values of the X
matrix in the time axis, and because of using the interpolating
technique, the values around the baseline are increased.
Time Masking Analysis: By employing the time masking

method, some consecutive columns of X̂ are replaced with

zero. For signal reconstruction, the IDFT output of these
columns is zero columns too. Therefore, it is expected that the
time masking method sets the reconstructed signal’s ampli-
tude to zero in the specified time range. Fig. 2-c indicates
such analysis.
Frequency Masking Analysis: Using the frequency mask-

ing method, some rows of X̂ are replaced with zero according
to the channels that must be masked. Applying (2) to X̂ with
some zero values, the matrix Z is provided as:

Z =


z[1] z[2] . . . z[N-m]
z[2] z[3] . . . z[N-m+1]
...

...
...

...

z[m-1] z[m] · · · z[N]


where z(n) < x(n) for n = 1, . . . ,N due to the summation
with zero values. It is expected that the reconstructed signal
with this method has a lower amplitude compared with the
original signal (Fig. 2-d).

We also touch on some statistical analysis in the following.
A comparison table of a descriptive statistic, the histogram
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TABLE 2. A descriptive statistic of reconstructed signals compared with
the original signal.

FIGURE 3. Histogram and density plot of three reconstructed signals and
the original speech signal.

and density plot of those reconstructed signals compared
with the original signal are reported in Table 2 and Fig. 3,
respectively.

The description and analysis of Table 2 are as below.

1. Length: The length of the four signals is the same.
It means the mentioned manipulations do not change
the length of the signal.

2. Mean: The mean of time masking and frequency mask-
ing is near zero. It is because of the amplitude decreas-
ing process in these two methods. For the time warping
method, the mean is higher than the original. It is due
to the interpolated technique that replaces the original
value with the average of some other values.

3. Std. Deviation (a measure of the amount of variation
in data): For the time masking and frequency masking,
this measure is lower than the original and for the
time warping is higher than the original. It can be seen
in Fig. 3.

4. Skewness (a measure of symmetry): Although this
measure for all signals is near zero, the skewness value
for the original signal and time warping is positive, and
the two others are negative. Due to the low value of this
measure, it is not easy to show our description from
Fig. 3.

5. Kurtosis (a measure of heavy-tailed/light-tailed relative
to a normal distribution): As can be concluded from

Table 2, all four signals have heavy-tailed than the
normal distribution. The time masking is tailed than
others. Also, It can be concluded from Fig. 3.

6. P_value (probability of rejecting the null hypothesis):
The null hypothesis is true for the three augmented
methods. In this study, the null hypothesis is that there
is no statistically significant difference between the
mean of the studied reconstructed signal than the orig-
inal signal. The significance level is 5%.

The narrower the black band in the time masking and the
frequency masking, the more similar the reconstructed signal
to the original signal.

It should be noted that changes in speech signal lonely do
not represent specific information about variation in personal-
ity. In other words, just statistical analysis cannot comment on
the personality trait manipulation extracted from the recon-
structed speech signal. In fact, accurate analysis is a com-
plicated task to do. We need to choose transformations that
maintain speaker’s personalities. So, we have to be confident
that such manipulations in the spectrogram do not interfere
with the extracted features related to personality traits. In this
regard, the best way is to classify some features extracted
from the augmented signals and discuss the results afterwards
to confirm our analysis in the experimental result section.

Hereafter, the datasets based on time warping, time mask-
ing, and frequency masking are called Twarp, Tmask, and
Fmask.

IV. SUGGESTED STRATEGY
The flowchart of the human-computer interface is manifested
in Fig. 4. The stages within the dashed line box display our
work steps.

FIGURE 4. Human-computer interaction flowchart containing the
framework of our work.

