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ABSTRACT We consider the problem of network security under false data injection attacks over wireless
sensor networks.To resist the attacks which can inject false data into communication channels according
to a certain probability, we formulate the online attack detection problem as a partially observable Markov
decision process problem and design a detector for each sensor based on the framework of model-free rein-
forcement learning. By numerical simulations, we illustrate the effectiveness of the proposed reinforcement
learning algorithm and show the performance of the proposed detector compared with the typical detector
in the existing works.

INDEX TERMS Wireless sensor network, false data injection attack, reinforcement learning, partially
observable Markov decision process.

I. INTRODUCTION
Wireless sensor network (WSN) is a distributed sensor
network whose terminals are sensors that can sense and
inspect the outside world. It is a network formed by the
free organization and combination of tens of thousands of
sensor nodes through wireless communication technology.
Nowadays, WSN has practical applications in many areas
such as explosion protection, medical treatment, health care,
home furnishing, industry [1], and so on.

One of the promising applications is power grid. The next
generation power grid, i.e., the smart grid, can effectively
overcome various problems existing in the traditional power
system. However, this critical cyber infrastructure makes the
smart grid vulnerable to different security attacks [2]. Main
purpose of attackers is to disrupt the state estimation mecha-
nism in the smart grid to cause wide-area power blackouts or
to manipulate electricity market prices [3].

There are many types of cyber-attacks, one of such attacks
is the false data injection (FDI) attack that changes the data
integrity of packages by modifying their payloads [4]–[6].
To mitigate the physical overloads due to the judiciously
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designed false data injection attack, Che et al. [7] proposed a
cyber-secured corrective dispatch scheme which can secure
the flow levels. On the other hand, in the power system,
a set of transmission lines can be more vulnerable to the
attack. Therefore, Che et al. [8] proposed a high-risk line fast
screening (HLFS) approach to identify these lines. Li et al. [9]
proposed a sequential detector based on the generalized like-
lihood ratio to address the challenge, which aims to manip-
ulate the state estimation procedure by injecting malicious
data to the monitoring meters. Distributed attack detectin
has long been pursued in a wireless sensor network setting.
Yang et al. [10] proposed a detector with a stochastic protec-
tion rule based on the innovation from its neighboring sensors
to reduce the impact of FDI attack. Liu et al. [11] utilized
the relative entropy to detect whether the data are attacked
and explored the tradeoff between the performance degra-
dation and attack stealthiness level. Owing to the fact that
Kullback-Leibler (KL) divergence is effective to detect FDI
attack, Hua et al. [12] proposed a distributed adaptive algo-
rithm over KL to weaken the impact of FDI attack. Although
the χ2 detector is often used in the area of fault diagnosis,
it may be bypassed by some carefully crafted FDI attacks.
Therefore, Ye et al. [13] proposed the summation detector to
detect these types of attacks. Moreover, compared with the
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χ2 detector, the effectiveness of the summation detector is
further verified for existing attack and the improved attack.
However, most of the detection methods are based on the
gaussianity of the innovations, which leads to the limitation
of the detectors. When the FDI attacks make innovations no
longer maintain gaussianity, the detectors mentioned above,
like the χ2 detector, will lose efficacy. Furthermore, if the
attacker keeps changing the attack strategy, the KL diver-
gence detector will also fail to detect the attacks. Then meth-
ods that can cope with these challenges become crucial. One
of the strategies is reinforcement learning.

Reinforcement learning is used to describe and solve
problems in which agents use learning strategies to maxi-
mize returns or achieve specific goals in their interactions
with the environment. According to the given conditions,
reinforcement learning can be divided into model-based
and model-free reinforcement learning. Consider that the
attacker strategy and the transition probability between the
hidden states are unknown in general, the exact model is
unknown. Hence, we will apply the model-free reinforcement
learning to design detector. Typical model-free methods are
Monte-Carlo method and Temporal-Difference method. The
Monte-Carlo method obtains the sequence of state, action
and benefit from real or simulated environment interaction,
and it carries out value estimation and strategy improve-
ment at the end of the whole episode, and obtains the
estimation of value function through continuous iteration.
The Temporal-Difference method can also learn strategies
directly from the experience of interacting with the environ-
ment. However, the Temporal-Difference method is quite dif-
ferent from theMonte-Carlomethod. Unlike theMonte-Carlo
method, the Temporal-Difference method does not need to
wait for the final result of the interaction, but can update
the value function of the current state based on the value
estimation of other states [14]–[17]. Kurt et al. [18] for-
mulated the attack detection problem in the smart grid as
a partially observable Markov decision process (POMDP)
problem and proposed a detector using the framework of
model-free reinforcement learning (RL) for POMDPs. Rein-
forcement learning method is based on the amplitude of the
past innovations to train the detector (the larger norm of inno-
vation, the higher probability of data being attacked), which
has nothing to do with the statistical characteristics of innova-
tion, that is, it does not require the gaussianity of innovation.
Moreover, the detector trained by reinforcement learning can
cope with the FDI attacks whose statistical characteristics
keep changing. In control area, RL has been applied for
solving optimal control problems and has obtained well per-
formance [19]–[23]. Extension of single-agent RL tomultiple
agents is the multi-agent RL. Moreover, stochastic games
extend the Markov decision processes to multi-agent case.
Several RL-based solution approaches have been proposed
for stochastic games [24]–[28].

