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ABSTRACT In recent times, people have become increasingly health-conscious. To obtain timely and
accurate information on the status of the heart, one of the most important organs of the human body,
there is a growing demand among individuals and doctors for accurate and real-time automatic clas-
sification of arrhythmias. Consequently, this paper proposes a fast and accurate classification method
for arrhythmias. In the proposed method, we build an incremental broad learning (IBL) classification
model based on the biased dropout technique for arrhythmia-type recognition. In particular, we extract
the morphological-rhythm features of the denoised signal as the input data of the IBL model in the
electrocardiogram signal preprocessing. The IBL model enhances the classification effect of the node
optimization model by using improved features. To the best of our knowledge, this study is the first
application of the IBL model to the study of arrhythmia classification. The results of experiments conducted
on the MIT-BIH database indicate that the proposed method is effective and achieves superior classification
results. The average classification accuracy for six types of arrhythmias was 99%, and the training time
required was only 2.7 s. In addition, based on the evaluation index recommended by the ANSI/AAMI
EC57:2012 standard, our method is superior to existing methods on all indexes, except for the positive
predictive rate of ventricular ectopic beats. Therefore, the proposed classification method outperforms state-
of-the-art methods in terms of real-time performance and accuracy and provides a new approach for further
improvements in arrhythmia classification.

INDEX TERMS Arrhythmia classification, biased dropout, broad learning, electrocardiogram,
morphology-rhythm feature.

I. INTRODUCTION
As an important application of computers in clinical practice,
automatic classification of arrhythmia can effectively prevent
cardiovascular disease and is conducive to the rational allo-
cation of medical resources. As people become increasingly
health-conscious, they want to obtain timely and accurate
information regarding the health status of the heart. Thus,
individuals and doctors have higher requirements for the
diagnosis quality of automatic classification of arrhythmias.

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

Our study focuses on improving the detection of arrhythmias,
resulting in intelligent and more meaningful computer diag-
nosis results. The improvement in detection ability and the
provision of intelligent results are problems that need to be
solved for the development of telemedicine, digital medicine,
and home self-help diagnosis.

In recent years, deep neural networks have been success-
fully introduced for the development of intelligent, rapid,
and high-precision automatic arrhythmia classification that
considers diverse detection parameters [1]–[3]. For exam-
ple, Fakheraldin et al. [4] constructed a convolutional neu-
ral network (CNN) with 11 layers for classification; the
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classification accuracy of the network for 10 arrhythmia
types from the MIT-BIH database was 99.84%, which is
higher than the existing classification methods based on
CNN. Huang et al. [5] proposed an intelligent electrocardio-
gram (ECG) classifier based on a fast compressed residual
convolution neural network (FCResNet). Their method uses
the maximum overlap wavelet packet transform (MOWPT)
to decompose ECG signals. The proposed deep learning
classifier can considerably alleviate the problems of low
computational efficiency, difficult convergence, and model
degradation. The average accuracy was 98.79% for the MIT-
BIH database. Ihsanto et al. [6] proposed a fast and accurate
algorithm for ECG authentication using residual depth-wise
separable convolutional neural networks. They reported that
the proposed algorithm achieved 100% accuracy when eval-
uated using data for 48 patients in the MIT-BIH database and
90 people in the ECG ID database. Rahhal et al. [7] designed
a heartbeat classification algorithm based on a deep neural
network (DNN). The core concept of this model involved
adding a reconstruction layer on top of the hidden layer in the
network, in which the activation function is a softmax func-
tion. Their experimental results showed that the algorithm not
only reduces expert interaction and speeds up online retrain-
ing but also has greater robustness and higher computational
efficiency. Moreover, compared with the traditional shallow
neural network, it could effectively improve the heartbeat
recognition effect.

Considering the morphological and rhythmic characteris-
tics of a heartbeat, Zhang et al. [8] combined the recurrent
neural network (RNN) and density clustering technology for
arrhythmia classification; they achieved a significant recog-
nition effect on the MIT-BIH arrhythmia database. To fur-
ther improve the classification performance of the RNN,
Wang et al. [9] used a global RNN (GRNN) to classify the
heartbeat, with the heartbeat having the largest amount of
information being selected through GRNN’s self-learning
method. The advantages of GRNN in capacity and fitting
ability were fully utilized to recognize heartbeats from dif-
ferent patients, which shows the good generalization ability
of the algorithm.