According to Fig. 4, the mentioned audio data augmenta-
tion methods were performed on the speech dataset first. The
frame-level features were then extracted from the augmented
dataset. Nevertheless, personality perception is more com-
plex than being taken at the frame level. Therefore, statistical

68600 VOLUME 9, 2021



E. J. Zaferani et al.: Automatic Personality Traits Perception Using Asymmetric Auto-Encoder

properties were extracted from frame-level features of the
entire a clip to utilize long-term variations. Our proposed
method was applied to statistical features to extract new ones.
Finally, the five personality traits were classified using the
features obtained from our novel method.

In the following, each stage is described in detail.

A. FEATURE EXTRACTION IN FRAME LEVEL
Low-Level Description (LLD) features have been extracted
from the Opensmile2.3 toolkit (a 60ms frame with a 20ms
overlap in the time domain and a 20ms frame with a
10ms overlap in the frequency domain in every 10-second
utterance).

The IS12_speaker_trait configuration file extracts 130 LLD
features. These features include 65 LLD and 65 first deriva-
tives of LLD (1LLD), which are described in Table 3. All the
extracted features are eventually named LLD. These LLDs
are a set of characteristics consisting of prosodic, cepstral,
spectral, and voice quality features. As a result, 130 frame-
level features were extracted [18].

B. FEATURE EXTRACTION IN CLIP LEVEL
At the clip level (audio level), 6,373 statistical parame-
ters were extracted separately from the augmented dataset.
Reference [21] describes the details of these features.

Although the clip-level and frame-level feature sets pro-
vide useful information about the speech signal, previous
studies have indicated no direct relationships between speech
features and personality traits. Thus, we proposed a novel fea-
ture extraction method based on deep learning to accomplish
a nonlinear relationship between personality traits and speech
characteristics.

C. FEATURE EXTRACTION WITH ASYMMETRIC
AUTO-ENCODER
AEs are unsupervised learning algorithms to reconstruct their
input as output [50]. The weight matrix of the decoder layer
transposes the encoder layer weight matrix [51]. This prop-
erty of the auto-encoder makes the decoder and encoder
layers to be symmetric. A conventional SAE with high depth
depended on properties and dimensions input data encounters
the problem of vanishing gradient. This problem comes up
when gradient values back-propagates to the beginning of the
network, in such a small extent that the network’s parameter
changes are negligible or completely stopped [33]. Therefore,
the deep network’s first layers’ parameters would not be tuned
well and degrade the classification results [52].

Although fine-tuning improves parameter training,
it restricts the use of classifiers. In other words, a gradient-
based classifier must be employed [53].

In our approach, one neuron is added to the decoder section
of the Conventional AE (ConAE), whose value is the person-
ality traits label. Cleverly adding this neuron to the decoder
layer causes the label to be involved in the weight training
process but is removed in the testing process.

Fig. 5 is shown our proposed AsyAE.

TABLE 3. The 130 LLD features, including 65 LLD and 65 1 LLD
features [18].

Adding a neuron into the ConAE can turn unsupervised
learning into a semi-supervised one. This single neuron pro-
duces 1 × n1 + 1 weights (blue lines in Fig. 5). Here, n1 is
the number of input layer neurons. The error is obtained by
subtracting this neuron’s output and its desired value, which
back-propagates to the encoder and decoder layers.

The desired value of this single neuron is important. If 1
(high level) or −1 (low level) is chosen, the output neuron
would be saturated. If 1 (high level) and 0 (low level) is
selected, the zero value will deactivate the neuron. Hence, 0.5
and −0.5 are selected as the desired values for the high and
low levels, respectively.

The feed-forward equations for AsyAE are described as
follows.

For the encoder layer:

net(1) = W(1)X (4)
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FIGURE 5. Our proposed asymmetric auto-encoder.

O(1)
= f

(
net(1)

)
(5)

W(1) is the weight matrix of the encoder layer. X indicates
the input matrix in each AsyAE, which is the feature matrix
introduced in section IV-B for the first AsyAE and the previ-
ous AsyAE encoder output matrix for the remaining AsyAE.
In all equations, superscript 1 represents the encoder layer,

and superscript 2 represents the decoder layer.
Coming to the decoder layer:

net(2) = W(2)O(1) (6)

O(2)
= f

(
net(2)

)
(7)

O(1) and O(2) are the encoder and decoder layer’s output
matrixes, respectively. W(2) is the weight matrix of the
decoder layer.