In this paper, we propose an online cyber-attack detec-
tion algorithm using the framework of model-free RL
for POMDPs based on WSN. The proposed detection

algorithm does not require attack models. Therefore, the pro-
posed scheme is widely applicable. In the training phase,
the defender learns a mapping from observations to actions
by trial-and-error. To make the detector adapt to any
attack, we follow a detection approach by training the
agent (defender) with low-magnitude attacks. This is the
worst-case scenario from the defender’s perspective since
such attack is difficult to detect. Then, in the detection phase,
the trained defender becomes sensitive to detect slight attacks.
That is, to avoid detection, the attacker has to exploit very low
attack magnitudes which makes little damage on the system.
Notation: R denotes the set of real numbers. tr(·) denotes

the trace of a matrix and (·)T denotes the transpose of a matrix
or a vector. |A| denotes the cardinality of a set A. E[·] refers
to the expectation, and p(·) represents the probability.

II. MODEL
A. SYSTEM MODEL
Consider a discrete linear time-invariant system described by

x(k + 1) = Ax(k)+ ω(k) (1)

yi(k) = Hix(k)+ νi(k) (2)

where x(k) ∈ Rm is the system state, yi ∈ Rm is the
measurement of sensor i, A ∈ Rm×m is the system matrix,
Hi ∈ Rm×m is themeasurement matrix of sensor i, the process
noise ω(k) and the measurement noise νi(k) are mutually
uncorrelated white Gaussian noises with covariances Q > 0
and Ri > 0, respectively.

The sensor network is modeled as a directed graph G =
(V,D) with a set of nodes V = {1, 2, . . . , n} and a set of
edges D ⊂ V × V . The edge (i, j) ∈ D means that the data
can be transmitted from the jth sensor to the ith sensor. Define
the in-neighbors of the ith sensor as Ni = {j : (i, j) ∈ D},
i.e., the in-neighbors of the ith sensor are those sensors who
can send data to the ith sensor. Let di = |Ni| be the number of
in-neighbors of sensor i. Denote the out-neighbors of sensor
i as N i = {j : (i, j) ∈ D}, i.e., the sensors can receive data
from the ith sensor.

Next, we define some quantities which will be used in the
remainder of the paper:

x̂i(k + 1) , E[x(k + 1)|yi(k)] (3)

ei(k + 1) , x(k + 1)− x̂i(k + 1) (4)

Pi(k + 1) , E[(x(k + 1)− x̂i(k + 1))(·)T |yi(k)] (5)

We propose a distributed state estimator for sensor i:

x̂i(k + 1) = Ax̂i(k)+ K i
p(k)[yi(k)− Hix̂i(k)]

−εA
∑
j∈Ni

(
x̂i(k)− x̂j(k)

)
(6)

where x̂i(k) is the estimate of sensor i at time step k , K i
p(k)

is the estimator gain to be designed, and ε is the consensus
gain in the range of

(
0, 1

1

)
, with 1 = max

i
di. Define

the innovation of sensor i as 1i(k) = yi(k) − Hix̂i(k),
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i = 1, 2, . . . , n. At each time step, sensor i sends its estimate
x̂i(k) and innovation 1i(k) to its out-neighbors.

