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ABSTRACT Distributed energy resources (DERs) such as wind turbines (WTs), photovoltaics (PVs),
energy storage systems (ESSs), local loads, and demand response (DR) are highly valued for environmental
protection. However, their volatility poses several risks to the DER aggregator while formulating a profitable
strategy for bidding in the day-ahead power market. This study proposes a data-driven bidding strategy
framework for a DER aggregator confronted with various uncertainties. First, a data-driven forecasting
model involving gated recurrent unit–enhanced learning particle swarm optimization (GRU-ELPSO) with
improved mutual information (IMI) is employed to model renewables and local loads. It is critical for a DER
aggregator to accurately estimate these components before bidding in the day-ahead power market. This
aids in reducing the penalty costs of forecasting errors. Second, an optimal bidding strategy that is based
on the information gap decision theory (IGDT) is formulated to address market price uncertainty. The DER
aggregator is assumed to be risk-averse (RA) or risk-seeker (RS), and the corresponding bidding strategies are
formulated according to the risk preferences thereof. Then, an hourly bidding profile is created for the DER
aggregator to bid successfully in the day-ahead power market. The proposed data-driven bidding framework
is evaluated using an illustrative systemwherein a dataset is obtained from the PJMmarket. The results reveal
the effectiveness of handling uncertainty by providing accurate forecasting results. In addition, the DER
aggregator can bid effectively in the day-ahead power market according to its preference for robustness or
high profit, with a suitable bidding profile.

INDEX TERMS Bidding strategy, DER aggregator, gated recurrent unit–enhanced learning particle swarm
optimization, information gap decision theory, uncertainty.

NOMENCLATURE
A. SETS
b/N b Set / maximum number of PSO iterations
z/N z Set / maximum number of particles
p/N p Set / maximum number of training data
q/N q Set / maximum number of validation data
r /N r Set / maximum number of PVs
u/N u Set / maximum number of WTs
y/N y Set / maximum number of DR customer
u/N u Set / maximum number of uncertainties
n Set of particles dimension
k Set of hidden layers
L Column length
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approving it for publication was Akshay Kumar Saha .

B. PARAMETERS
EPV (x, 24) PV data of 24 h of xth day
zt , rt Update and reset gate
ht , h−t Hidden and candidate hidden state
xt , yt Input and output of the time-step t
σ Sigmoid function
tanh Hyperbolic tangent function
Wxz, Wxr , Wxh Update, reset gate, and candidate

hidden state weight matrixes
Whz, Whr Circular connection weight matrixes
bz, br , bh− Corresponding bias vector
σ Sigmoid function
tanh Hyperbolic tangent function
wP Inertial weight of ELPSO
hk Number of neurons in Hidden layer k
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nGRU Iteration number of GRU
yp, yq Actual and predicted values of training

data
y′p, y

′
q Actual and predicted values of

validation data
Ei, E tj , E

ml Input random, target, and average
variable

PPV ,PWT Maximum power of PV and WT
PESS Maximum power of ESS
ηch, ηdch Charging and discharging efficiency

of ESS

PESSch,t ,P
ESS
dch,t Maximum charging and discharging

power of ESS
RRN Risk-neutral profit
π1 Penalty coefficients of WTs
π2 Penalty coefficients of PVs
π3 Penalty coefficients of local load
f min, f max Minimum and maximum proportion of

estimated baseline load
δ Profit deviation factor
α, β Robust and opportunity index
yreali , ypredi , ymeani Real, predicted, and mean values of i

variable

C. VARIABLES
Ei, E tj , E

m
l Input discrete random variable, target

value, and second target value
Sz Supplementary variable
vz, n(b), xz,n(b) Velocity and position of particle
wp Inertia weight
c1,z(b), c2(b) Self-cognition and influence coefficient
r1, r2 Random variables
pbest,z,n(b) Local bests solution of PSO
gbest,z,n(b) Global best solution of PSO
RAgg Revenue of DER aggregator
Rsellt Revenue from sellingpower tocustomers
RDRt Revenue from selling DR
CPM
t Cost of purchasing power from market

CDR
t Incentives provided to customers

CP,WTs
t Penalty cost of forecastingerrors of WTs

CP,PVs
t Penalty cost of forecastingerrors of PVs

CP,Base
t Penalty cost of error in local load

forecasting
PPVt ,PWTt Power of PV and WT
PPMt ,PDRt Energy from power market and DR
PBaset Baseline load
PESSt Power of ESS
PR,PVt, Real output power of PVs
PR,WTt Real output power of WTs
PR,Baset Real power of baseline load
Xt State-of-charge of ESS
Uch, Udch Charging and discharging states of ESS
λsellt Retail price

λPDRt Price at which DR is sold to power
market

λPMt Price of day-ahead power market
λDRt Price of incentive payment
λRRt Price of reserve requirement
q State variable
G(q) = b Equality constraints
(Hq, x) ≤ 0 Inequality constraints
x Decision variables
RRN Revenue of RN strategy
λPMt , λPM∗t Predicted and actual values of market

price

D. ABBREVIATIONS
ABC Artificial colony bee (algorithm)
CA Correlation analysis
CPU Computation time
DERs Distributed energy resources
EGA Enhanced genetic algorithm
ELPSO Enhanced learning PSO
ESS Energy storage system
GRU Gated recurrent unit
IDR Incentive-based demand response
IGDT Information gap decision theory
IMI Improved mutual information
LSTM Long short-term memory
MAE Mean absolute error
PSO Particle swarm optimization (algorithm)
PCA Principle component analysis
PVs Photovoltaics
RA Risk-averse
RMSE Root mean squared error
RO Robust optimization
RS Risk-seeker
SE-PSO Security enhanced-PSO
SM Spider monkey (algorithm)
SO Stochastic optimization
SOC Stage-of-charge of ESS
SVR Support vector regression
WTs Wind turbines

I. INTRODUCTION
A. MOTIVATION
The development of distributed energy resources (DERs),
which include photovoltaics (PVs), wind turbines (WTs),
energy storage systems (ESSs), and demand response (DR),
is considered a potential solution and the penetration of DERs
is likely to increase owing to environmental policies [1].
The DER aggregator, which aggregates a substantial number
of various small-sized renewable sources, has been used to
manage the task of fulfilling the expected local load through
bidding in the day-ahead power market and scheduling var-
ious DERs [2]. As a profit-seeking entity, the DER aggre-
gator is expected to design a day-ahead optimal bidding
and scheduling strategy to maximize profits. However, there
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are factors that could significantly impact the revenue of
the aggregator. These include the uncertainties of renewable
output power, local load, and day-ahead power market price.
Accuratemodeling of these factors is crucial for the economic
performance of the DER aggregator when it participates in
power markets and the accuracy of modeling significantly
affects its bidding strategy. Thus, there exists an evident need
to develop a forecasting model for predicting the behavior
of aggregator components prior to bidding in the power
market, in order to effectively handle uncertainties. In addi-
tion, an optimal bidding strategy should be determined to
effectively procure energy by addressing price uncertainty.
In other words, the DER aggregator should prepare various
bidding strategies by creating a bidding profile to purchase
energy from the power market and satisfy the demand in an
economical and robust manner. Therefore, these uncertainties
must be considered while developing an optimal bidding
strategy for a DER aggregator.