Since the dimensions of the weight matrix of the encoder
and decoder layers are not equal (W(1)

6=
(
W(2)

)T
), the pro-

posed auto-encoder would be considered as asymmetric.
The weight matrix of the decoder layer is as follows:

W(2)
=


w(2)
11 w(2)

12 · · · w(2)
1n2

w(2)
21 w(2)

22 · · · w(2)
2n2

...
...

...
...

w(2)
(n1+1)1

w(2)
(n1+1)2

· · · w(2)
(n1+1)n2


In this matrix, n1 and n2 are the number of input layer

neurons and encoder layer neurons, respectively.
In (7), f demonstrates the activation function. Here,

we have two points to choose neural network activation func-
tions. 1) Preventing the activation function saturation, and
2) Including both linear and nonlinear ranges [33]. Thus,
the softsign function was chosen. This function has linear,
nonlinear, positive, and negative ranges larger than the tanh
function, which causes later saturation than tanh [50]. Explor-
ing more nonlinear space for feature extracting, we opted
for the activation function, which provides a rather larger
nonlinear range.

Fig. 6 compares the softsign (the blue curve) and tanh (the
red dotted curve) functions.

FIGURE 6. Comparison of softsign and tanh activation function diagram
in terms of saturation speed, linear and nonlinear region.

The softsign function is defined by (8).

f(x) =
x

1+ |x|
(8)

The error back-propagation equation is:

et = dt − o(2)t (9)

et is the AsyAE error vector and dt is the desired output
vector at time t.

The vector dt belongs to the D matrix.

D =


x11 x12 . . . x1n0`
x21 x22 . . . x2n0`
...

...
...

...

xm1 xm2 · · · xmn0`


The D is the desired output matrix of AsyAE, which is

a combination of labels and AsyAE input. The components
of the matrix D are xij and `. For the first AsyAE, xij is
the feature matrix elements, and for the other AsyAE, are
the previous AsyAE encoder layer’s output. ` is the label of
personality trait, in which the values are −0.5 (low level) or
0.5 (high level).

For the first AsyAE in the stacked auto-encoder, the dimen-
sions of the matrix D would be m× (n0 + 1). Here, m is the
number of samples and n0 is the number of features, which
is 6373.

For the second AsyAE, and the rest of them, the dimensions
of the matrix D are equal to m×(ni + 1). ni is the number of
neurons in the encoder layer in the AsyAEi−1.

Assuming the five personality traits are independent, five
separate neural networks are trained to classify five person-
ality traits.

Moreover, the model error loss function is calculated
using the logcosh function [54]. The logcosh works like
the mean squared error (MSE) but not affected by the
incorrect prediction. The formula is described in (10) as

68602 VOLUME 9, 2021



E. J. Zaferani et al.: Automatic Personality Traits Perception Using Asymmetric Auto-Encoder

follows:

E =
1
k

k∑
i=1

log (cosh (et)) (10)

where k is the number of neurons in the decoder’s output
layer.

Fig. 7 illustrates the complete diagram of our feature
extraction method and classification stage. SAAE, in which
each weight is pre-trained by AsyAE, extracts new features
from clip-level features. The features obtained by the pro-
posedmethod are then classified by SVM to determine if each
personality trait level is low or high.

FIGURE 7. Schematic illustration of SAAE for automatic feature
extraction. The depth and neurons per layer are selected during the
training process. The SVM classifier was utilized to recognize the high or
low level of the personality trait studied.

Using semi-supervised training in every AsyAE can man-
age the vanishing gradient problem, which occurs inevitably
for high-depth DNNs. So the depth of DNN can increase as
much as needed. For more emphasis on this ability, we used
the SVM classifier to indicate that DNN parameters are
appropriately adjusted, and the fine-tuning process is not
needed by gradient back-propagation. It is important to note
that our method did not solve the vanishing gradient problem,
but the novel semi-supervised training method eliminated the
need for fine-tuning. Hence, the vanishing gradient problem
will not occur, and the network depth can increase as much
as needed.