Algorithms for automatic arrhythmia classification based
on DNNs can autonomously learn the implicit features of
a heartbeat through a neural network with multiple hidden
layers, which is helpful in improving heartbeat recognition.
However, there are numerous parameters in a DNN, such
as hidden layers with multiple neurons, leading to increased
training costs. Furthermore, the complexity of such networks
makes it difficult to analyze the deep structure theoreti-
cally. However, to obtain a higher classification accuracy,
the DNN depends on increasing the number of hidden lay-
ers in the network. To solve the aforementioned problem,
Chen and Liu [10] proposed a broad learning system (BLS);
specifically, a random vector functional link neural network.
Such neural networks utilize a pseudo-inverse to calculate the
weights of feature nodes and enhancement nodes rather than
updating the feature kernel with backpropagation. Compared

with deep learning-based image classification (for exam-
ple, for skin cancer diagnosis), BLS is more suitable for
arrhythmia discrimination because the heartbeat contains
fewer features than medical images. Moreover, the coupling
within layers disappears in BLS, and the updating of weights
does not depend on the gradient descent method, which
significantly saves time in the training process. Conversely,
the scalability of the network is high as the remodeling can
be realized by an incremental learning algorithm without
training the entire network.

Thus, it is clear that deep learning has been successfully
used to solve some problems related to arrhythmia classifica-
tion and feature extraction. However, the complex structure of
a deep learning network with multiple hidden layers increases
training time and causes poor real-time performance of the
classificationmodel. To solve the above problems, we applied
the incremental broad learning (IBL) model to the automatic
classification of arrhythmias. To the best of our knowledge,
this is the first attempt to apply the IBL model to arrhythmia
classification.

This study was conducted with the aim of further improv-
ing the performance of arrhythmia classification using IBL.
In addition, to solve the problem of redundancy due to the net-
work expansion of IBL, this study uses the target deactivation
technology as a new regularization method to optimize the
model in a single hidden layer of IBL, and further reduces the
training time cost by purposefully deactivating some neuron
nodes.

The remainder of this paper is structured as follows.
Section II discusses biased dropout technology and
Section III gives an overview of broad learning. Section IV
describes the proposed classification method. Section V
outlines the experiments conducted and analyzes the results
obtained. Finally, Section VI presents concluding remarks.

II. BIASED DROPOUT
Biased dropout [11] is an extension of the random dropout
technology. It is a process that changes the structure of
a neural network to avoid overfitting, which may occur
when training a model with many neurons. Unlike stan-
dard dropout, which is biased by randomly deactivating par-
tial nodes and connections, the biased dropout is biased
by purposely deactivating partial neurons and connections.
Poernomo and Kang [11] showed that, compared with classic
dropout, this purposeful dropout technique can not only avoid
overfitting but also improve the learning ability and training
rate of the network model, especially when the number of
learning samples is limited. With this analysis in mind, in this
study, biased dropout acts on a single hidden layer of the IBL
to optimize the model further.

Fig. 1 shows the neuron inactivation in the network after
dropout and biased dropout. As shown in Fig. 1(a), when the
inactivation rate p is 0.5, half of the neurons are inactivated;
these neurons are randomly selected without considering the
contribution of individual neurons to the network. Unlike
standard dropout, biased dropout takes into account how

VOLUME 9, 2021 66133



J. Li et al.: Arrhythmia Classification Using Biased Dropout and Morphology-Rhythm Feature With IBL

FIGURE 1. Neuron inactivation using different dropout techniques.

much each neuron contributes to the network. This technol-
ogy sorts and groups all neurons according to their contribu-
tion to the network, and then performs a dropout operation.
As shown in Fig. 1(b), first, the contribution values of the
neurons in the network are sorted from large to small. The
blue areas represent the contribution values of the top 50%
of neurons, whereas the red areas represent those of the bot-
tom 50%. Subsequently, according to the inactivation rate p2
(p1< p2), neuronswith the smallest contribution values in the
red area are progressively deactivated, ultimately achieving
the goal of retaining those neurons with the larger contribu-
tion values.

