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ABSTRACT Amodeling and parameter identification method for rate dependent hysteresis of piezoelectric
actuated nano-stage is presented in this work. A system level quasi-static hysteresis model is employed to
construct a neural network. To better describe the rate dependent behavior of hysteresis in piezoelectric
actuated stage, a Nonlinear AutoRegressive Moving Average with eXogenous input (NARMAX) based
dynamic model is incorporated with the quasi-static hysteresis model, where the weights of specifically
designed neural network corresponds to the model parameters. To handle the multivalued problem of
hysteresis, generalized input gradient is proposed to convert multivalued mapping of hysteresis into one-
to-one mapping. The parameters of the nonlinear rate dependent hysteresis in piezoelectric actuated stage is
identified by neural network training, taking advantage of their universal function approximation capabilities.
The proposed scheme is also compared with conventional black box and particle swarm optimization
identification based methods, simulation and experimental results demonstrate significant performance
improvement with an error of 20.77nm for proposed method whereas 96.56nm and 31.46nm for black box
and particle swarm optimization respectively.

INDEX TERMS Extended input space, neural network, model identification, piezoelectric actuator.

I. INTRODUCTION
Piezoelectric (PZT) actuators have received a great deal
of attention over the last few decades in nano-positioning
applications due to their high speed, stiffness, and fast
response [1]. PZT actuators are widely used in applications
such as micro/nano positioners, micro grippers, robotic sys-
tems [2], [3], positioning of microscope stage [4] etc. But the
presence of nonlinear rate dependent hysteresis in PZT’s out-
put response, due to their ferromagnetic nature, deteriorates
their positioning accuracy. Thus the precise modelling of
PZT’s output response is very necessary in order to increase
its positioning accuracy.

Different models have been presented in the literature
to describe the hysteresis phenomenon. For PZT actuators,
phenomenological models are widely used, including the
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Preisach [5]–[8], Maxwell-slip [9], [10], Prandtl-Ishlinskii
(PI) [11]–[13], and Krasnosel’skii-Pokrovskii (KP) [14].
Hysteresis compensation is complicated in these models due
to the difficulty they present in deriving the inverse hysteresis
model. On the other hand, physiological models, such as
the Bouc-Wen [15], [16] and Duhem [17] models, require
too many parameters to be identified [18], thereby making
the identification process a difficult task. Recently, a System
Level Model (SLM) was presented in [19], where hysteresis
behavior is described through a single function that links the
derivatives of the output and input quantities. As such, a sep-
arate expression is not required for describing the increasing
and decreasing curves of hysteresis. However, the curve-
fitting-based parameter identification approach presented
in [19] limits its performance.

Several works have been reported in the past on parameter
identification of hysteresis models for PZT actuators. Param-
eter identification using recursive least mean squares based
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algorithms is the prominent model identification technique
presented in literature [20]–[23]. Parameter identification
of NARMAX model by using least-squares support vector
machine is presented in [23]. In [22] a fuzzy least square
support vector machine technique which can overcome the
slow convergence problem of least-squares support vector
machine is presented. An adaptive least squares support vec-
tor regression based method is proposed in [21], where the
particle swarm optimization is used to optimize the hyper-
parameters. The support vector regressions based methods
usually suffer from slow training speed also hyperparameters
in such algorithms substantially affect the accuracy of regres-
sion. The swarm intelligence optimization based method has
also gain much importance for model identification recently,
due to their advantages of fast convergence and efficient
global optimization. Reference [24] presented an improved
partial swarm optimization (PSO) method to identify non-
linear dynamic hysteresis model. PSO and broad learning
system are used to identify nonlinear dynamical systems
in [25]. Generally, the optimization techniques suffer from
trapping within local optima which deteriorates the accuracy
of identified model.