The parameter training process is accomplished as soon as
the epoch (the number of times the parameters are updated)
reaches its maximum [40], or the error rate stopped improv-
ing [55]. As discussed in the introduction, the purpose of
AsyAE is to extract those features that provide adequate sepa-
ration between low and high levels of the studied personality
trait, but adding a neuron alone does not meet this goal. Thus,
a further stop criterion is needed to find the epoch where the
trained weights are the maximum separation between the two
levels. In other words, although personality traits influence
the features extracted by the AsyAE, this alone does not
guarantee that the obtained features will be well separable.
Therefore, J variation is also examined.

J is a ratio of between-class scattering to within-class
scattering, which is a scalar value. The higher the J value,
the greater the separation.

The value of J is calculated as follows:

J =
det(SB)
det(SW)

(11)

Sw =
c∑
i=1

∑
x∈ci

(X− µi)(X− µi)
T (12)

SB =
c∑
i=1

ni(µi − µ)(µi − µ)
T (13)

where SW is a within-class scattering matrix, calculated
by (12) that should be minimized, whereas SB is a
between-class scattering matrix, calculated by (13) that
should be maximized [56]. X is the encoder output matrix
and c is the number of classes.

It should be noted that both the SW and SB matrixes are
defined for the encoder layer.

In (11), det represents the determinant of the matrix. There
are binary classes (low and high). ni and µi in (12) and (13)
are the numbers of samples in each class and each class’s
mean matrix, respectively, for the high class, i = 2 and for
the low class, i = 1. µ is the mean matrix for all samples.

Relying on the fact that different personality traits have
different effects on speech characteristics [57], [12], [54],
using the same DNN structure for all traits to extract features
is not recommended.

Hence, the network’s depth was determined by classifying
the output of each AsyAE encoder layer by the SVM with
radial basis function kernel. The AsyAE with higher classi-
fication results is considered as the output layer of the SAE.

V. EXPERIMENTAL RESULTS
In this section, the results of the two simulations are
discussed.

Firstly, we evaluated the augmented SPC dataset to prove
the effectiveness of augmented data in the APP. Then,
the stacked AsyAE was applied to the augmented dataset.
Finally, the proficiency of our feature extraction method was
compared to that of other methods and published works.

A. DATA AUGMENTATION RESULTS
As mentioned in section III-B, the three audio augmentation
methods must be evaluated in the APP field.

In this context, the method proposed in [12], which is the
first usage of SPC dataset in APP, was implemented with
these three augmented datasets.

We implemented the article [12] once with the original
SPC dataset and compared the accuracy and UA recall results
to those of the published values. The process of [12] is
implemented on Twarp, Tmask, and Fmask datasets.
Four statistical features, calculated from some acoustic

features, were extracted from the original and augmented
SPC datasets. Afterwards, the features were classified by
logistic regression. These features are the maximum, mini-
mum, mean, and entropy of pitch, first and second formant,
energy and the length of voiced, and unvoiced segments.
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TABLE 4. Classification results of the SPC dataset to illustrate the impact
of three audio augmentation methods compared with the original dataset
in terms of UA recall% (accuracy%).

Table 4 indicates the regression results of the augmented
dataset for each trait at high and low levels. The grey column
specifies the published results in [12].

The Original-Our column shows our implementation
results based on the original SPC dataset. N/A represents the
considered value was not available. Obviously, the results we
obtained were close to those announced in [12]. As a result,
we analyzed the results of the other three datasets confidently.