The inactivation rate of the hidden layer output neuron is
usually inversely proportional to its contribution to network
performance. In the specific hidden layer output, when the
number of neurons (x l) is n, the neurons are divided into
two groups according to the large or small contribution to the
network of neurons, which is represented by x l (1) and x l (2),
respectively. Moreover, p1 represents the inactivation rate of
those neurons with a large contribution, and p2 represents
that of those with a small contribution. The contribution size
refers to the size of the neuron’s own value. The relationship
between p1 and p2 is shown in (1), and (2) is used to calculate
the average inactivation rate p. Equation (3) is used to convert
the inactivation rate of the output neurons at layer l in the
network into a Bernoulli distribution [125].

p2 = c× p1(c > 1) (1)

p =
(p1× x l(1)+ p2× x l(1))

n
(2)

r ∼ Bernoulli (p) (3)

Finally, (4) and (5) are used to map the output neurons of
layer L. These equations show the output neurons after the

biased dropout is applied.

x̃ l = r l × x l (4)

x l+1 = f (Wx̃ l + bl+1) (5)

III. BROAD LEARNING
The structure of broad learning for arrhythmia classification
is shown in Fig. 2. The input data X are obtained from the
sample set representing different arrhythmia types, and the
sample length of each sample set is M. The mapping of
the input data Zi can be represented as

Zi = XWei, (6)

where i is the set number and Wei is the weight for each
sample set, which is generated randomly. The former i sets
of the mapped data can be expressed as Z i = [Z1, Z2, . . . , Zi].
By transforming the mapped features of Zi we obtain the
enhancement modes Hj, which are denoted as

Hj = ξ
(
[Z1,Z2, . . . ,Zi]Whj + βhj

)
, (7)

where Whj and βhj are the weights and biases generated
randomly. ξ is the activation function; the former j sets of
enhancement nodes are expressed as H j

= [H1, H2, . . . , Hj].
In this way, all the mapped feature nodes and the enhance-
ment nodes are represented as Zn = [Z1, . . . , Zn] and Hm =
[H1, . . . , Hm], respectively. Finally, all the mapped feature
nodes and enhancement nodes are connected to the output,
yielding Y :

Y =
[
Z1, . . . ,Zn|ξ

(
ZnWh1 + βh1

)
, . . . ,

× ξ
(
ZnWhm + βhm

)]
Wm

= [Z1, . . . ,Zn] [H1, . . . ,Hm]Wm
=
[
Zn|Hm]Wm, (8)

where the operation | merges Zn and Hm to a line.
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FIGURE 2. Structure of broad learning for the arrhythmia classification task.

FIGURE 3. Classification process.

The classification accuracy is improved by increasing the
number of enhancement nodes. Assuming the original input
matrix,

Am =
[
Zn|Hm] , (9)

the new matrix can be represented as

Am+k =
[
Am|Hm+q

]
=
[
Am|ξ

(
[Z1,Z2, . . . ,Zn]Wm+q

)]
, q=1, 2, . . . , k,

(10)

where q is the additional enhancement nodes, which equals k .
wm+q is the randomly generated weight for all enhancement
nodes. Thus, the pseudo-inverse of the new matrix Am+k can
be represented as(

Am+k
)+
=

[
(Am)+ − DBT

BT

]
, (11)

where

D =
(
Am
)+
ξ
(
[Z1,Z2, . . . ,Zn]Wm+q

)
(12)

and

BT =

 (C)
+ , C 6= 0(

1+ DTD
)−1

BT
(
Am
)+
, C = 0

C = ξ
(
[Z1,Z2, . . . ,Zn]Wm+q

)
− AmD. (13)

The pseudo-inverse of the newmatrix Am+k is calculatedwith
ridge regression,[
Zn|Hm]+

= lim
λ→2

(
λI+

[
Zn|Hm] [Zn|Hm]T)−1 [Zn|Hm]T ,

(14)

where λ is the regularization norm. Therefore, the weight of
the enhancement notes is updated as

Wm+q
=

[
Wm
− DBTY

BTY

]
, (15)

rather than calculating the pseudo-inverse of the new
matrix Am+k .

IV. CLASSIFICATION METHOD
Fig. 3 shows the classification process proposed in this
paper, including the two stages of ECG signal preprocessing
and classification. First, the ECG signals are processed in
two ways. On the one hand, the morphological feature of
each heartbeat signal is obtained after the segmentation of
the denoised signals; on the other hand, the rhythm feature
between heartbeats is extracted. Subsequently, the aforemen-
tioned features are fused to obtain morphology-rhythm fea-
tures as the input of the proposed IBL model (Fig. 2). Finally,
the heartbeat type is identified.