Due to their universal approximation properties, intelligent
learning algorithms like neural networks have also received
attention recently for the modelling and identification of non-
linear systems [26]. To predict the response of nonlinear hys-
teric system a deep neural network based method is proposed
in [27]. NARMAXmodel based on the Pi-sigma fuzzy neural
network to describe the hysteresis in piezo-electric actuated
stage is presented in [28]. However, in most the of present
literature, the black box neural network model approximation
approach is adopted, where parameters of neural network
have no mathematical meaning. Since hysteresis corresponds
to a multivalued mapping function, it is not possible to
directly apply neural networks for the identification of PZT
models [29]. Generally gradient of hysteresis output w.r.t.
input gradient is used to transform the multivalued problem
into a one-to-one mapping problem [30]. But hysteresis in
piezoelectric actuators is a rate-dependent non-smooth non-
linearity, thus this gradient of hysteresis output w.r.t. input
gradient does not exist at non-smooth/extrema points.

This paper explores a feasibility of parameter identifica-
tion of the system level model [19] by transforming it into
a custom designed gray box neural network based model.
Unlike black box identification scheme, the weights of neu-
ral network in proposed scheme corresponds to the model
parameters which have clear mathematical meaning. In order
to deal with the multivalued nature of hysteresis a generalized
input gradient based mapping scheme is proposed which can
extract the moving tendency of hysteresis. An extended input
space was created using generalized input gradient to realize
the one-to-one mapping between input and output, which is
later used by custom design neural network for the identifica-
tion of model parameters. Finally, a NARMAX model based
dynamic model is added to the overall model to describe
the rate dependent properties of the PZT actuator. Series

FIGURE 1. The experimental setup.

of experiments were conducted to validate the performance
proposed modeling and identification scheme. The overall
contributions of this paper are, modeling of quasi static hys-
teresis model into a gray box neural network, development
of generalized input gradient model to convert multivalued
hysteresis into one-to-one mapping and finally introduction
NARMAX based dynamic model to describe the rate depen-
dent characteristics of pizo-driven nano stage.

The remainder of this paper is organized as follows.
Section II states the rate dependent hysteresis phenomenon
in PZT actuators. Concept of generalized input gradient is
described in Section III. Neural networks based modelling
approach is shown in section IV. Results of the experiments
with the proposed method are presented in Section V. Finally,
Section VI concludes the article.

II. EXPERIMENTAL SETUP AND HYSTERESIS
PHENOMENON IN PIEZOELECTRIC
ACTUATED NANO-STAGE
This section illustrates the rate-dependent hysteresis phe-
nomenon in piezoelectric actuated motion stage using an
experimental example. Figure 1 shows the experimental setup
to excite the PZT actuated motion stage and measure its out-
put response. Input signal, generated byMatlab Simulink/xPc
Target, is given to high bandwidth voltage amplifier by
16bit resolution DAC interface of NI-6259 for amplification.
The amplified voltage signal from high-bandwidth voltage
amplifier is fed to the X-Y PZT actuated nano stage. The
PZT actuated nano stage is excited in X-direction to record
input-output data of single DOF. MicroE systems Mercury II
6000 series linear encoder, with 1.2nm resolution and maxi-
mum speed of 61mm/sec, is employed to get the displacement
output data from actuator. Displacement data from linear
encoder is recorded via of NI-6259 data acquisition card at
a sampling rate of 20kHz. The motion system is mounted on
an air-floatation platform to reduce external disturbances.

The piezo-actuated nano-motion stage, with characteristic
natural frequency of 512Hz, is excited in single degree of
freedom with multiple input voltage signals, with amplitude
of 100V but different frequencies (i.e., 10hz, 25hz, 50hz
and 100hz), to observe the output displacement. The input
signal used here is sin (2π ft)+ ρ, where ρ is the dc offset to
keep input amplitude positive. Output displacement curve is
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FIGURE 2. Rate-dependent hysteresis in piezoelectric actuated
nano-stage.

plotted against input excitation(voltage) is shown in Figure 2.
It is observed that with the increase of frequency, the width of
output (displacement) to the input(voltage) curve increases.
A clockwise twist can also be observed in input output curve
with the increase in frequency.