Comparing the outcomes of Twarp, Tmask, and Fmask
with Original-our, it was observed that although the UA
results were lower than those in the Original-our, the three
traits (Openness, Agreeableness, and Conscientiousness) had
a higher UA recall in the Twarp dataset. In contrast, Neuroti-
cism and Extraversion had the upper UA in Fmask dataset.
Henceforth, in this article, our proposed method was exam-
ined based on Fmask for Neuroticism and Extraversion traits
and based on Twarp for the three others.
It should be emphasized that with the augmentation

method, the number of audio signals can increase to the
desired number asmany times as needed. However, in the first
simulation, the number of augmented signals in each dataset
was kept as the number of the Original dataset for a more
accurate comparison. For the second simulation, the number
of clips increased up to 64,000 in each dataset.

B. ASSESSMENT OF THE FEATURE EXTRACTED BY AsyAE
For comparing the proposed method to the DLMs, two sim-
ulations were done with five different models for five traits.
There are two major reasons for separating model for each
trait as follows:

1. As discussed in the introduction, there is no evidence
claiming that a specific feature set could work well for
all five personality traits.

2. As Table 4 indicates, the augmented dataset was differ-
ent for the five traits, which means we did not have one
dataset for the five traits.

Hence we implemented five independent classification
models for conventional stacked auto-encoder (SAE), CNN,
and our proposed method (SAAE). In this way, keeping net-
works’ basic conditions the same, a fairer comparison shall
be made.

In the first simulation, the same structure (number of hid-
den layers and the number of neurons in each layer) was
implemented for SAE and SAAE. The input matrix contained
6,373 statistical features for both methods. AsyAE was used
to train weights of SAAE, and ConAE was utilized for the SAE.
Although the two networks had the same structures, the same
learning rate could not be used because of their different
training weights process. Then, the learning rate of the two
networks was adjusted separately. It was observed that if the
learning rates were considered the same, one of the networks
would be overfitted.

A batch normalization technique was used to normalize the
input layer in both networks [58], and a dropout method was
used to prevent overfitting [59].

The same training/development/test set was employed for
both networks as well. The initial weights of SAE and SAAE
were considered the same.

Fig. 8 indicates the trend of loss error of the AsyAE com-
pared with ConAE. Tr_Loss Asy and Tr_Loss represent the
training dataset’s loss error in the AsyAE and the ConAE
method, respectively. Also, Val_Loss Asy and Val_Loss rep-
resent the loss error of the development dataset of the AsyAE
and the ConAE method, respectively.

FIGURE 8. Training and development loss error diagrams of AsyAE vs.
ConAE for the first encoder layer in the Conscientiousness trait.

As the ConAE was symmetric, which reduced the com-
putational complexity, the maximum epoch was 30, but for
the AsyAE, it was set to 500. Adding a neuron was caused by
adding the labeling error to the reconstruction error increased
the total error. Consequently, more epochs were considered
for the training parameters of AsyAE. This was the reason
why stopping the loss error diagrams of ConAE was earlier
than that of AsyAE.

The convergence speeds of the two methods’ error dia-
grams were not comparable because their learning rates were
different.

For note, the objective was to achieve greater resolution
between the low and high levels to classify five personality
traits. Due to the offline training, the convergence speed did
not affect choosing a better method.
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The vertical dashed line in Fig. 8, which is calledMax J loc
in Asy, indicates the epoch at which the maximum J occurred.
This criterion was considered after the first ten epochs to
ensure the network is partially trained. This was because the
initial weights may be such that they maximize the J value
first, but this value is not valid if the network is not trained.

The comparison of J variation in ConAE and AsyAE is
illustrated in Fig. 9. It shows that AsyAE was substantially
better than ConAE to create binary class separately because
the J in Asy_AE was higher than J in AE.

FIGURE 9. J variation diagrams of AsyAE vs ConAE for the first encoder
layer in the Conscientiousness trait.

The diagrams in Fig. 8 and 9 are related to these two
networks’ first hidden layers. The description of the other
layers is the same.

In the second simulation, we employed 6,373 statistical
features as an input of the one dimensional CNN for feature
extraction with a fully connected layer at the end [60]. This
approach is similar to the other works using DLMs, described
in the literature. The batch normalization and dropout tech-
niques were used for each convolution layer. The same train-
ing/development/test set as the first simulation was used.
We considered a different kernel size and stride size for the
convolution layers of five CNN models.