A. PREPROCESSING
The human ECG signal is a nonlinear and nonstationary
weak signal with an amplitude of millivolts. This weak signal
is easily affected by environmental noise and other factors.
To remove the baseline drift noise and high-frequency noise
of the ECG signal, we combine the median filter and wavelet
transform to obtain high-quality signals.
First, we use the parameters for 50 levels of the median

filter to the original ECG signal to obtain a set of baseline
drifts or noise, employing parameters for 150 orders of the
median filter. These steps are repeated to obtain another set of
baseline drifts, and we obtain the original ECG signal minus
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FIGURE 4. High-frequency coefficients of each layer after wavelet
decomposition.

the aforementioned two groups of baseline noise; finally,
we filter out the noise of the ECG signal baseline drift.

Next, after removing the baseline drift noise, the signal
is decomposed by a three-layer wavelet; the Daubechies
(DB) 5 wavelet is selected as the parent wavelet. The
high-frequency coefficients of the different layers are
obtained as shown in Fig. 4. Then, the thresholds of the
high-frequency coefficients of each layer after decomposition
are determined by using the unbiased likelihood estimation
method. Subsequently, the soft threshold method is used
to carry out threshold quantization processing on the high-
frequency coefficients to obtain high-frequency information.

Finally, the low-frequency coefficient of the third layer,
after wavelet decomposition, and the high-frequency infor-
mation of each layer after threshold processing are recon-
structed to obtain the ECG signal after filtering the
high-frequency noise.

The denoised ECG signal is processed in two treatments.
The duration of each wave (for example, the P-wave) is
approximately 0.08–0.11 s, and the cycle of a complete
heartbeat is approximately 0.65 s. Thus, we extract 234
(0.65 s × 360 Hz) sample points, centering on the peak of the
R-wave. Then, we downsample each segmented heartbeat to
97 sample points as themorphological feature of the heartbeat
signal. As arrhythmia always induces an abnormal duration
between the R-R interval, we use three R-R-wave-related
variables (RRpre,RRpos,RRdiff ) as the rhythm feature.RRpre is

TABLE 1. Number of beats for the sample set.

the R-R interval between the current peak of the R-wave
and the former wave, whereas RRpos is the R-R interval
between the current peak of the R-wave and the latter wave.
RRdiff is the difference between RRpre and RRpos. Finally,
the three variables are normalized to [0, 1] and concatenated
to the sampled 97 points as the extracted morphology-rhythm
feature.

B. CLASSIFICATION
In this study, we constructed an IBL model (Fig. 2) as a
classifier to identify arrhythmia types, and improved the clas-
sification effect by changing the structure of the model in the
enhancement nodes of each reinforcement learning.

The parameters of IBL were determined during cross-
validation as follows. As shown in Fig. 2, the number of
windows of the feature nodes is 20, the number of enhance-
ment nodes is 200, and the number of enhancement nodes
in each incremental learning is 400. Here, ‘‘20’’ signifies
that the number of packets captured is 20, corresponding to
the number of neurons contained in label Z in Fig. 2. The
figure ‘‘200’’ refers to the number of neurons introduced into
the network at the beginning, corresponding to the red circle
labeled ‘‘Additional Enhancement Nodes’’; that is, m in Hm is
set to 200. The figure ‘‘400’’ refers to the number of neurons
used to further expand the network, corresponding to the red
circle labeled ‘‘increase enhancement node’’ in Fig. 2, so that
k in Hm+k is set to 400. As shown in Fig. 1, the dropout
rate is 25%. Here, 25% is the proportion of enhancement
nodes discarded in each incremental learning, which is 300
(i.e., 400 × (1 – 0.25)). Hence, 300 of the 400 enhancement
nodes (the number of neurons with values in the top 300) are
reserved for accessing the network.

C. DATABASE
The experimental data were obtained from the MIT-BIH
arrhythmia database [12]. We extracted single-lead data for
six arrhythmia types (modified limb lead II, MLII) from the
database: normal beat (N), paced beat (/), atrial premature
beat (A), premature ventricular contraction (V), left ven-
tricular bundle branch block (L), and right bundle branch
block beat (R). Because the proportion of normal heartbeats
accounts for 73.3% (n= 73542) of the total samples, we ran-
domly chose 6000 normal heartbeats for the classification.
The number of beats for the sample set that contains six types
of heartbeats is shown in Table 1. We randomly chose 60% of
the heartbeats from the sample set as a training set. The rest
of the dataset was used as the testing set.
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TABLE 2. Training and testing datasets selection with AAMI
recommendation.