Figure 2 shows that, hysteresis in PZT actuated nano-stage
is amultivaluedmapping phenomenawhich is rate-dependent
in nature. Whereas the neural network based identification
method requires a one-to-one mapping between output and
input. Thus neural network based method cannot be directly
applied to identify the hysteresis functions. The following
section deals with the mapping of multivalued hysteresis into
one-to-one mapping.

III. GENERALIZED INPUT GRADIENT
Hysteresis is non-smooth multivalued mapping nonlinearity
which makes it difficult to directly apply conventional model
identification techniques. The neural networks based identifi-
cation method requires a continuous relation with one-to-one
mapping between input and output data. Usually a hysteresis
output gradient with respect to input, is introduced in input
space to handle multivalued problem of hysteresis [30]. How-
ever, at extrema points this so called gradient of hysteresis
with respect to input does not exist. To deal with this problem,
a generalized input gradient based method is proposed in this
section.

Since hysteresis is a locally Lipschitz function, the input
gradient f́ [u (t)] can be obtained in smooth segments:

f́ [u (t)] =
u (t +1t)− u (t)

1t
(1)

where u (t) locally Lipschitz continuous input function such
that u (t) : Rn × R→ R, |1t| < γ is a small change in time
and γ → 0 is an arbitrary small positive number.

Generalized input gradient can be defined as:

f [u (t)] =

{
f̃ [u (t)] , extrema
f́ [u (t)] , else

(2)

from [30] the input gradient at extrema points, f̃ [u (t)] can be
defined as:

f̃ [u (t)] , co{limf́ [u (ti)] |ti→ t, u (ti)→ u (t) ,

× u (ti) /∈ �V ∪ N } (3)

FIGURE 3. Multivalued nature of hysteresis.

where N represents an arbitrary set of zeros, �V is the set
containing Lebesgue measure zero where f́ [u (t)] does not
exist and co is the convex closure.

From (3) it is clear that at extrema points the generalized
input gradient is bounded. The generalized input gradient at
extrema points, from the properties of rate-dependent hys-
teresis, can be expressed as:

f̃ [u (t)] = f́ [u (t − ζ )] (4)

where ζ → 0 is a small positive number. Since at turning
points the conventional input gradient from (1) does not
exists, f̃ [u (t)] can be utilized as the input gradient to extract
the change tendency of hysteresis.

However, it is well established that neural networks based
identification can only be applied to a continuous systemwith
one-to-one mapping[31]–[34]. In the following it is shown
that f [u (t)] is a continuous mapping function.
Lemma 1: For time instants t1&t2 ∈ t , where t1 6= t2,

f [u (t)] is a continuous mapping function such that if u (t2)−
u (t1) → 0 then f [u (t2)] − f [u (t1)] → 0, where u (t) ∈
M (R+) for time ‘‘t’’,M (R+) is the set of continuous function
of R+ and R+ = {t|t ≥ 0}.

Proof: Consider t1 and t2 are not extrema points, t2 −
t1 → 0 and t2 > t1, also consider rising curve case of
hysteresis loop from Figure 3 i.e. u (t2) > u (t1). For input
u (t1) at time t1:

f [u (t1)] =
u (t1 +1t)− u (t1)

1t
(5)

where 1t → 0 is a small change in time.

f [u (t2)]− f [u (t1)]

=
[u (t2 +1t)− u (t1 +1t)]− [u (t2)− u (t1)]

1t
(6)

For any periodic continuous input u (t), if u (t2)− u (t1)→ 0
then u (t2 +1t) − u (t1 +1t) → 0. From (6) if u (t2) −
u (t1) → 0 then f [u (t2)] − f [u (t1)] → 0. Same can be
proven for descending curve of hysteresis loop i.e. that if
u
(
t ,1
)
− u