B. LITERATRUE REVIEW
Several studies have focused onmanaging the uncertainties in
the day-ahead bidding process of a DER aggregator. Address-
ing uncertainty modeling method can be categorized into five
classes: stochastic optimization (SO), robust optimization
(RO), interval optimization, fuzzy method, and autoregres-
sive moving average (ARIMA) models. In [3], a stochastic-
based comprehensive bidding strategy for DER aggregators
was developed considering PV and WT output uncertainties.
The authors in [4] proposed a stochastic linear programming-
based optimal bidding strategy for DER aggregators in a
day-ahead market that involves DER uncertainties. In [5],
an optimal bidding strategy for renewable-based aggregators
in the real-time market was proposed. It is based on bi-
level optimization and aims at solving the decision-making
problem of DER aggregators and the real-time market clear-
ing problem as a price-maker players. An optimal dispatch
problem of a virtual power plant was proposed in [6] where
uncertainties of the renewables and load were considered
via the scenario-based optimization method. A Stakelberg
game theory model was applied in this study to maximize
the profit of the virtual power plant while minimizing the
cost of purchasing energy from users. A stochastic-based
conditional value at risk (CVaR) was also used to man-
age the uncertainties of renewables in the bidding strategy
problem. Because the accurate estimation of the probability
distribution function of uncertain factors is problematic in
practice, the results obtained through SO in certain cases are
unreliable. Unlike SO, RO has been discussed widely which
considers the worst-case of uncertainty. A non-cooperative
static game-based robust bidding strategy of a DER aggre-
gator was introduced in [7], where the uncertainty of the
day-ahead market price was modeled by the robust method.
The authors in [8] proposed a hybrid bidding strategy based
on dual stochastic/robust optimization. Here, the uncertain
output power of renewables and the day-ahead market price
were modeled via scenario-based optimization. In addition,

ROwas used to handle the real-time market price uncertainty.
As the RO addresses the worst cases, its results may be overly
conservative, as compared with those of SO. In addition,
the scope of uncertain parameters needs to be defined in
advance, which is a drawback of this optimization method.
Interval optimization can also be applied to address the
uncertainties where uncertain parameters are represented as
interval numbers [9]. A coordinated bidding strategy using
interval optimization for the hydro units and wind farms of
a generating company was proposed in [10]. The uncertain-
ties of WT power, energy, and intraday energy price were
represented by the number of intervals ratherthan probabil-
ity distributions. In Ref. [11], a three-stage hybrid stochas-
tic/interval optimization was proposed for application in the
bidding strategy of microgrids, considering the uncertainties
of renewables, loads, and market prices. An economical
and robust solution with significantly less computational
complexity was provided by adopting hybrid optimization.
Notably, interval optimization involves less computational
complexity than SO. However, the results of interval opti-
mization are less precise than those of the robust method,
because the worst case is considered in the robust method.
The fuzzy method is similar to SO in that it adopts a fuzzy
membership function to manage uncertainties. A coordinated
bidding strategy across the regulation and spinning reserve
market was proposed in [12]. Herein, the fuzzy set theory was
implemented to model the uncertainties of ancillary service
prices. In [13], an optimal DR bidding and pricingmechanism
for a virtual power plant was proposed considering renewable
output uncertainties under fuzzy optimization. Similar to the
SO method, the acquisition of a fuzzy membership func-
tion can be difficult. Furthermore, it may be unsuitable for
addressing exceptional and highly uncertain circumstances.
The authors in [9] presented the optimal bidding of a DER
aggregator in the day-ahead frequency regulation market.
In their study, seasonal ARIMAwas utilized to model market
price uncertainty. However, Vatandoust et al. [14] revealed
that the seasonal ARIMAmodel could not efficiently manage
uncertainties and that it results in inaccurate bids for DER
aggregators.

To overcome these shortcomings, new approaches using
artificial intelligence have garnered significant attention.
Recently, data-driven models based on machine learning
and artificial intelligence have been applied in the field
of power systems [15]. Numerous uncertain parameters are
encountered while formulating the optimal bidding strategy
for a DER aggregator. Furthermore, the large volume of
data necessitates a strong data-driven forecasting model for
high-precision modeling. In general, time-series forecasting
models such as long short-term memory (LSTM) or the
gated recurrent unit (GRU) have been adopted in state-of-
the-art studies for short-term load or renewable output fore-
casting tasks [16], [17]. In [18], a state-of-charge battery
ESS prediction model was proposed by combining LSTM
and an unscented Kalman filter. The authors in [19] pro-
posed a data-driven model for handling the EV demand
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TABLE 1. Comparison analysis between existing literatures and proposed framework.

uncertainty. Their results established that the data-driven
model can provide a superior framework for handling uncer-
tainty owing to its highly effective memory unit in the net-
work. This would enable a DER aggregator to improve its
financial performance while participating in various mar-
kets, as compared with other optimization techniques. The
information gap decision theory (IGDT) has also emerged
as an effective optimization method to model uncertainties
without probability distribution functions that are based on
historical data or the fluctuation ranges of uncertain vari-
ables [20]. When modeling uncertain variables, the IGDT
encloses uncertainties as an unbounded gap in which the
negative impact of uncertainties can be managed compre-
hensively. More precisely, the IGDT provides a robust solu-
tion that fulfills the specified profit/cost expectations of
the operator. In [21], a risk-managing bidding strategy for
microgrid operators was presented, considering the impact
of load and price uncertainties caused by the IGDT. The
authors in [22] proposed IGDT-based bi-level programming
for short-term self-scheduling by DR aggregators. A two-
level stochastic/IGDT optimization framework was proposed
in [23] to address the uncertainties of PVs, WTs, energy,
and reserve market prices; probability of calling reserve; and
load in the energy and reserve market. In this model, CVaR
and IGDT risk-aversion parameters were applied to manage
the effects of uncertainties in the bidding problem. It was
established that the framework can provide various risk-based
strategies to address uncertainties. However, optimization by
applying the IGDT alone could not consider the penalty cost
of forecasting errors. This yields the actual difference in profit
for a DER aggregator when participating in the day-ahead
power market.

Table 1 summarizes the comprehensiveness and novelty
of this study. It demonstrates the difference between the
methods reported in literature and the proposed bidding
framework.

C. CONTRIBUTIONS AND PAPER ORGANIZATIONS
This paper proposes a new data-driven bidding framework
for DER aggregators that is optimized using the IGDT by
considering the uncertainties of PVs, WTs, local loads, and
day-ahead market prices. The adopted bidding strategy is
superior to other frameworks because the proposed forecast-
ing model yields more accurate day-ahead prediction results
through an elaborate modeling of the uncertainty variables
via the gated recurrent unit–enhanced learning particle swarm
optimization algorithm (GRU-ELPSO) in conjunction with
improved mutual information (IMI). In addition, the IGDT-
based optimization is used to provide risk-averse (RA) and
risk-seeker (RS) bidding strategies for a DER aggregator and
submit day-ahead bids to the power market according to its
preferences for robustness or high profit. Accordingly, a data-
driven bidding strategy based on the IGDT functions as a
practical tool for handling uncertainties from the perspective
of engineering applications.

The major contributions of this study can be listed as
follows:
• The development of an optimal data-driven bidding
strategy for DER aggregators to efficiently handle the
uncertainties posed by DERs, local loads, and mar-
ket prices while participating in the day-ahead power
market.