B. ATTACK MODEL
Consider a kind of false data injection attack. Let qij(k),
j ∈ Ni indicate whether the attacker launches attack on the
edge (i, j), i.e.,

qij(k) =

{
1, if the edge (i, j) is attacked, j ∈ Ni
0, otherwise

where the attack probability p
(
qij(k) = 1

)
= ξq, and qij(k)

is independent of qrs(k) while (i, j) 6= (r, s).
When edge (j, i) is attacked, i.e., qji(k) = 1, the trans-

mitted data x̂i(k) and 1i(k) become x̂∗i (k) = T (k)x̂i(k) +
ραji(k),1∗i (k) = T (k)1i(k) + ραji(k), respectively. Here,
T (k) is a matrix that changes randomly with k , ρ is a given
constant quantifying the amplitude of the injected false data,
andαji(k) ∈ Rm is zero-meanwhite Gaussianwith covariance
2ji, i.e., αji(k) ∼ N (0,2ji). Assume that αij(k) is indepen-
dent of αsr (t), when (i, j) 6= (r, s) or k 6= t .

C. DISTRIBUTED ESTIMATOR WITH DETECTOR
In the previous sections, we have introduced a healthy system
model and an attack model. In the following, a detector based
on Q-table is proposed to detect the abnormal data. The spe-
cific design of the detector will be given in the later section.
Here, we design a distributed estimator with the detector for
each sensor as follows:

x̂i(k + 1) = Ax̂i(k)+ K i
p(k)[yi(k)− Hix̂i(k)]

−εA
∑
j∈Ni

γij(k)
(
x̂i(k)− x̂∗j (k)

)
(7)

where γij(k) is a binary variable representing the protection
decision. If the detector of sensor i regards the edge (i, j) being
attacked, i.e., the received data from sensor j is suspicious,
then γij(k) = 0; otherwise, γij(k) = 1. Note that γij(k) is
independent of γrs(t) when i 6= r, j 6= s or k 6= t .
Remark 1: The cross estimation error covariance between

sensor i and sensor j is

Pij(k + 1) = E{ei(k + 1)eTj (k + 1)}

= Fi(k)Pij(k)FTj (k)+ Q

+εFi(k)
∑
r∈Nj

γjr (k)[Pir (k)− Pij(k)]AT

+εA
∑
s∈Ni

γis(k)[Psj(k)− Pij(k)]FTj (k)

+ε2A
∑
s∈Ni

∑
r∈Nj

γis(k)γjr (k)
[
Psr (k)

+Pij(k)− Psj(k)− Pir (k)+
(
x̂i(k)− x̂s(k)

)
x̂Tr (k)

(
I − T (k)δjr (k)

)T
+

(
I − T (k)δis(k)

)
x̂s(k)

(
x̂j(k)− x̂r (k)

)T
+

(
I − T (k)δis(k)

)

x̂s(k)x̂Tr (k)
(
I − T (k)δjr (k)

)T ]
AT (8)

We can derive the optimal estimator gain of the proposed
estimator (7).
Lemma 1: The optimal estimator gain in (7) which mini-

mizes the estimation error covariance Pi(k) is given by

K i∗
p (k) = A

{
Pi(k)+ ε

∑
r∈Ni

γir (k)[Pri(k)− Pi(k)]
}

HT
i M
−1
i (k) (9)

where Mi(k) = HiPi(k)HT
i + Ri, i = 1, 2, . . . , n.

Proof: Let Fi(k) = A− K i
p(k)Hi,

δij(k) =

{
I , if qij(k) = 1, j ∈ Ni
T (k)−1, otherwise

Then, we have

Pi(k + 1) = E{ei(k + 1)eTi (k + 1)}

= Fi(k)Pi(k)FTi (k)+ Q+ K
i
p(k)RiK

iT
p (k)

+εFi(k)
∑
r∈Ni

γir (k)[Pir (k)− Pi(k)]AT

+εA
∑
r∈Ni

γir (k)[Pri(k)− Pi(k)]FTi (k)

+ε2A
∑
r∈Ni

γ 2
ir (k)

[
Pi(k)+ Pr (k)− Pri(k)

−Pir (k)+
(
x̂i(k)− x̂r (k)

)
x̂Tr (k)(

I − T (k)δir (k)
)T
+

(
I − T (k)δir (k)

)
x̂r (k)(

x̂i(k)− x̂r (k)
)T
+

(
I − T (k)δir (k)

)
x̂r (k)

x̂Tr (k)
(
I − T (k)δir (k)

)T ]
AT + ε2A∑

r,s∈Ni
r 6=s

γir (k)γis(k)
[
Pi(k)+ Prs(k)