(
t ,2
)
→ 0 then f

[
u
(
t ,1
)]
− f

[
u
(
t ,2
)]
→ 0 shown
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in Figure 3. Since from (4) f̃ [u (t)] ⊂ f́ [u (t)], hence it
is clear that f [u (t)] is continuous mapping for a periodic
continues input u (t).
Theorem 1: For hysteresis space defined as R2 : U × F ,

where u (t) ∈ U is the input and f [u (t)] ∈ F is the mapping
defined in (2), dH (t) is the output of rate dependent hystere-
sis, and input u (t) satisfies the condition in Lemma 1 then
there exist a continuous one-to-one mapping 0 : R2 → R
such that:

dH (t) = 0 (f [u (t)] , u (t)) (7)

Proof: Taking the contradiction approach to prove
theorem 1, consider a time instant (t +1t) and (t + 1t) >
t also (t +1t) − t = δ where δ → 0 is an arbitrary
small positive number. Consider input u (t1) and u

(
t́1
)
are

the inputs at time instants t1 and t́1 respectively as shown
in Figure 3 where:

u (t1) = u
(
t́1
)
, t1 6= t́1 (8)

for time instants t1 and t́1 are not extrema points, proposed
genitalized input gradient is given as:

f [u (t1)] =
u (t1 +1t)− u (t1)

1t
(9)

f
[
u
(
t́1
)]
=

u
(
t́1 +1t

)
− u

(
t́1
)

1t
(10)

let’s assume for u (t1) = u
(
t́1
)
:

f [u (t1)] = f
[
u
(
t́1
)]

(11)

from (9) and (10):

u (t1)− u (t1 +1t) = u
(
t́1
)
− u

(
t́1 +1t

)
(12)

from (12):

u (t1 +1t) = u
(
t́1 +1t

)
(13)

from Figure 3, it is clear that (13) contradicts with the prop-
erty of hysteresis which means that assumption made in (11)
does not hold. Hence:

(f [u (t1)] , u (t1)) 6=
(
f
[
u
(
t́1
)]
, u
(
t́1
))
. (14)

Thus there exist a one-to-one mapping such that dH (t) =
0 (f [u (t)] , u (t)), that can be used with conventional identi-
fication methods, such as neural networks, for the identifica-
tion multivalued hysteresis.

IV. NEURAL NETWORK MODEL OF HYSTERESIS
The hysteresis behavior of piezoelectric actuated stage is a
rate dependent phenomenon i.e. the overall output of the
actuator not only depends on the amplitude of input voltage
but also on input frequency. The output displacement due to
amplitude of input voltage is the quasi static behavior whereas
the change in output hysteresis with the change in input
frequency is the dynamic behavior of piezoelectric actuated
stage. The overall displacement output y(t) of the actuator
is sum of its static and dynamic response. Here the system
level model [19] is used to describe the quasi static behavior
of piezoelectric actuated nano-stage and NARMAX model

based dynamic model is proposed to describe its rate depen-
dent properties. Quasi static and dynamic sub-models of
piezoelectric actuated nano-stage are presented in Section IV-
A and B respectively.

A. NEURAL NETWORK QUASI STATIC SUB-MODEL
1) QUASI STATIC RELATION BETWEEN INPUT AND OUTPUT
For a piezoelectric actuated stage in quasi static state relation
between input voltag u (t) : Rn × R → R and output
displacement dH (t) [19] is given as:

dH (t) =
∫
d (u (t))

du (t)
dt

dt (15)

d (u (t)) = do + g
(
u (t)− Vshift (t)

)
(16)

where do and d (u (t)) are the initial conditions and pre-
exponential coefficient, u (t) is the input voltage, Vc is the
voltage constant. The exponential model fit g

(
u (t)− Vshift

)
is given by:

g
(
u (t)− Vshift

)
= 1d

(
1− γ e−

|u(t)−Vshift (t)|
Vc

)
(17)

where 1d, γ and Vc are the loop shaping parameters,
Vshift (t) ⊂ u (t) is the value of input voltage at last zero value
of input derivative:

VShift (t) =
∑∞

k=0
u (t)

∏(
t − tk

tk+1 − tk
−

1
2

)
(18)

where tk ∈ t is the time instant when input voltage derivative
attains its last zero value, such that