• The validity and performance of the proposed
data-driven bidding strategy for DER aggregators were
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FIGURE 1. Overall structure of proposed data-driven model.

investigated using an illustrative system, where specific
data were obtained from the PJMmarket for considering
a realistic environment.

• A novel data-driven forecasting model composed of
IMI and GRU-ELPSO is proposed. The IMI functions
systematically to rank the candidate input data and
extract the best input dataset by analyzing both linear
and nonlinear characteristics. To improve the forecast-
ing accuracy and prevent the GRU overfitting problem,
an ELPSO is utilized to optimize the hyperparameter
sets.

• The IGDT-based optimization method offers both RA
and RS strategies. The acquisition of both strate-
gies under varying degrees of market price uncer-
tainty and the risk level that the DER aggregator can
endure further demonstrates the superiority of the IGDT
method.

• The development of bidding strategy curves accord-
ing to the aggregator’s risk level provides suit-
able decision-making criteria to be submitted for the
day-ahead power market and procure energy at the most
reasonable price to maximize profit.

The remainder of this paper is organized as follows:
Section II presents the proposed data-driven forecasting
model with IMI feature selection. In Section III, an IGDT-
based problem formulation for an optimal bidding strategy is
presented. The proposed optimal bidding strategy framework
is presented in Section IV. Case studies with detailed analyses
are provided in Section V. Finally, Section VI concludes the
paper.

II. DATA-DRIVEN MODEL FOR HANDLING
UNCERTAINTIES
In our work, a data-driven forecasting model, GRU-ELPSO,
is proposed to model the various stochastic parameter uncer-
tainties of aggregated renewables and local load. The overall
structure of the proposed model for predicting stochastic

parameters is shown in Fig. 1. It consists of five parts:
(1) collection of historical multivariate time-series data and
pre-processing with feature selection, (2) construction of the
GRU, (3) GRU training and validation, (4) identification
of an optimal GRU hyperparameter by implementing the
ELPSO algorithm, and (5) prediction of PVs, WTs, and the
local load of the DER aggregator via an individual optimized
forecasting model. Based on the proposed data-driven model,
the DER aggregator can effectively forecast the aggregated
WTs, PVs, and local loads with high accuracy before bidding
in the day-ahead power market. In the following section,
a detailed description of the proposed forecasting model is
presented with mathematical formulations.

A. DATA-PREPROCESSING AND FEATURE SELECTION
Let us assume that EPV is a historical PV datum, which is
described in the matrix form. The hourly PV output power
data are fed into the pre-processing and feature selection
steps:

EPV =


EPV (1, 1) EPV (2, 1) · · · EPV (x, 1)
EPV (1, 2) EPV (2, 2) · · · EPV (x, 2)

...
...

...
...

EPV (1, 24) EPV (1, 24) · · · EPV (x, 24)

 (1)

These historical PV data are first pass to the data-cleansing
step. Here, missing and defective data are replaced by the
mean value of the PV data from preceding days. Then,
to ensure that the overall weighted sum lies within the
activation function limit, the cleansed PV data undergo
the normalization process. This is because the data can
include outliers, and the parameter weight matrix is highly
marginal. Subsequently, the feature selection process is
implemented in machine learning to filter out unimportant
or less important input features. The feature selection step is
significantly important for prediction accuracy. Furthermore,
it prevents overfitting because it aids in circumventing the
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dimensionality curse [25]. In this regard, the selection of
optimal input variables from large dimensions is important.
Numerous feature selection techniques exist, such as corre-
lation analysis (CA), principal component analysis (PCA),
and mutual information (MI). In this study, an improved
MI (IMI) feature selection technique is developed by mod-
ifying the conventional entropy-based MI technique [26] to
analyze both linear and nonlinear dataset characteristics. This
technique ranks inputs according to their information values.
The subset of selected features includes the best and most
relevant data, which can contribute significantly toward the
forecasting accuracy. The proposed IMI technique can be
described mathematically as follows:

IMI (E,E t ,Em) =
∑
i

∑
j

∑
l

p(Ei, E tj , E
m
l )

× log2

(
p(Ei, E tj , E

m
l )

p(Ei)× p(E tj )× p(E
m
l )

)
∀Ei, E tj , E

m
l ∈ {0, 1}

(2)

where p(Ei, E tj , E
m
l ) is the joint probability of the three

discrete random variables.
In the conventionalMI technique, whereMI(E , E tj ) is used,

the last sample data among the training sample is tend to be
chosen as the target value which is close to the next day.
Although this appears logical with respect to time, it could
lower the forecasting accuracy owing to average behavior
ignorance. Conversely, in the IMI technique, the average
value Eml is included in addition to the target value, in order
to increase prediction accuracy. To obtain the joint and indi-
vidual probabilities, Sz can be described as

Sz = 4E tj + 2Eml + Ei (3)

In (3), it is clear that Sz ∈ {0, 1, 2 . . . , 7}, and Sz, counts the
numbers from zero to seven. From the aforementioned discus-
sion, the individual and joint probabilities can be computed
as (4). This feature selection technique offers two advantages:
(i) it minimizes prediction errors by selecting reasonable and
relevant input data, and (ii) it improves the convergence rate
by selecting a suitable feature subset. After the IMI feature
selection step, the selected input data are split into training,
validation, and test data samples for the forecasting model.
Finally, the selected key subset features are used as an input
for the proposed GRU-ELPSO forecasting model.

pr(E = 0) =
S0m + S2m + S4m + S6m

L

pr(E = 1) =
S1m + S3m + S5m + S7m

L

pr(Em = 0) =
S0m + S1m + S4m + S5m

L

pr(Em = 1) =
S2m + S3m + S6m + S7m

L

pr(E t = 0) =
S0m + S1m + S2m + S3m

L

pr(E t = 1) =
S4m + S5m + S6m + S7m

L
(4)

B. GATED RECURRENT UNIT
A recurrent neural network (RNN) is a forecasting model
that contains a previous information status and passes it to
the next time-step where subsequent inputs would be pro-
cessed. RNNs can be employed in WTs, PVs, and local
load forecasting tasks, assuming that these stochastic param-
eters are time dependent. However, the implementation of
a general RNN may be hindered by exploding or vanishing
gradient problems [27]. With the development of deep learn-
ing technology, LSTM and GRU have been introduced as
effective solutions to address these problems. An LSTM is an
improved forecasting model based on a simple RNN. It adds
‘‘cell state’’ and ‘‘processor’’ throughout the time series to
decide whether the information is required, by using input,
forget, and output gates [28]. Although LSTM addressed the
gradient exploding and vanishing problems, it encountered
these problems in certain cases. The GRU, which is based
on the LSTM, is also used to overcome training problems
andmaintain the internal state throughout a recurrent process.
In this study, GRU is adopted as the surrogate emulator in
our simulation. This is because it reduces the computational
burden and realizes a faster learning curve owing to its more
compact structure and fewer parameters, as compared with
the RNN and LSTM [29].