−Pri(k)− Pis(k)+
(
x̂i(k)− x̂r (k)

)
x̂Ts (k)

(
I − T (k)δis(k)

)T
+

(
I − T (k)δir (k)

)
x̂r (k)

(
x̂i(k)− x̂s(k)

)T
+

(
I − T (k)δir (k)

)
x̂r (k)x̂Ts (k)

(
I − T (k)δis(k)

)T ]
AT

+ρ2ε2A
∑
r∈Ni

γir (k)qir (k)2rAT (10)

Due to the random sequence {γij}∞0 , the equation (10) is
stochastic and cannot be determined. Rewrite (10) as

Pi(k + 1) = A
{
Pi(k)+ ε

∑
r∈Ni

γir (k)[Pir (k)+ Pri(k)− 2Pi(k)]

+ε2
∑
r∈Ni

γ 2
ir (k)

[
Pi(k)+ Pr (k)− Pri(k)
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−Pir (k)+
(
x̂i(k)− x̂r (k)

)
x̂Tr (k)(

I − T (k)δir (k)
)T
+

(
I − T (k)δir (k)

)
x̂r (k)(

x̂i(k)− x̂r (k)
)T
+

(
I − T (k)δir (k)

)
x̂r (k)

x̂Tr (k)
(
I − T (k)δir (k)

)T ]
+ε2

∑
r,s∈Ni
r 6=s

γir (k)γis(k)
[
Pi(k)+ Prs(k)

−Pri(k)− Pis(k)+
(
x̂i(k)− x̂r (k)

)
x̂Ts (k)

(
I − T (k)δis(k)

)T
+

(
I − T (k)δir (k)

)
x̂r (k)

(
x̂i(k)− x̂s(k)

)T
+

(
I − T (k)δir (k)

)
x̂r (k)x̂Ts (k)

(
I − T (k)δis(k)

)T ]
+ρ2ε2

∑
r∈Ni

γir (k)qir (k)2r

}
AT + Q

−A
{
Pi(k)+ ε

∑
r∈Ni

γir (k)[Pri(k)− Pi(k)]
}

HiM
−1
i (k)HT

i

{
Pi(k)+ ε

∑
r∈Ni

γir (k)

[Pir (k)− Pi(k)]
}
AT + [K i

p(k)− K
i∗
p (k)]

Mi(k)[K i
p(k)− K

i∗
p (k)]T (11)

From above equation, it is clear that Pi(k + 1) is minimized
at K i

p(k) = K i∗
p (k). Then, the proof is completed.

Using the above formulas, the state estimation can be
updated.

III. PROBLEM FORMULATION
In this paper, we formulate the online attack detection
problem as a partially observable Markov decision
process (POMDP) problem. A discrete-time POMDP sim-
ulates the relationship between an agent and its environ-
ment. Formally, POMDP is defined by the seven-tuple
(S,A, T ,R,O,G, λ) where S denotes the set of states of
the environment, A denotes the set of actions of the agent,
T denotes the set of conditional transition probabilities
between states,R : S×A→ R denotes the reward function,
O denotes the set of observations of the agent, G denotes the
set of conditional observation probabilities, and λ ∈ [0, 1]
denotes a discount factor that determines the present value of
future rewards.

At each time t , the environment is in a certain state st ∈ S.
The agent takes an action at ∈ A, which results in a transition
of the environment to the next state st+1 with the proba-
bility T (st+1|st , at ). At the same time, the agent obtains an
observation ot ∈ O depending on the current state of the
environment with the probability G(ot |st ). Finally, the agent
receives a reward rt = R(st , at ) from the environment based

on its action and the current state of the environment. The
process is repeated until a terminal state is achieved. In this
process, the goal of the agent is to determine an optimal policy
π : O → A that maximizes the agent’s expected total
discounted rewards, i.e., E[

∑
∞

k=0 λ
krt+k+1]. Similarly, if an

agent receives costs instead of rewards from the environment,
then the goal is to minimize the excepted total discounted
costs. Considering the latter, the POMDP problem can be
rewritten as follows:

min
π :O→A

Eπ
[ ∞∑
k=0

λkrt+k+1

]
(12)

The false data injection attacks mentioned above are
applied to online attack detection. This problem can be
expressed as a POMDP problem (see Fig. 1). We assume that
before an unknown time τ , the system is operated normally,
the attacker does not launch attacks. After τ , the attacker
launches false data injection attacks to the sensor’s com-
munication channel stochastically. It will change the state
estimation and innovation. Due to unknown attack launch
time and random attack, there are three hidden states: pre-
attack-time, post-attack-time without attack and post-attack-
time with attack. At each time, after obtaining the averaged
measurement, two actions are available for the agent: stop and
declare an attack or continue to have further measurements.
Whenever the action stop is chosen, the system moves into a
terminal state, and stays there afterwards. The whole process
is plotted as Fig. 1.