FIGURE 5. Classification accuracy with the enhancement of IBL nodes.

In addition, to objectively evaluate the classification per-
formance of the proposed network structure, and further
analyze the recognition effect of the proposed algorithm
on ECG from different subjects, we processed the data in
the MIT-BIH arrhythmia database in accordance with the
Association for the Advancement ofMedical Instrumentation
(AAMI) ECAR-1987 recommended practice, that is, using
the dataset classification method proposed in [15]. According
to the AAMI recommendation, each category of the arrhyth-
mia database can be grouped into five sub-categories: beats
originating in the sinus mode (N), supraventricular ectopic
beats (SVEB), ventricular ectopic beats (VEB), fusion beats
(F), and unclassifiable beats (Q). Furthermore, the first five
minutes of recordings were used as the training set, whereas
the remaining twenty-five minutes were used as the testing
set. The training and testing datasets are described in Table 2.

V. EXPERIMENTS AND RESULTS
This section reports three experiments conducted that validate
the proposed method: (1) checking classification accuracy
depending on the enhancement of IBL nodes; (2) compar-
ing the training process of the proposed method with CNN;
(3) analyzing the confusion matrix and arrhythmia-specific
indicators.

A. EXPERIMENT 1
Fig. 5 shows the results of classification accuracy after adding
enhancement in the IBL network. The test dataset is shown in

Table 1. The colored circles (except black) in Fig. 5 rep-
resent the classification accuracy and time after four inde-
pendent experiments, where the corresponding time refers
to the additional time cost for each additional 400 enhance-
ment nodes in the proposed neural network. The black circle

FIGURE 6. Comparison of average classification accuracy between the
proposed method and CNN.

represents the average accuracy of the four independent
experiments. The results show that when the number of
enhancement nodes is increased to 1600, the average clas-
sification accuracy reaches the peak (99%), and the total test
time is only 0.6 s. Subsequently, every 400 additional nodes
enter the saturation state, in which the classification accuracy
presents a downward trend. It is worth noting that the afore-
mentioned results need a total training time of only 0.52 s.

B. EXPERIMENT 2
To compare the training cost between the proposed IBL
model and conventional deep learning neural network,
we reproduced a classification method, CNN, which has been
proposed in [13]. Fig. 6 shows the average classification
accuracy curve of the two classification methods for the
same dataset (Table 1). The red and blue lines represent the
classification results based on IBL and CNN, respectively.
The results show that the peak (99.08%) of the blue line
after 12 iterations is slightly higher than that of the red line
after introducing 1600 enhancement nodes (99%). In addi-
tion, considering the time cost, it only takes 0.6 s for IBL
to achieve 99% classification accuracy on the test set with a
training time of less than 2.7 s. By contrast, CNN requires
60 s and 2 s for training and testing, respectively, to reach the
peak. Comparison of the training time cost shows that IBL
completes the data learning in significantly less training time
than CNN, and achieves an excellent learning effect.

C. EXPERIMENT 3
To comparatively evaluate the classification performance of
our method more accurately and ensure the credibility of
the experimental results, the ANSI/AAMI EC57:2012 stan-
dard [14], formulated by AAMI, was adopted in this
comparative experiment. AAMI specifies the indicators used
to evaluate the arrhythmia classification performance, includ-
ing confusion matrix, accuracy (Acc), sensitivity (Sen),
specificity (Spe), and positive prediction rate (Ppr). The
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TABLE 3. Confusion matrix for recognition results of five types of beats.

corresponding mathematical description is as follows:

Acc =
TP+ TN

TP+ TN + FP+ FN
(16)

Sen =
TP

TP+ FN
(17)

Spe =
TN

TN + FP
(18)

Ppr =
TP

TP+ FP
(19)

where TP is true positive, TN is true negative, FP is false pos-
itive, and FN is false negative. In arrhythmia classification,
accuracy represents the overall classification performance
of all types of beats. In contrast, the sensitivity, specificity,
and positive predictive rates are indicators that enable the
evaluation of the effectiveness of recognition of the algorithm
for specific types of beats.