The GRU has two gates (‘‘reset gate’’ and ‘‘update gate’’)
as the specific inner GRU structure (see Fig. 1). The forward
transmission process can be presented as [30]

zt = σ (Wxzxt +Whzht−1 + bz) (5)

rt = σ (Wxrxt +Whzht−1 + br ) (6)

h = tanh(Wxhxt +Whh(rt � ht−1)+ bh) (7)

ht = (1− zt )� ht−1 + zt � ht (8)

yt = σ (Wo · ht ) (9)

In (7) and (8), ◦ indicates element-wise multiplication.
According to (5)–(9), the GRU reset gate determines the
method for combining the current input information status
with the preorder memory in order to manage the degree to
which the state at a past moment is omitted. The higher the
reset gate value, the shallower is the degree of omission. The
update gate is used to determine the amount of previous infor-
mation stored in the current time-step. It is implemented to
control the extent to which the state memory of the preceding
state is processed into the current state. The update gate value
affects the extent to which the state memory of the preceding
moment is maintained for the current time-step. The two
gated vectors determine the output status of the gated loop.
In addition, the gate mechanism can maintain information
in a long-term sequence without loss over time or being
eliminated, although it can be irrelevant to the prediction.

C. ENHANCED LEARNING PARTICLE SWARM
OPTIMIZATION
The GRU forecasting model based on a deep neural network
is developed with hidden layers. In particular, the number of
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hidden layers, neurons, and iterations are critical hyperpa-
rameters that directly affect the GRU forecasting accuracy.
Insufficient or excessive numbers can result in underfitting
or overfitting, respectively. Grid and random searches are typ-
ical algorithms for identifying these hyperparameters. How-
ever, these may involve range limit and bias [31]. The particle
swarm optimization (PSO) algorithm is used to overcome
these disadvantages and search for suitable hyperparameters.
It can search for its own optimal and globally optimized solu-
tion in the design space with a satisfactory search time and
computational burden. PSO [32] is a meta-heuristic optimiza-
tion algorithm based on the swarm intelligence of particles
that share their explorations among themselves. It is assumed
that the z-th particle in the N -dimensional space xP,z =
(xP,z1, xP,z2, · · · , xP,zN ) has a position and velocity vector.
These can be expressed as pP,z = (pP,z1, pP,z2, · · · , pP,zN )
and vP,z = (vP,z1, vP,z2, · · · , vP,zN ), respectively. The local
and global optimal solutions for the b iteration can be denoted
as pP,best,z,n(b) and gP,best,z,n(b), respectively. The particle
velocity (10) and position (11) can be updated according to
pP,best,z,n(b) and gP,best,z,n(b), as follows [32]:

vz,n(b+ 1) = w× vz,n(b)+ c1 × r1 × (pbest,z,n(b)− xz,n(b))

+ c2 × r2 × (gbest,z,n(b)− xz,n(b)) (10)

xz,n(b+ 1) = xz,n(b)+ vz,n(b+ 1) (11)

Improvements are necessary to identify optimized GRU
hyperparameters. This is because a conventional PSO con-
verges prematurely or tends to fall into the local optima when
the dimension of the optimization problem increases. A new
PSO variant (namely, ELPSO) is proposed to solve these
problems and thereby guarantee the search speed and ensure
the global optima, while maintaining the simplicity of the
PSO algorithm after several modifications.
• Inertia Weight: This parameter can be employed to
balance the local and global search accuracy. A larger
weight facilitates a higher global search capability,
whereas a small one improves the local search accuracy.
Accordingly, this parameter decreases nonlinearly over
time according to the following equation:

wP =
1
2

(
cos

((
b
N b

)l
π

)
+ 1

)
(12)

• Self-Cognition Coefficient: The effectiveness of the
guidance of each particle to the particle pz depends
on its experience. The higher its experience, the more
valuable is the guidance provided. In this regard, the self-
cognition coefficient can be defined to be proportional
to the pbest,z,n fitness value. In addition, we incorpo-
rate randomness in our design to prevent local optima.
Furthermore, a separate self-cognition coefficient per
particle is defined to improve the search capability.
Accordingly, the self-cognition vector C1(b) = [c11(b),
c12(b), . . . ., c

z
1,N (b)] is expressed as follows:

C1(b) = F(b)R(b) (13)

where R is a non-negative random matrix of dimension
Nz
× Nz whose elements are obtained from the range [0, 1].

These elements adjust the amount by which each particle
affects the others and are normalized such that the sum of
each raw value becomes one. F(b) = [f1(b), f2(b), . . . , f

z
N (b)]

indicates the normalized fitness function value. Here, fz(b)
can be computed as

fz(b) =
1

pbest, z,n·cs

N z∑
z=1

1
pbest, z,n·cs

(14)

where cs denotes the cost of a given position. The remaining
aspect is that the self-cognition coefficient range needs to be
determined. It can be derived as follows:

c1,z(b) = f1(b)r1,z(b)+ f2(b)r2,z(b)+ · · ·

+ fN z (b)rN z,z(b) =
N z∑
j=1

fj(b)rz(b) (15)

c1z(b) would be within the range [0, 1] because
∑N z

j=1 fj = 1
and 0 ≤ rj,z ≤ 1.

• Social Influence Coefficients: The parameter c2(b) spec-
ifies the particles’ tendency toward gbest,z,n. It signifi-
cantly affects the exploitation capability and should be
larger than c1(b) to obtain accurate convergence. Thus,
it can be defined as,

c2(b) = max cz,1(b) 1 ≤ z ≤ N z (16)

Based on the proposed parameter-update formulas,
the velocity function (10) can be reformulated as follows:

vz,n(b+ 1) = wP × vz,n(b)+ c1,z(b)× r1 × (pbest,z,n(b)

− xz,n(b))+ c2(b)× r2 × (gbest,z,n(b)− xz,n(b)) (17)

In this study, the number of neurons in hidden layers 1,
2, . . . , and k and the GRU iteration number are considered as
the optimization-seeking variables. Here, the initial particle
expression is defined as

xz, n(0) = (h1, h2, . . . , hk , nGRU ) (18)

The fitness function of the ELPSO algorithm can be
expressed as (19) to optimize the hyperparameters:

fit = 0.5

 1
N p

N p∑
p=1

∣∣∣yp − y′p∣∣∣
yp

+
1
N q

Nq∑
q=1

∣∣∣yq − y′q∣∣∣
yq

 (19)

To protect the forecasting model from overfitting, the fit-
ness function includes the training and validation sample
error. Here, the weights of each sample are assigned as 0.5.
According to (11)–(19), the optimal GRUmodel can be deter-
mined via repeated iterations.
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III. OPTIMAL BIDDING STRATEGY
Although the uncertainties of WTs, PVs, and the local load
are handled using the proposed data-driven model, the market
price uncertainty remains when the DER aggregator submits
day-ahead bids to the power market. In the present study,
the IGDT is employed to capture bidding strategy risks asso-
ciated with market prices. It provides an optimal bidding
strategy curve for the DER aggregator to maximize profit.
In this section, a problem formulation of the risk-neutral (RN)
optimization method is provided. Thereafter, market price
uncertainty is considered using the IGDT method. Subse-
quently, the process of obtaining the risk-constraint bidding
strategy and the corresponding bidding profile is presented to
the DER aggregator.

A. RN OPTIMIZATION
In the RN strategy, the market price uncertainty is neglected,
whereas the variations in WTs, PVs, and local loads are
considered via a data-driven model. The objective function
is to achieve the DER aggregator’s bidding strategy, the DR
amount, charging/discharging schedule of the ESS, and espe-
cially to maximize profit earned during this process.