Next, we explain the online attack detection problem in
a POMDP setting. Different costs should be assigned in
different states with different actions:

Step1: If the current moment is before the time τ , or the
current moment is after the time τ , but at the moment,
the attacker does not launch attacks on either edge while the
system regards that it is under attack, i.e., the agent takes the
action stop, then the agent receives a cost of 2. Skip to Step 5.
Step2: If the current moment is before the time τ , or the

current moment is after the time τ , and at the moment,
the attacker does not launch attacks on either edge while the
system does not regard that it is under attack, i.e., the agent
takes the action continue, then the agent receives zero cost.
Move the process forward to the next moment.

Step3: If the current moment is after the time τ and the
attacker launches attacks onm direct-edges, while the system
does not regard that it is under attack, then the agent receives a
cost of cost_single×mnum , where num is the number of direct-edges
in the sensor network and cost_single is the unit cost of each
edge. Move the process forward to the next moment.

Step4: If the current moment is after the time τ , at the
moment the attacker launches attacks and the system thinks
it is under attack, then the agent receives zero cost. Skip to
Step 5.

Step5: Terminal. End the current process.
Due to the unknown attack launch time and the unknown

attacking strategies, the exact POMDP model is unknown.
And since the RL algorithms are known to be effective under
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FIGURE 1. The relevant settings of POMDP.

uncertain environments, we follow a model-free RL algo-
rithm to obtain a solution of (12). Then a mapping from
observations to the actions, i.e., Q-table, needs to be learned.

Since different hidden states require different optimal
actions, additional information obtained from the historical
data of observations should be used to further reduce the
uncertainty of the underlying states. Due to the limitation of
resources, only finite data can be used in practice to obtain
the approximately optimal solution. There are several ways
to deal with the above situation, one of which is to use a
finite-size sliding window of observations as a cache and
map the recent window to an action. Let f (·) be the function
that processes a finite historical data of measurements and
produces the observation signal, so that the observation signal
at time k is ok = f ({11(k),12(k), . . . ,1n(k)}). At each
time, the detector of the sensor i observes 1j(k), j ∈ Ni and
decides whether to use the information from the neighbors
of sensor i. The subsequent section details how to use an RL
algorithm to obtain a solution of (12).

IV. SOLUTION APPROACH
A. INTRODUCTION OF ALGORITHM
Firstly, we define the observation signal ok = f ({11(k),
12(k), . . . ,1n(k)}). Let

ηk =
1
n

n∑
i=1

1
di

∑
j∈Ni

12
j (k) (13)

In the above formula, the innovation plays a key role in
judging whether the received data has been attacked. A larger
norm of innovation corresponds to a higher probability of data
being attacked. Hence, ηk could reduce the uncertainty of the
underlying states to some extent.

Since ηk can take any nonnegative value, the observation
space is continuous so that the RL problem cannot be solved
in limited time with limited resources. To address this issue,
we can quantify the observation space into I mutually exclu-
sive and disjoint intervals using the quantization thresholds

β0 = 0 < β1 < · · · < βI−1 < βI = ∞. When
the observation value ηk falls into the interval [βi−1, βi),
i.e., βi−1 ≤ ηk < βi, i ∈ 1, . . . , I , the observation at time
k is represented with θi. In this way, all possible observations
are θ1, θ2, . . . , θI . Each θi needs to be assigned to a different
value.

Furthermore, ηk is possible to obtain identical observa-
tions in different states. For this reason, as mentioned above,
we use a finite historical data of observations. The size of
the sliding window is denoted as M so that there are IM

possible observation windows and the sliding window at time
k is

{
ηj : k − M + 1 ≤ j ≤ k

}
. Based on the above,

we regard an observation o as an observation window so
that the observation spaceO contains all possible observation
windows.

For each possible observation-action pair (o, a), we try to
learn aQ(o, a) value using an RL algorithm where allQ(o, a)
values are stored in a Q-table of size IM × 2. After learning
the Q-table, for each observation o, the detector will choose
the action a that minimizes the Q(o, a) value.