The loss error diagrams of CNN are shown in Fig. 10.
In this figure, Tr_Loss CNN and Val_Loss CNN represent the
training and development dataset’s loss error in the CNN,
respectively.

Due to the different structure of CNN and our proposed
method, it was not possible to compare the loss error values.

The classification results of the two simulations are
reported in Table 5.

Table 5 compares SAAE with SAE and CNN in terms of UA
recall and accuracy. ColumnN denotes the number of neurons
in the hidden layer by which the best classification results in
that layer occurred. Its value indicates the depth of the neural
network designed for each personality trait and the degree of
nonlinearity of the extracted features.

In the Agreeableness trait, the depth of the SAE and SAAE
networks were the same. This means that for this personality
trait, both networks achieved features with the same degree of

FIGURE 10. Training and development loss error diagrams of CNN for the
first convolution layer in the Conscientiousness trait.

TABLE 5. Comparison results of the SAAE with the SAE and CNN in terms
of UA recall% (Accuracy %).

nonlinearity, but due to the semi-supervised training of SAAE,
the classification results improved compared with SAE. For
the other four traits, the depth of SAAE was more than that of
SAE, which means SAAE explored more than SAE in feature
space. On the other hand, this indicates that Neuroticism,
Extraversion, Openness, and Conscientiousness need higher-
orders of nonlinear properties to be well classified.

As mentioned, the criteria for evaluating APP methods
based on speech signals in various articles were UA recall
and accuracy. From this perspective, all of our results are
presented based on these two criteria, and 10-fold CV evalu-
ated outcomes. For two reasons, we chose ten folds. In most
of the personality perception studies on the SPC dataset, ten
foldswere employed, whichmeets the number of the samples.
Therefore, we also went for ten folds herein accordingly.

FromTable 5, it can be concluded that the proposedmethod
could simultaneously enhance both accuracy and UA recall in
comparison with the conventional stacked auto-encoder.

As demonstrated in Table 5, our novel method’s UA results
weremore efficient than those of the CNN in all the five traits,
although the accuracies of Openness and Agreeableness traits
in CNN were more than SAAE. One of the major reasons is
that CNN uses the pooling layer for dimensionality reduction
and downsampling features [61]. The pooling layer depends
on its size and type and ignores some beneficial information.
Meanwhile, the SAAE method reduces dimensionality by
controlling features quality through a smart stop criterion and

VOLUME 9, 2021 68605



E. J. Zaferani et al.: Automatic Personality Traits Perception Using Asymmetric Auto-Encoder

considers classification results in each layer. The other reason
is that the CNN feature extraction process (in convolution
layers) is unsupervised [62]. The inefficiency of unsupervised
features was described in detail in the introduction section.
Also, from a practical point of view, the vanishing gradient
problem affects CNN parameters trained by the fine-tuning
process. As a result, the deep method’s first layers cannot
be tuned well. The first layer tuning is important because it
is the feature extractor of hand-crafted features and the only
layer related to it. If this layer’s fine-tuning is not satisfied,
the other layers are affected by the classification results.
Meanwhile, the SAAE uses the semi-supervised method to
find appropriate features related to personality. On the other
hand, according to the kernel size, feature extraction in the
convolutional layer is local. For example, the first convolution
layer ignores the relationship between the first hand-crafted
feature and the last one, while in SAAE and SAE methods, it is
globally through the fully connected layer in each layer. The
last consideration of CNN is the stride size which determines
how many features the sliding window skips.

The above issues are the properties of convolutional neural
networks, yet in the subject of the current study, are kinds of
weakness. Because of the limitations in the dataset, the out-
standing authors used hand-crafted features as the input of
deep methods described in the introduction and related works
sections.

It should be noted that it is not possible to compare the
depth of CNN to that of SAAE because the feature extraction
process is different.

Now we want to have a comparison with the methods
suggested in other articles.