Table 3 lists the classification results of the proposed
method on the test set (Table 2 ) as a confusion matrix. The
recall rate of other types of heartbeat reached more than 90%,
except for the F and Q types. In the recognition results of
SVEB cardiac beats, some of them were wrongly classified
as VEB and F, resulting in low precision (90.7%); however,
these results were still significantly higher than the recall
results in the literature [17], [18], which were 60.31% and
76.9%, respectively. In the recognition of VEB beats, because
a small number of beats were wrongly classified as N and
F, the precision was 98.4%, which was higher than that of
Zhai and Tin [18] (93.96%).

Table 4 presents the classification methods proposed by
other authors. Table 5 summarizes the results of identify-
ing SVEB and VEB types of beats using the methods from
Table 4. Jiang and Kong [15] proposed block-based neu-
ral networks (BbNN) for beat classification, which includes
modular components with a flexible structure and internal
configuration. Ince et al. [16] used morphological wavelet
transform and principal component analysis to project the
beat into a low-dimensional feature space and extracted the
time domain features of ECG data. They combined a feed-
forward and fully connected artificial neural network with
multidimensional particle swarm optimization to classify the
beat. Kiranyaz et al. [17] used an adaptive one-dimensional
CNN model for beat classification. Zhai and Tin [18] first
transformed the beat into a two-beat coupling matrix as

TABLE 4. Other classification methods.

the input of a two-dimensional CNN, which captured the
morphology of the ECG central beat and the R-R interval
information between adjacent beats. Subsequently, they used
a system-specific type of beat selection program to select
representative beats for the training model.

According to the results in Table 5, the Acc, Sen, Spe, and
Ppr of the proposed IBL model for VEB are 99.5%, 100%,
99.5% and 90.7%, respectively. Meanwhile, all the evalua-
tion indexes of SVEB, except Sen, reached more than 98%.
Thus, the contributions of the method are very clear. First,
the proposed method shows significantly better results for the
indicators of VEB than for SVEB. Second, compared with
the other algorithms, the indexes of the proposed method are
higher than those of the other algorithms except for the Ppr of
VEB type. Specifically, SVEB’s Sen and Ppr are 84.5% and
98.4%, respectively, which are lower in the other algorithms.
Compared with Kiranyaz et al. [19] (95.0%), the result of Sen
of VEB increased by 5%.

D. DISCUSSION
The results of experiments 1 and 2 show that the proposed
IBL model is an effective automatic classifier of arrhythmias.
Compared with the DNN model, the IBL model embedded
with biased dropout technology has similar classification
accuracy and higher real-time performance, especially in
reducing the time of training and testing. The results above
show that the t-biased dropout technique can effectively com-
press the number of enhancing neurons and improve the
classification accuracy by purposefully selecting high-quality
nodes.

The results of Experiment 3 further verify the effectiveness
of the IBL. The proposed method achieved significantly bet-
ter results than other algorithms in most indexes of SVEB and
VEB. The reason is that the morphological-rhythm feature,
extracted from ECG signal preprocessing, is helpful in char-
acterizing the traits of the SVEB and VEB beat. In addition,
the test samples in Table 2 are new data for comparative
experiments, which shows that the proposed algorithm has
good generalization ability for ‘‘fresh data.’’ In addition, the
IBL classifier constructed in this study deals with various
small channels, and the classification algorithm works for
single-lead acquisition of ECG signals, which is suitable
for application in lightweight portable devices. Therefore,
our study provides a technical reference for further research
and development of electronic home health-monitoring and
auxiliary diagnosis products.
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TABLE 5. Evaluation index of different algorithms on VEB and SVEB beat types.

Despite the achievements of our research, the generaliza-
tion of the proposed automatic classification algorithm needs
to be improved. For example, the proposed arrhythmia clas-
sification algorithm is only applicable to the MIT-BIH ECG
database, which has certain universal significance, but it is far
from universal. Therefore, in future work, we plan to design
a universal automatic arrhythmia classification algorithm for
other ECG databases and meet the requirements of clinical
ECG signal processing.

VI. CONCLUSION
In this paper, we proposed a fast and accurate arrhythmia clas-
sification algorithm based on broad learning, and evaluated
its performance on the MIT-BIH database. The BL network
model promotes the update of network structure and improves
the classification performance by introducing target deactiva-
tion technology and adding additional feature enhancement
nodes. Therefore, we achieved a good balance between clas-
sification accuracy and training time. In addition, in the data
preprocessing stage, multiangle feature extraction of ECG
signal is carried out, including morphological features and
rhythm features, which also plays a certain role in improving
the learning ability of the model.
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