The considered RL-based detection scheme consists of
learning and online detection phases. Using the Sarsa algo-
rithm [29] to train the Q-table, and then the trained Q-table
will be the basis for online attack detection to defend the
attacker. A simulation environment is created for training
procedure. At each time, the agent (detector) takes an action
based on its observation and receives a cost in return of its
action from the simulation environment. Then, in the online
detection phase, for each time, according to the observations,
the Q-table learned before is used to choose the action with
the lowest expected future cost. If the action stop is chosen
by the detector, then the sensor will not use the informa-
tion from the corresponding neighbor, otherwise the sensor
will use the information from the neighbor to have further
measurements.

The learning and online attack detection algorithms
are summarized in Algorithm 1 and 2, respectively.
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Algorithm 1 Learning Phase—SARSA Algorithm
1: Initialize Q(o, a) arbitrarily, ∀o ∈ O,∀a ∈ A.
2: for e = 0 : E − 1 do
3: k ← 0
4: s←pre-attack
5: cost ← 0
6: Choose an initial o based on the pre-attack-time state

and choose the initial a = continue.
7: while s 6= terminal and k < T do
8: if a == stop then
9: s← terminal

10: if k < τ or cost == 0 then
11: cost ← 2
12: else
13: cost ← 0
14: end if
15: Q(o, a)← Q(o, a)+ α

(
cost − Q(o, a)

)
16: else if a == continue then
17: cost ← 0
18: if k ≥ τ then
19: Launch the attack to each edge stochasti-

cally. Assume that there are m direct-
edges attacked and num edges in total.

20: end if
21: cost ← cost_single×m

num
22: if k ≥ τ and cost == 0 then
23: s←post-attack-time with no attack
24: else if k ≥ τ and cost 6= 0 then
25: s←post-attack-time with attack
26: end if
27: Collect the measurements yi(k).
28: Employ the Kalman filter using (7),(8),(9),

(10) and obtain the innovation at the moment.
29: Compute ηk using (13) and quantize it to ob-

tain θi if βi−1 < ηk < βi.
30: Update the sliding observation window o

with the most recent entry θi and obtain o′.
31: Choose action a′ from o′ using the ε-greedy

policy based on the Q-table (that is being
learned).

32: Q(o, a)← Q(o, a)+ α
(
cost + Q(o′, a′)−

Q(o, a)
)

33: o← o′

34: a← a′

35: end if
36: k ← k + 1
37: end while
38: end for
39: Output: Q-table

In Algorithm 1, E denotes the number of learning episodes,
T denotes the maximum length of a learning episode, α
is the learning rate, and ε is the exploration rate. The

Algorithm 2 Online Attack Detection
1: Input: Q-table learned in Algorithm 1.
2: for loop = 0 : fre− 1 do
3: Choose an initial o based on the pre-attack-time state

and choose the initial a = continue for each sensor.
4: for k = 0 : T − 1 do
5: for i = 0 : n− 1 do
6: if k ≥ τ then
7: Launch attack to each edge stochastically.
8: end if
9: Compute the square of the innovation of r,

r ∈ Ni, i.e., 12
r (k) and quantize it to obtain

θj if βj−1 < 12
r (k) < βj.

10: Update the sliding observation window or
with the most recent entry θj and obtain o′r .
Choose the action a with the minimum
Q(o′r , a).

11: if a == stop then
12: Sensor i will not use the information of

sensor r .
13: else
14: Sensor i will use the information of sen-

sor r .
15: end if
16: Collect the measurements yi(k).
17: Employ the Kalman filter using (7),(8),(9),

(10) and obtain the innovation at the moment.
18: end for
19: Compute inno_avgi = 1

di

∑
j∈Ni 1

2
j (k) for

each sensor i. Quantize it to obtain θj if βj−1 <
inno_avgi < βj. Update the sliding observation
window oi with the most recent entry θj. Let
oi← o′i.

20: end for
21: end for
22: Compute the trace of the averaged estimation error

covariance J (k) = 1
n

∑n−1
i=0 tr

(
Pi(k)

)
and plot the aver-

aged trace over time.

agent (defender) takes ε-greedy policy to choose the action
that minimizes Q value with probability 1 − ε and the other
action with probability ε. In Algorithm 2, to verify the perfor-
mance of the system with detector, we compute and plot the
trace of the averaged estimation error covariance overtime.