∀τ ∈ IR :
du (τ )
dt
= 0⇒ ∃k ∈ IN : τ = tk , tk < tk+1

(19)

and rectangular function5(x) is defined as:

∏
(x) =


0 if |x| >

1
2

1 if |x| ≤
1
2

(20)

2) CONSTRUCTION OF NEURAL NETWORK BASED ON
QUASI STATIC MODEL
This section demonstrates the approximation of quasi static
sub-model presented in previous section by converting it
into a custom design neural network. Displacement of PZT
actuator can be given as [19]

dH (t) = do +1d

(
1− γ e

−|u(t)−Vshift (t)|
Vc

)
u (t) (21)

1d , γ , andVc are the parameters to be identified. Considering
the universal approximation properties of neural network,
the generalized input gradient is introduced in (21) to convert
multi valued mapping of hysteresis into one to one mapping.
Rewriting (21) in discrete form:

dH (k + 1) = do +1doT

(
1− γoe

−|u(k)−Vshift (k)|
Vco

)
× u (k)+ hsf [u (k)] (22)

VOLUME 9, 2021 65443



K. Ahmed, P. Yan: Modeling and Identification of Rate Dependent Hysteresis in PZT Actuated Nano-Stage

FIGURE 4. Static sub-model neural network structure.

where T is the sampling time, 1do, γo and Vco are the
model parameter with the one-to-one mapping introduced
in the model and hs is hysteresis mapping coefficient. The
topological architecture of proposed neural network can be
designed by utilizing the interconnections and relationships
among the variables in (22). Figure 4 shows the struc-
ture of neural network where symbols ⊕ and ⊗ represent
addition and multiplication node respectively. σ1do,σγo , σhs
and σVco are the activation functions of the training nodes
of neural network for the identification of the parameters
hs,1do, γo and Vco. Specially designed inputs C1do,Cγo ,Chs
and CVco are used to train the weights w1do ,wγo ,whs
and wVco [18].
Adjustment of weights during training process can set an

optimized value of model parameters. Activation function for
the identification of parameters are defined as:

σ1do (x) = ea1dox (23)

σγo (x) = eaγox (24)

σhs (x) = eahsx (25)

σVco (x) = eaVcox (26)

activation function parameters a1do , aγo , ahs and aVco values
are the stepping stair height in order to achieve optimized
vales of neural network parameters.

Quasi static sub-model is trained by using a low frequency
data set according to the rules defined in Figure 4. Levenberg-
Marquardt training algorithm is used to train neural network.
Weight updating during training of static sub-model is done
by following:

1wst (k) =
JTst est (k)

(JTst Jst − µI )
(27)

wher

est (k) = yL(k)− dH (k) (28)

Jst =
[[
∂est (k)
∂hs

] [
∂est (k)
∂1do

] [
∂est (k)
∂γo

] [
∂est (k)
∂Vco

]]
(29)

where est (k) is the error matrix, yL is the output from training
data set, dH (k) is the output of static sub-model. Neural
network is custom designed such that the error function est (k)
can only be tuned by changing weights w1do ,wγo ,whs,wVco.
This implies that most of the entities in JTst will be zero
because they are not effecting the training process, thus the
overall training time will be less than the conventional black
box neural network identification technique.

B. NARMAX DYNAMIC SUB MODEL
In order to describe the rate dependent behavior of PZT
actuator, a dynamic sub-model is introduced. Since lin-
ear model cannot approximate the dynamical properties of
piezoelectric actuated stage properly, thus NARMAX model
based dynamic sub-model is proposed here. Output yD of
NARMAX based dynamic sub-model is defined as:

yD (t) =
(
u (t) , u (t − 1) . . . u

(
t − nf

)
, . . . y (t − 1) ,

y (t − 2) . . . y
(
t − ny

))
(30)

yD (t) =
(
x1, x2, . . . xp

)
(31)

where u (t) is the input signal, nf > 0, ny > 0 are the input
and output lags, p = nf +ny, xp represents the entities of vec-
tor yD (t) and is the mapping between entities of NARMAX
model inputs. (30) & (31) can be written in discrete form as:

yD (k) =
(
u (k − 1) , u (k − 2) . . . u

(
k − nf

)
, y (k − 1) ,

y (k − 2) . . . y
(
k − ny

))
(32)

yD (k) =
(
x1, x2, . . . xp

)
(33)