1) OBJECTIVE FUNCTION
The optimal bidding strategy is to maximize the profit of the
DER aggregator (20):

Max RAgg =
N t∑
t=1


(
Rsellt + R

DR
t
)
−(

CPM
t + CDR

t + C
P,WTs
t

+CP,PVs
t + CP,lc

t

)
 (20)

Rsellt = Psellt × λ
sell
t ∀t (21)

RDRt = PDRt × λ
PDR
t ∀t (22)

CPM
t = PPMt × λ

PM
t ∀t (23)

CDR
t = PDRt × λ

DR
t ∀t (24)

CP,PVs
t =

N t∑
t=1

λRRt ×max[0,
N u∑
r=1

(PPVr,t −P
R,PV
r,t )]

+

N t∑
t=1

π2 ×max[0,
N u∑
r=1

(PR,PVr,t − P
PV
r,t )] ∀r, t

(25)

CP,WTs
t =

N t∑
t=1

λRRt ×max[0,
N u∑
u=1

(PWTu,t −P
R,WT
u,t )]

+

N t∑
t=1

π1 ×max[0,
N u∑
u=1

(PR,WTu,t − PWTu,t )] ∀u, t

(26)

CP,Base
t =

N t∑
t=1

λRRt ×max[0, (PBaset − PR,Baset )]

+

N t∑
t=1

π3 ×max[0,PR,Baset − PBaset )] ∀t (27)

The revenue RAgg of DER aggregator comprises
several parts: the revenue from providing power to retail
customers (21), revenue from providing DR (22), cost of
purchasing power from the power market (23), and incentive
provided to DR customers (24). The penalty cost of PVs (25)
and WTs (26) includes the reserve requirement and spillage
costs. The former represents the overestimation where the
forecasted day-ahead power from DERs exceeds the actual
output power on the operation day; in this case, the aggregator
must pay for the additional power. The latter represents the
underestimation where the forecasted power is less than
that required on the actual dispatch day; in this case, the
aggregator needs to pay for the reserve power to satisfy the
requirements on the scheduled day. The penalty cost of local
load forecasting errors is described in (27).

2) POWER BALANCE CONSTRAINTS
The supply–demand constraint (28) ensures that the power
generated by DERs and that purchased from the day-ahead
power market is equal to the baseline load after DR,
if implemented:

PPMt + P
WT
t + P

PV
t + P

DR
t + P

ESS
t = PBaset ∀t (28)

3) DER CONSTRAINTS
The sums of the output power of PVs and WTs are indicated
in (29) and (30), respectively. The energy output for both
PVs and WTs is limited by the upper bounds given in (31)
and (32), respectively [9]:

PPVt =
N r∑
r=1

PPVr,t (29)

PWTt =

N u∑
u=1

PWTu,t (30)

0 ≤ PPVr,t ≤ PPVr ∀r, t (31)

0 ≤ PWTu,t ≤ PWTu ∀u, t (32)

4) ESS CONSTRAINTS
Equations (33)–(39) present the constraints of ESSs [24].
The charging/discharging and state-of-charge (SOC) of ESSs
can be computed according to (33) and (34), respectively.
The energy limit is ensured in (35), and (36)–(38) represent
the SOC bound and charging/discharging limit. It should be
noted that the charging and discharging of ESSs cannot occur
simultaneously in (39):

PESSt = PESSch,t × η
ch
−
PESSdch,t

ηdch
∀t (33)

Xt = Xt−1 + PESSch,t − P
ESS
dch,t ∀t (34)

Xt0 ≤ Xt ≤ Xnt ∀t (35)

X ≤ Xt ≤ X ∀t (36)
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0 ≤ PESSch,t ≤ P
ESS
ch,t × U

ch
t ∀t (37)

0 ≤ PESSdch,t ≤ P
ESS
dch,t × U

dch
t ∀t (38)

U ch
t + U

dch
t ≤ 1,U ch

t , U
dch
t ∈ {0, 1} ∀t (39)

5) DR CONSTRAINTS
In this study, the incentive-based load reduction DR is imple-
mented because it is suitable for current market practices.
Furthermore, the DR programs integrated in the wholesale
power market are load reductions, as stated in [33]. In this
regard, incentive-based DR (IDR) is considered for trading
in the day-ahead power market without the need to modify
traditional market trading floors. The load curtailment of
IDR participants is limited by the upper and lower bounds,
as shown in (40), and the total reduction from the IDR partic-
ipants is given as (41)

f min
× Pbaset ≤ PDRy,t ≤ f

max
× Pbaset ∀y, t (40)

PDRt =
N y∑
y=1

PDRy,t ∀y, t (41)

B. IGDT OPTIMIZATION METHOD
1) BACKGROUND OF IGDT
The IGDT-based optimization method is an innovative
method for handling uncertainty. It is aimed at determining
the maximum level of risk that a decision-maker can endure
in the day-ahead power market while satisfying a certain level
of profit expectation [22]. To achieve this, the IGDT method
focuses on the difference between the real and forecasted
values of uncertain parameters. This can be formulated as
follows:

U (α, λPM∗t ) =

{
λPMt :

∣∣λPMt − λPM∗t

∣∣
λPMt

≤ α

}
, α ≥ 0 (42)

Equation (42) enables the DER aggregator to make deci-
sions that are RA and/or RS based on the convenience of
expressing the difference between the actual and predicted
values, without considering the probability distribution of
historical data.

There are two processes for solving the optimization prob-
lem considering market uncertainty [23], [24]. First, an RN
optimization problem is solved, as indicated by (43). Here,
the market price uncertainty is not considered:

max RAgg = f (q)

s.t. G(q) = b

H (q, x) ≤ 0 (43)

In the second process, the market price uncertainty is
considered via the IGDT, and the profit deviation factor is
then provided. The target of the second process is to max-
imize/minimize the level of uncertainty while the expected
revenue is obtained. These can be formulated as an RA
and RS strategy for a DER aggregator, as described in (44)

and (45), which are based on the robustness and opportunity
functions.

α = max α

s.t f (q) ≥ (1+ δ) · RRN
G(q) = b

b = (1± α)bRN
H (q, x) ≤ 0 (44)

β = min α

s.t f (q) ≥ (1− δ) · RRN
G(q) = b

b = (1∓ α)bRN
H (q, x) ≤ 0 (45)

From (44) and (45), it is evident that the RA strategy tends
to prevent risks by considering a higher market price even if
the DER aggregator earns a profit that is less than that earned
using the RN strategy.Meanwhile, in the RS strategy, stability
can be forsaken to a certain extent to obtain higher revenue.

2) RA OPTIMIZATION
As mentioned earlier, the robustness function (44) is related
to higher market prices. It denotes the largest uncertainty
variable value such that the minimum aggregator revenue is
higher than the desired revenue target. From (42), a higher
market price can be described as

λPMt = λPM∗t + αλPM∗t (46)

According to the robustness function described in (44),
the maximum aggregator profit is

max α

s.t R ≥ (1− δ)RRN
λPMt = (1+ α)λPM∗t (47)

It should be noted that the RA objective function involves
the acquisition of the risk resistance capability of the DER
aggregator. Thus, the worst case should be considered in this
strategy. It is assumed to occur when the costs of purchasing
from the power market are high.