B. COMPLEXITY ANALYSIS
In order to obtain the time complexity of SARSA algorithm,
we firstly consider the time complexity of a single iteration.
Since SARSA algorithm only updates Q-table once at each
time, and the update of Q-table requires the distributed state
estimation algorithm, and considering that themaximum time
limit for a learning episode is T, the time complexity of a
single iteration isO(n4×T ), where n is the number of sensors.
Furthermore, the time complexity of the whole algorithm is
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FIGURE 2. Network topology.

FIGURE 3. The performance of sensors (blue curve) tracking the
considered system (red curve).

O(n4 × ET ), where E is the number of learning episodes.
On the other hand, due to the size of the sliding window M
and the size of the Q-table IM × 2, the space complexity of
Algorithm 1 isM + 2IM .
In Algorithm 2, the detection phase are repeated for fre

times. For each time, the observation o is obtained from
each sensor and the Q-table trained by Algorithm 1 is used
to choose the action a that minimizes the expected total
discounted costs. Due to the distributed state estimation algo-
rithm, the time complexity of a single iteration is O(n4 × T ).
Hence, the total time complexity of the detection phase is
O(fre × n4 × T ). Furthermore, as the size of the Q-table is
IM × 2, and for each sensor, the size of the sliding window
is M , the space complexity of Algorithm 2 is nM + 2IM ,
where n is the number of sensors.

FIGURE 4. Comparison of estimation performance in different cases. All
the curves are obtained after averaged over 100 runs.

FIGURE 5. The comparison between the reinforcement learning detector
and the χ2 detector under different attacker power.

V. SIMULATION
We present simulation examples to illustrate the perfor-
mance of the proposed estimator with the detector under data
injection attacks. Consider a sensor network with 6 sensors
(see Fig. 2). The system parameters are defined as follows:

A =
[
1.01 0
0 1.01

]
, Hi =

[
1+ ζi 0
0 1+ ζi

]
Q =

[
2 0
0 2

]
, Ri =

[
2ςi 0
0 2ςi

]
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FIGURE 6. IEEE 30-bus test case.

FIGURE 7. IEEE 30-bus network topology.

2i =

[
2δi 0
0 2δi

]
, T (k) =

[
1+ 0.02ξ (k) 0.02ξ (k)
0.02ξ (k) 1+ 0.02ξ (k)

]
where ζi, ςi, δi, ξ (k) ∈ [0, 1),∀i, k , and ε = 0.1.
Set the attack probability on each edge to be λq = 0.6,

the amplitude of the injected false data to be ρ = 3, ρ = 4.
For the proposed RL-based online attack detection scheme,

the number of quantization levels is I = 4 and the quantiza-
tion thresholds are chosen as β1 = 10, β2 = 20, β3 = 30.
Further, sliding observation window is chosen to be M = 2,
and the episode length of learning phase and detection phase
is T = 100 and T = 200, respectively.Moreover, the learning
rate α = 0.1 and the exploration rate ε = 0.1. In the learning
phase, firstly, the defender is trained over 5000 episodes with
stochastic attack launch time τ = 50, and then trained over
5000 episodeswith τ = 5 to ensure that the defender can fully
explore the observation space under normal operation condi-
tions and stochastic attack conditions. The cost of accepting
a single attacked channel is set as 0.5.

First, we verify the stability of system with detector.
As Fig. 3 shows, all the sensors (blue curve) can track
the unstable system (red curve) as time evolves. Further,
we verify the effectiveness of the proposed protector with

FIGURE 8. The performance of sensors (blue curve) tracking the IEEE
30-bus system (red curve).

FIGURE 9. Comparison of estimation performance under different cases
in the IEEE 30-bus system. All the curves are obtained after averaged over
100 runs.

the amplitude ρ = 4 by comparing the performances of four
different cases, i.e., no attack without protection, no attack
with protection, having attack without protection, having
attack with protection. To do so, we define the trace of the
averaged estimation error covariance (EEC), as

J (k) =
1
n

n∑
i=1

tr
(
Pi(k)

)
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FIGURE 10. The comparison between the reinforcement learning detector and the χ2 detector
under different attacker power in the case of the IEEE 30-bus.