The corresponding NARMAX model can be described as:

yD (k) =
∑p

i1=1
θi1xi1 +

∑p

i1=1

∑p

i2=1
θi1i2xi1i2 . . .

+

∑p

i1=1
. . .
∑p

iq=1
θi1...iqxi1...iq (34)

where q is the order and θT is the vector comprising coeffi-
cients of NARMAX model. Dynamic model of PZT actuator
can be approximated accurately as two order system [17].
(34) can be modified in two order form as:

yD (k) =
∑p

i=1
θixi +

∑p

i=1

∑p

j=1
θijxij (35)

the parameter matrices θi and θij can be defined as:

θTi =
[
θ1, θ2, . . . , θp

]
(36)

θij =

 θ11 · · · θ1p
...

. . .
...

θp1 · · · θpp

 (37)

x =
[
x1, x2 . . . , xp

]
(38)

Figure 5 shows the neural network approximation of the
NARMAX model. The activation functions, σθi and σθij are
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FIGURE 5. Dynamic sub-model neural network structure.

given as:

σθi (x) =
1

1+ ewθix
(39)

σθij (x) =
1

1+ ewθijx
(40)

training rule for dynamic sub-model is given as:

eD (k) = yH − (dH (k)+ yD (k)) (41)

eD (k) is the error matrix for dynamic sub-model, yH is
the output of high frequency training set. For Jacobean JD,
parameters for optimized dynamic sub-model can be calcu-
lated by

1wD (k) =
JTD eD (k)

(JTD JD − µI )
(42)

JD =
[[
∂eD (k)
∂θi

] [
∂eD (k)
∂θij

]]
(43)

V. EXPERIMENTAL RESULTS AND DISCUESSION
A. IDENTIFICATION OF HYSTERESIS IN PIEZOELECTRIC
ACTUATED NANO-STAGE
This section illustrates the identification of quasi static sub-
model. First the training data was obtained by exciting piezo-
electric actuated nano-stage by appropriate input signal. For
the identification of quasi static model, arousing the actuator
dynamics, was avoided by selecting a very low frequency
signal as shown in Figure 6(a). Piezoelectric actuated nano-
stage was excited at input frequency as low as 0.5Hz with
an amplitude of 100V, and input/output data was recorded.
Initial condition, do, was calculated from a low voltage dc
input signal where piezoelectric actuated nano-stage show
almost no hysteresis i.e. 5VDC. After required training data
was obtained next step was initialization and training of
neural network. Training goal was set to 1e-12 mean square
error. Train data partition was set to (75:15:15) for training,
validation and testing respectively. Max epoch was set to
1000. Levenberg-Marquardt algorithm was used for training
purposes and best performance was obtained at 03 epochs.
Optimal parameter values can be calculated by evaluating
the values of weights and activation function of the neurons
of trained neural network as hs = 1967,1do = 0.4783,

γo = −370.47 and Vco = 24629 with the identified
parameters hysteresis nonlinearity in piezoelectric actuated
nano-stage can be predicted. Figure 6(b) and 6(c) shows
the measured and predicted results of piezoelectric actuated
nano-stage for output displacement and hysteresis respec-
tively. Error betweenmeasured and predicted results is shown
in Figure 6(d) where maximum peak to valley error is
20.77nm. The results show that predicted output curve is very
much in consistent with the experimentally obtained data.

Note that, grey box neural network based model iden-
tification is computationally inexpensive, i.e. it takes very
few epochs to train. This unique feature makes it suitable
for real-time reference tracking applications using predictive
control. The quasi static system level model can be dynam-
ically linearized on each control cycle of predictive control
by updating its parameters using grey box neural network to
achieve fast tracking control of nonlinear plants using linear
predictive controller [26].