3) RS OPTIMIZATION
Because the RS strategy is related to a low market price or
higher profits of the DER aggregator, it expects to earn higher
profits with lowmarket prices. In other words, the RS strategy
assesses the possibility of benefiting significantly from low
market prices by reducing the purchasing costs. This can be
presented as

λPMt = λPM∗t − αλPM∗t (48)

The RS strategy can be described as follows based on the
opportunistic function and the adopted market price.

min α

s.t R ≤ (1+ δ)RRN
λEMt = (1− α)λEM∗t (49)
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FIGURE 2. Optimal bidding strategy curve.

4) OPTIMAL BIDDING STRATEGY CURVE
To transact energy in the day-ahead power market, the DER
aggregator should submit the hourly bidding or offering
curves. In this study, the local load of the designated DER
aggregator exceeds the DER generation capacity. Therefore,
the aggregator participates in the day-ahead power market to
procure energy as a consumer. In addition, it is assumed that
the DER aggregator functions as a price-taker, considering
its relatively small capacity, and only submits non-priced
quantity-only bids [14]. To achieve this, a suitable bidding
strategy curve is required for the DER aggregator. In addi-
tion, the IGDT-based optimization method is used to create
an optimal staircase bidding curve based on the robustness
and opportunistic functions. As an example, Fig. 2 presents
the procedure for creating a seven-level staircase bidding
curve for the DER aggregator. At each level, the adopted
IGDT-based optimization method is used to determine the
confidence level when specific profit-levels above and below
the expected profit are selected. Accordingly, the purchasing
power corresponding to the cleared price is developed for
each profit level. Based on this staircase bidding profile,
the DER aggregator can bid for the most reasonable quantity
in the day-ahead power market in order to maximize profit.

IV. OVERALL FRAMEWORK
The overall decision-making framework of the proposed data-
driven bidding strategy includes two stages, as shown in
Fig. 3. It can be summarized as follows:
Step 1: Collect the multivariate DER and local load histor-

ical data and perform data pre-processing through
cleansing, normalization, and feature selection.

Step 2: Construct the forecasting model GRU and select
the optimized hyperparameter from the ELPSO
algorithm.

Step 3: Forecast the hourlyWT output, PV output, and local
load of the DER aggregator as input data for the
second stage.

Step 4: Solve the RN optimization problem by maximizing
the aggregator’s profit without considering the mar-
ket price uncertainty.

FIGURE 3. Illustration of the proposed bidding strategy architecture.

Step 5: Obtain the RN bidding strategy results in conjunc-
tion with the maximized profit value and deviation
factor.

Step 6: Consider the market price uncertainty using the
IGDT and obtain both the RA and RS bidding strate-
gies in conjunction with the corresponding accept-
able uncertainty levels.

Step 7: Develop the hourly staircase bidding profile based
on the RA/RS results.

V. CASE STUDY
A. DESCRIPTION OF BENCHMARK DATASET
In the current study, the performance of the proposed
data-driven bidding strategy is verified using an illustra-
tive system. Here, the DER aggregator involves 500 WTs,
400 PVs, 100 ESSs, and 100 customers for bidding in the
day-ahead power market. To predict the DERs and local load
of the aggregator and to evaluate the proposed data-driven
model performance, hourly historical data from 2019 are
acquired from the publicly available PJM market and mod-
ified [37]. Multivariate variables including the temperature,
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FIGURE 4. Day-ahead market and retail prices.

TABLE 2. Parameter settings.

humidity, hour, and dew point are typical inputs used to train
the forecasting model. To forecast each component, the input
data sequence is set to the previous 168 h (= 7× 24) of data.
Then, the prepared dataset is subjected to data processing,
which includes cleansing, normalization, and feature selec-
tion. Thus, the optimal input variables are extracted from
the provided dataset. Of the entire dataset, 70%, 20%, and
10% are allocated to training, validation, and test samples,
respectively. The initial particle positions are in the ranges of
[1, 150] and [40, 200] for hk and nGRU , respectively. In this
study, adam, relu, and mse were set as the optimizer, activa-
tion, and loss functions, respectively, for the GRUmodel. The
deep learning simulation is implemented based on the Python
TensorFlow framework. Additionally, to illustrate the perfor-
mance of the proposed data-driven model, we compare its
results with those of three well-established forecasting mod-
els (namely, LSTM, RNN, and SVR) [38]. Fig. 4 shows the
day-ahead electricity and retail prices that are adopted [34],
and Table 2 depicts several important parameter settings for
bidding in the day-ahead power market [35], [36]. ELPSO is
utilized to solve the optimization problem. The simulations
are performed using a 3.4 GHz CPU with 16 GB RAM and
run on a Windows 10 Pro 64-bit operating system.

B. DATA-DRIVEN FORECASTING RESULTS
A random day from our test samples is adopted to analyze
and evaluate the performance of the proposed model in terms
of handling uncertainties. In the deep learning simulation,
the two-layer GRU model shows the highest performance
because it is sufficient for the relationships between the
input and output variables of the adopted historical data.
Hence, the optimized hyperparameter sets for the PVs, WTs,
and local load forecasting models (i.e., h1, h2, and nGRU ,

FIGURE 5. Hyperparameter optimization results.

respectively) are obtained using iterations of the ELPSO
algorithm as depicted in Fig. 5.

The overfitting and convergence problems are prevented
by optimizing the GRU model hyperparameters, as shown
in Fig. 6. The validation error decreases gradually as the train-
ing error does for the PVs,WTs, and local loads. Accordingly,
the proposed model resolves the overfitting problem, and the
error between the training and validation is marginal. Indeed,
there is no variance or bias in the renewable output and local
load forecasting. Fig. 7 shows the day-ahead forecasted DERs
output power and local load with hourly resolution of the
proposed data-driven model with other benchmark models.
From the graphical illustration, it is obvious that all forecast-
ing models are capable of capturing the nonlinear behavior of
historical data and forecasting future output power and local
load owing to the IMI feature selection technique. It is also
clear that the proposed model closely follows the real value as
compared to other benchmark models in terms of DER output
and local load forecasting because of the IMI feature extrac-
tion and optimized hyperparameter settings. Fig. 8 presents
a comparative analysis of the coefficient of determination,
R2, to illustrate the performance of the proposed data-driven
model. Here, the x- and y-axes represent the actual and
forecasted values, respectively. Fig. 8(a)–(d) show the actual
and forecasted PV outputs, whereas Fig. 8(e)–(h) and 8(i)–(l)
depict the results of the WTs and local load, respectively. R2

is one of the statistical evaluation indicators for comparing
the prediction performance of variables. It can be computed

as R2 = 1 −
∑

u

(
ypredictu − yrealu

)2
/
∑

u
(
yaverageu − yrealu

)2
.

This measure indicates the extent to which the variance of
the forecasted variable validates the variance of the actual
variable. For example, an R2 value of 1 implies that the pre-
dictions of the forecasting model perfectly fit the actual data.
From Fig. 8, it is evident that the overall R2 value obtained
via the proposed model is higher than those from the other
models. This demonstrates its superiority in terms of the fore-
casting accuracy. Table 3 summarizes the forecasting error of
each benchmark model in terms of two well-established error
criteria: the root mean square error (RMSE) and the mean
absolute error (MAE). As shown in this Table, the proposed
model displays a reasonable performance in terms of the
prediction of stochastic variables. The error in the terms of
RMSE and MAE is also reduced significantly, which results
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FIGURE 6. Learning curve results.