As Fig. 4 shows, the curve corresponding to the case of
no attack with protection almost overlaps with the curve
corresponding to the case of no attack without protection,
except some time with false positives, which implies that
the proposed protector has little impact on the estimation
performance when the network is not being attacked. Obvi-
ously, the curve corresponding to the case of having attack
without protection diverges asymptotically as time evolves.
When the proposed protector is employed for each sensor,
the trace of the estimation error covariance drops significantly
and converge asymptotically, which implies that the proposed
protector can resist attacks effectively.

In the following, we compare the detectors under three
different cases, i.e., having attack without protection, having
attack with the χ2 failure detector, having attack with the
proposed detector. As Fig. 5 shows, the averaged EEC of
the healthy system converges to a steady state quickly. The
attacker begins to launch the false data injection attacks at
30 time step. Furthermore, we discuss two cases, i.e., the
amplitude of the injected false data ρ = 3 and ρ = 4.
In the first case, the χ2 failure detector and the detector
proposed in this paper both have better performance than
the case without protection. Furthermore, the reinforcement
learning detector has a slight advantage over the χ2 failure
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TABLE 1. The negative false probability and the positive false probability.

detector. In the second case, as the attacker power becomes
larger, the performance of the two detectors is still better
than the case without protection. However, compared to the
first case, the reinforcement learning detector has a weaker
advantage over the other detector, which indicates that the
smaller attack, the more obvious advantage of reinforcement
learning detector.

Then we study the IEEE 30-bus system as shown in the
Fig. 6. The corresponding network topology is given accord-
ing to the voltage (see Fig. 7). The parameters of the system
and the parameters of the attacker are the same as the previous
simulation. Furthermore, the online attack detection scheme
remains unchanged.

Fig. 8 shows a similar result to Fig. 3. As Fig. 9 shows,
the curve corresponding to the case of no attack with pro-
tection implies that the proposed protector has little impact
on the estimation performance when the network of IEEE
30-bus system is not being attacked. When the curve cor-
responding to the case of having attack without protection
diverges asymptotically, the proposed protector can resist
attacks effectively and make sure that the trace of the esti-
mation error covariance converge as time evolves.

Same as the previous simulation, we compare the detec-
tors under three different cases, i.e., having attack without
protection, having attack with the χ2 failure detector, having
attack with the proposed detector. As Fig. 10 shows, when
the amplitude is 3, the detector proposed in this paper has
a slight advantage over the χ2 failure detector. However,
when the amplitude increases to 4, the reinforcement learning
detector and the χ2 failure detector have almost the same
performance, which indicates that whether in the case of
i6 sensors or the IEEE 30-bus system, the reinforcement
learning detector has a significant advantage when the attack
is small.

Finally, we explore the false negative probability and the
false positive probability of the two detectors. As TABLE 1
shows, with the increase of attack amplitude, the false pos-
itive rate increases and the false negative rate decreases.
Meanwhile, the false negative rate of reinforcement learning
detector is always lower than that of χ2 square detector
and the false positive rate of χ2 detector is greater than
that of reinforcement learning detector. As discussed above,
the smaller the attack, the greater advantage of reinforcement
learning.

VI. CONCLUSION
In this paper, we investigate the problem of network secu-
rity over wireless sensor networks under false data injection
attacks. We formulate the online attack detection problem
as a POMDP problem and propose a solution based on the
model-free reinforcement learning. The detector of a sensor
decides whether to use the received data from its neighboring
sensors for the next estimate update. The simulation results
illustrate the performance of the proposed detector on the
trace of the averaged estimation error covariance (EEC) under
the case of a network with 6 sensors and IEEE-30 bus test
case. The proposed online detection method is widely appli-
cable to any quickest change detection problem where the
normal system can be modeled sufficiently accurately and
the goal is to detect attacks online that are generally difficult
to model. Moreover, we have considered a single-agent rein-
forcement learning setting with optimizing the policy of the
defender where the policy of the attacker does not change.

In the future, we will develop more sophisticated mem-
ory techniques instead of the finite-size sliding window
approach. The reinforcement learning method used in this
paper is tabular method. That is, the continuous observa-
tion space is discretized to compute the Q values. We will
try functional approximation methods, e.g., neural networks,
to compute the Q values. As mentioned above, in the current
setting, the attacker does not learn. Therefore, the current
setup can be extended to multi-agent reinforcement learning
in the future, where there is a game with multiple states in
which the feedback, actions and state transitions are deter-
mined jointly by the defender and the attacker. In this setting,
the optimal attack strategy and the optimal defense strategy
will be obtained eventually.
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