B. IDENTIFICATION OF DYNAMICS OF PIEZOELECTRIC
ACTUATED NANO-STAGE
Dynamic model was identified after obtaining training data at
different input frequencies. Neural network based NARMAX
model, shown in Figure 5 was trained by Levenberg-
Marquardt algorithm according to the rules in (42) & (43).
Overall system performances (both static and dynamic mod-
els) was tested at input excitations of different frequencies i.e.
5Hz,10Hz and 25Hz as shown in Figure 7(a), 8(a) and 9(a)
respectively. Figure 7(b), 8(b) and 9(b) shows the exper-
imentally obtained output curve along with the predicted
output from the proposed method. It is clear that predicted
output at different frequencies is following the experimental
data with high precision. The maximum error ranges from
24.62 nm ∼ 30.47nm for different frequencies as shown in
Figure 7(d), 8(d) and 9(d). Predicted and measured hystere-
sis responses are shown in Figure 7(c), 8(c) and 9(c). These
experimental results show that the proposedmodel identifica-
tion method can predict the output dynamics of piezoelectric
actuated nano-stage with high accuracy.

To compare the performance proposed modeling scheme
with existing black box neural network based modeling
method, the input/output data set obtained from piezoelectric
actuated nano-stage in section V-A was used to train black
box neural network. Back propagation training technique
with Levenberg–Marquardt training algorithm was used.
Table 1 shows comparison between performance of proposed
method and different variants of black box identification
method, i.e. 17, 25 and 35 neurons. Maximum error compar-
ison between proposed scheme and black box identification
method is shown in Figure 10. The proposed method outper-
forms the conventional black box identification scheme, with
maximum error of 20.77nm as compared with best perfor-
mance of black boxmodel at 35 neurons, i.e. 96.56nm.Which
shows the proposed method has obtained more accurate mod-
eling results with less training time as compared to existing
black box identification scheme. Furthermore, the proposed
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FIGURE 6. Static model identification a) input signal, b) predicted and measured output values, c) predicted and measured
static hysteresis, d) error.

FIGURE 7. Over all model response at 5Hz a) input signal b) output displacement c) hysteresis output d) error.

FIGURE 8. Over all model response at 10Hz a) input signal b) output displacement c) hysteresis output d) error.

gray box neural network based identification method is
compared with conventional PSO based identification. The

parameters of quasi static model were identified by PSO,
the output curve generated is shown in Figure 10. PSO was
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FIGURE 9. Over all model response at 25Hz a) input signal b) output displacement c) hysteresis output d) error.

FIGURE 10. Comparison of proposed method with the existing model identification techniques.

TABLE 1. Comparison between proposed and existing model
identification techniques.

run for 500 iterations, from Table 1 it is clear that proposed
gray box identificationmethod can identifymodel parameters
in less time with more precision.

VI. CONCLUSION
This paper presented a scheme for the modeling and identifi-
cation of rate-dependent hysteresis in piezoelectric actuated
nano-stage. First step was to convert the System level quasi
static hysteresis model into a custom design neural network.
To handle themulti-valued problem of hysteresis, generalized

input gradient was introduced in the input space to extract
the moving tendency of hysteresis. Finally, neural network
based NARMAX model was introduced to describe the rate-
dependent performance of the PZT. Main features of pro-
posed approach are, the entire model was composed of gray
box neural network, where weights of neural network corre-
spond to the unknownmodel parameters, unlike conventional
black box identification it has clear mathematical meaning.
Moreover, proposed generalized input gradient based map-
ping is more effective on non-smooth extrema points than
the conventional gradient of hysteresis output with respect
to input method. The simulation and experiment validation
results demonstrate that the proposed scheme can identify the
rate dependent hysteresis more precisely withmaximum error
of 20.77nm than the black box (96.56nm) and PSO (31.46nm)
based model identification methods.
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