FIGURE 7. Day-ahead prediction results with respect to various forecasting approaches.

TABLE 3. Forecasting error criteria.

in improved accuracy. Table 4 illustrates the forecasting error
with respect to those of the benchmark feature selection
techniques, i.e., CA, PCA, and MI. Evidently, the proposed
IMI technique achieves the lowest RMSE and MAE for each
uncertain component because it can analyze both linear and
nonlinear dataset characteristics considering the target and
average variables. By contrast, the other three techniques do
not always guarantee the capture of effective input features.
Furthermore, a negative prediction performance effect could
also be observed in the prediction of the renewables and
local load. According to Tables 3 and 4, this improvement
is achieved because the proposed model can optimize the
hyperparameter settings in conjunction with a suitable feature
selection technique (IMI), without being affected by the over-
fitting and convergence problems. Therefore, this forecasting
model is the most suitable for handling uncertainties and for
the accurate modeling of DER aggregator components prior
to bidding in the day-ahead power market.

C. OPTIMAL BIDDING STRATEGY RESULTS
The day-ahead RN bidding strategy of the DER aggregator
according to the proposed data-driven forecasting results is

TABLE 4. Comparison analysis of different feature selections.

presented in Fig. 9. Excluding the impact of the uncertainty
in the day-aheadmarket price, the total DER aggregator profit
is $12513.11. Based on the RN bidding result, 34870.17 kW
of the baseline load is decreased by the IDR program, and
27250.47 kW is reduced during the peak period when the
day-aheadmarket price is high. TheDER aggregator procures
389974.47 kW of electricity from the day-ahead power mar-
ket to fulfill the aggregated local load and incurs a penalty of
36352.51 kW due to forecasting errors of the renewables and
local load.

The impact of the day-ahead forecasting accuracy of the
renewables and local load on the RN aggregator’s bidding
strategy is shown in Table 5. For the SO method, the Weibull,
beta, and normal probability distribution functions are used to
model the uncertainties of WTs, PVs, and local load, respec-
tively. Thereafter, the multi-scenario tree method and differ-
ential evolution clustering algorithm are applied for scenario
generation and reduction [9]. In RO, the uncertainties are
fully considered, such that the most conservative solution is
achieved [8]. Table 5 shows that the RO solution presents the
lowest profit at the expense of its high preferences for maxi-
mum robustness; by contrast, the profit of theDER aggregator

VOLUME 9, 2021 66431



H. J. Kim et al.: Data-Driven Bidding Strategy for DER Aggregator Based on GRU-ELPSO

FIGURE 8. R2 comparison for different forecasting approaches.

FIGURE 9. Day-ahead RN bidding strategy result.

is increased when using SO. With regard to the SO solution,
although scenario generation and reduction are employed,
the economy and reliability issues are not fully addressed in
the bidding strategy problem. The obtained results rely fully
on the historical probability distribution functions, which
may vary substantially according to system conditions. As a
result, the robustness of SO could deteriorate if the obtained
probability distribution functions differ significantly from
the actual values. By contrast, the data-driven approach is
applicable for addressing uncertainties where the probability

TABLE 5. Profit comparison for methods of handling uncertainty.

distribution functions are not required. RNNs, LSTM, and the
proposed model provide high-profit solutions for the DER
aggregator, as compared with the RO and SO solutions. It is
also worth mentioning that the total DER aggregator profit is
maximized when the proposed data-driven model is adopted,
because the penalty costs incurred due to the forecasting
errors are reduced significantly. In addition, the proposed
model yields a profit that is closest to the actual profit because
it incurs the lowest penalty costs. Considering the present
circumstances, the actual financial profit and cost of the
DER aggregator would be significantly higher over a wider
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TABLE 6. Comparison of results of optimization algorithms.

time-step or scale. This represents the considerable effect
of the proposed data-driven forecasting model on practical
works for achieving accurate uncertainty variable modeling.

Performance analysis is conducted with various meta-
heuristic algorithms to demonstrate the superiority of the
proposed ELPSO in solving the optimal bidding strat-
egy problem of DER aggregators. For an unbiased com-
parison, we adopt the RN bidding strategy of the DER
aggregator without considering the uncertainty in market
price. In total, seven meta-heuristic algorithms are con-
sidered: genetic algorithm (GA) [39], artificial bee colony
(ABC) [40], spider monkey (SM) [41], whale [42], enhanced
GA (EGA) [39], security enhanced-PSO (SE-PSO) [43],
and the proposed ELPSO algorithm. The simulations are
implemented 15 times, and the results for the best, worst,
mean, and corresponding average computation time (CPU)
are obtained. Table 6 presents the comparison results for the
seven optimization algorithms. As is evident, the proposed
ELPSO provides the most profitable solution in conjunction
with a reasonable CPU time. This indicates that it can be the
most reasonable optimization solver when applied to real and
large systems. Another advantage of the proposed ELPSO is
that the difference between the best and worst solutions is
minimum. Thus, these quantitative results reveal the global
search capability, high accuracy, and low computational load
of the proposed ELPSO algorithm, thereby demonstrating its
efficiency in determining the optimal bidding strategy for
DER aggregators.

Fig. 10 shows the robust and opportunity indexes of the
DER aggregator’s RA and RS bidding strategies. The specific
profit and corresponding risk level are achieved by varying
the profit deviation factor from the RN strategy by 0.3. For
the RA strategy, the DER aggregator can tolerate a risk level
of 0.4306 for a maximum profit deviation factor of 0.21.
Meanwhile, for the RS strategy, the risk level is 0–0.433 for
a maximum profit deviation factor 0.18. Unless the robust
or opportunity index exceeds its boundary value, the RA
aggregator is more robust and the RS aggregator gains more
profit. It should be noted that no feasible solution for the DER
aggregator’s bidding strategy can be obtained if the risk index
exceeds its threshold.

Fig. 11 illustrates several RA and RS bidding strategies
based on the risk level shown in Fig. 10. Two regularities
in the bidding strategy can be observed as the risk level

FIGURE 10. Robustness and opportunistic curves.

FIGURE 11. RA/RS bidding strategies under different risk levels.

varies. First, the power procured from the day-ahead market,
represented by the black dotted line, exhibits a downward
trend as the DER aggregator prefers a robust strategy because
of the high purchasing cost. Second, in contrast to the market
purchasing amount, the IDR exhibits an upward trend to
fulfill the required local load. Thus, it can be concluded that
the RA aggregator’s bidding strategy becomes more robust
at the expense of a higher interest by reducing the power
procured, which exhibits uncertainty. Meanwhile, the RS
aggregator pursues higher profits, wherein higher risk must
be tolerated in exchange for high revenues. The 13-level
optimal day-ahead bidding profile of the DER aggregator
with the obtained RA/RS bidding strategy results is shown
in Fig. 12. As a price-taker, the RA aggregator reduces the
purchasing amount where announced purchasing cost is high
and increases in RS strategy to earn high profit. Specifically,
at t = 2, the bidding quantity varies from 20210.08 kW to
23912.63 kW according to the DER aggregator’s risk toler-
ance. Therefore, it should be noted that the obtained bidding
profile can assist the DER aggregator in terms of purchasing
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FIGURE 12. Optimal bidding profile.

power from the day-aheadmarket at themost reasonable price
according to its risk preference.