Table 6 compares the UA and accuracy results obtained
from the proposed method and previous studies applied to
the SPC dataset. As demonstrated, our proposed method was
simple, but accomplished UA recalls comparable to other
works in all the five traits. It can also be deduced from Table 6
that previous methods were not effective in classifying all the
five personality traits simultaneously. For example, for the
method of [14], the UA and accuracy outcomes for Extraver-
sion and Conscientiousness are significant. However, only
Conscientiousness UA enhanced compared with previous
studies.

During a decade of intensive studies on APP, the classifica-
tion UA (accuracy) results has not exceeded 70.8% (69.2%)
for Neuroticism, 75.5% (76.3%) for the Extraversion, 73.4%
(74.7%) for Openness, 64.9% (65.3%) for Agreeableness,
and 75.7% (75.6%) for Conscientiousness. These results indi-
cate the complexity of the feature extraction process for APP
is acceptable despite the improvements in machine learning
algorithms. It is worth mentioning that the above percentages
of accuracy and UA results of a trait were not achieved by one
method but in different studies and different years.

As stated in the introduction, all the five personality traits
cannot be identified by one model only. In other words,
if classification results obtained from one specific set of
the feature were noteworthy, this set of feature would not

TABLE 6. Comparison Results Of our proposed method with other works
in the SPC dataset in terms of UA recall% (Accuracy %).

necessarily pay off for the other traits. The advantage of
our method, which results in such great success, is the fact
that it automatically extracts each personality trait’s appro-
priate feature set considering different network depths and
semi-supervised training.

Although using the AsyAE method increasedUA results for
all the traits, the accuracy of Extraversion and Conscientious-
ness decreased by 3.4% and 4.3%, respectively, compared
with [9]. Therefore, it should be noted that besides their
advantages, DNNs may have some drawbacks.

The neural network results, including DNNs, depend on
network structure and hyper-parameters tuning. Although
various methods have been proposed to obtain the optimal
neural network structure, no operational methods have been
proposed hitherto. Therefore, we used the grid searchmethod,
which could be the reason behind the lower accuracy of the
two traits.

VI. CONCLUSION
In this paper, an important challenge in the APP was
inspected. A novel asymmetric auto-encoder method was
then proposed to solve this challenge. The novel asymmetric
auto-encoder method, which trains each hidden layer param-
eters in a semi-supervised manner, was proposed to solve this
challenge.

The results indicated that adding one neuron to a conven-
tional auto-encoder has several advantages. The main contri-
bution would be the improved classification UA results of all
the five personality traits simultaneously (and an improve-
ment in three accuracy results). Using semi-supervised train-
ing in every DNN layer, the depth of DNN could increase
as much as needed. Particularly for the Extraversion trait,
it allowed DNN to acquire high levels of nonlinear features,
which improves classification results, in turn.

The other advantages are: 1) extracting appropriate feature
set automatically for each personality traits individually in
order to train five DNNs with different structures (different

68606 VOLUME 9, 2021



E. J. Zaferani et al.: Automatic Personality Traits Perception Using Asymmetric Auto-Encoder

depth and neuron per layer), 2) improving the training process
of DNN parameters in order to do semi-supervised training
per layer (the AsyAE ability), 3) reducing dimensionality,
4) finding saddle point of compressing and extracting a high
distinction feature set by using a smart stop criterion to clas-
sify the low and high levels in all the five traits, 5) ability to
use every machine learning classifiers except gradient base
in order to the precise weight adjustment within each AsyAE,
6) offering a novel and efficient automatic feature extraction
method to classify the well-known big five personality traits.

Finally, comparisons and analyses indicated the promising
improvement of the study in terms of UA recall compared
with the unsatisfactory results of other works.

As discussed, the neural network structure has a direct
effect on classification results. This structure is usually
obtained by trial and error, which is time-consuming and
not necessarily the best structure. As a result, an auto-
matic method was suggested to find the best structure in
future works to improve the accuracy of Neuroticism and
Extraversion.
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