VI. CONCLUSION
This paper proposes the framework of a data-driven bidding
strategy for a DER aggregator in the day-ahead power market
considering uncertainties. Prior to bidding in the day-ahead
power market, a precise modeling of renewables and the
local load was implemented using a data-driven forecasting
model. TheGRUmodel was used for training and forecasting,
whereas the ELPSO algorithm was utilized to optimize the
GRU hyperparameter. To achieve high accuracy, the IMI
feature selection technique was adopted to extract the best
input dataset. The proposed data-driven model was validated
by comparing it with three benchmark forecasting models:
LSTM, RNN, and SVR. The comparison results of the pre-
diction, R2, and the errors revealed that the proposed model
outperforms the othermodels in terms of forecasting accuracy
and contributes toward reducing the penalty costs. The IGDT-
based optimization method was applied to manage market
price uncertainty and successfully bid in the day-ahead power
market. The RN bidding strategy was solved beforehand to
obtain the profit standard. This value serves as the basis for
determining the profit variation when the deviation factors
are provided under uncertain cases. Subsequently, by varying
the risk level, the DER aggregator succeeded in providing
two bidding strategies (namely, RA and RS) according to
its preference for robustness or high profit. These results
demonstrated that the RA aggregator tends to increase robust-
ness at the expense of profit and vice versa. A staircase
bidding curve was developed based on the obtained RA and
RS bidding strategy results. It could serve as a guideline for
the DER aggregator to purchase power at the most reason-
able price, while maximizing profit. Therefore, the proposed
bidding framework can assist the DER aggregator in the
decision-making process to bid in the day-ahead power mar-
ket by addressing the economic and robustness issues associ-
ated with various uncertainties. This work can be improved
further by considering plug-in hybrid electric vehicles and

microgrids and by exploring their impacts on the bidding
strategy of DER aggregators. Moving forward, the bidding
and offering strategies of DER aggregators in reserve, intra-
day, and real-time markets could also be investigated for
applying more practical power market scenarios.

REFERENCES
[1] G. E. Asimakopoulou and N. D. Hatziargyriou, ‘‘Evaluation of economic

benefits of DER aggregation,’’ IEEE Trans. Sustain. Energy, vol. 9, no. 2,
pp. 499–510, Apr. 2018.

[2] X. Lu, K. Li, H. Xu, F. Wang, Z. Zhou, and Y. Zhang, ‘‘Fundamentals and
business model for resource aggregator of demand response in electricity
markets,’’ Energy, vol. 204, Aug. 2020, Art. no. 117885.

[3] P. Fazlalipour, M. Ehsan, and B. Mohammadi-Ivatloo, ‘‘Risk-aware
stochastic bidding strategy of renewablemicro-grids in day-ahead and real-
time markets,’’ Energy, vol. 171, pp. 689–700, Mar. 2019.

[4] M. D. Somma, G. Graditi, and P. Siano, ‘‘Optimal bidding strategy for
a DER aggregator in the day-ahead market in the presence of demand
flexibility,’’ IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1509–1519,
Feb. 2019.

[5] P. Sheikhahmadi and S. Bahramara, ‘‘The participation of a renew-
able energy-based aggregator in real-time market: A bi-level approach,’’
J. Cleaner Prod., vol. 276, Dec. 2020, Art. no. 123149.

[6] H.Wu, X. Liu, B. Ye, and B. Xu, ‘‘Optimal dispatch and bidding strategy of
a virtual power plant based on a stackelberg game,’’ IET Gener., Transmiss.
Distribution, vol. 14, no. 4, pp. 552–563, Feb. 2020.

[7] S. Abapour, B. Mohammadi-Ivatloo, and M. T. Hagh, ‘‘Robust bidding
strategy for demand response aggregators in electricity market based on
game theory,’’ J. Cleaner Prod., vol. 243, Jan. 2020, Art. no. 118393.

[8] G. Liu, Y. Xu, and K. Tomsovic, ‘‘Bidding strategy for microgrid in
day-ahead market based on hybrid stochastic/robust optimization,’’ IEEE
Trans. Smart Grid, vol. 7, no. 1, pp. 227–237, Jan. 2016.

[9] H. J. Kim, M. K. Kim, and J. W. Lee, ‘‘A two-stage stochastic p-robust
optimal energy trading management in microgrid operation considering
uncertainty with hybrid demand response,’’ Int. J. Electr. Power Energy
Syst., vol. 124, Jan. 2021, Art. no. 106422.

[10] Y. Liu, C. Jiang, J. Shen, and J. Hu, ‘‘Coordination of hydro units with
wind power generation using interval optimization,’’ IEEE Trans. Sustain.
Energy, vol. 6, no. 2, pp. 443–453, Apr. 2015.

[11] H. Nezamabadi and V. Vahidinasab, ‘‘Market bidding strategy of the
microgrids considering demand response and energy storage potential flex-
ibilities,’’ IET Gener., Transmiss. Distrib., vol. 13, no. 8, pp. 1346–1357,
Apr. 2019.

[12] M. Ansari, A. T. Al-Awami, E. Sortomme, andM. A. Abido, ‘‘Coordinated
bidding of ancillary services for vehicle-to-grid using fuzzy optimization,’’
IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 261–270, Jan. 2015.

[13] A. T. Al-Awami, N. A. Amleh, and A. M. Muqbel, ‘‘Optimal demand
response bidding and pricing mechanism with fuzzy optimization: Appli-
cation for a virtual power plant,’’ IEEE Trans. Ind. Appl., vol. 53, no. 5,
pp. 5051–5061, Oct. 2017.

[14] B. Vatandoust, A. Ahmadian, M. A. Golkar, A. Elkamel, A. Almansoori,
and M. Ghaljehei, ‘‘Risk-averse optimal bidding of electric vehicles and
energy storage aggregator in day-ahead frequency regulation market,’’
IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2036–2047, May 2019.

[15] H. Jahangir, H. Tayarani, S. Baghali, A. Ahmadian, A. Elkamel,
M. A. Golkar, and M. Castilla, ‘‘A novel electricity price forecasting
approach based on dimension reduction strategy and rough artificial neural
networks,’’ IEEE Trans. Ind. Informat., vol. 16, no. 4, pp. 2369–2381,
Apr. 2020, doi: 10.1109/TII.2019.2933009.

[16] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[17] J. Li and J. Wang, ‘‘Forecasting of energy futures market and synchro-
nization based on stochastic gated recurrent unit model,’’ Energy, vol. 213,
Dec. 2020, Art. no. 118787.

[18] Z. Niu, Z. Yu,W. Tang, Q.Wu, andM. Reformat, ‘‘Wind power forecasting
using attention-based gated recurrent unit network,’’ Energy, vol. 196,
Apr. 2020, Art. no. 117081.

[19] F. Yang, S. Zhang, W. Li, and Q. Miao, ‘‘State-of-charge estimation if
lithium-ion batteries using LSTM and UKF,’’ Energy, vol. 201, Jun. 2020,
Jun. Jun. 117664.

66434 VOLUME 9, 2021

http://dx.doi.org/10.1109/TII.2019.2933009


H. J. Kim et al.: Data-Driven Bidding Strategy for DER Aggregator Based on GRU-ELPSO

[20] H. Jahangir, S. S. Gougheri, B. Vatandoust, M. A. Golkar, A. Ahmadian,
and A. Hajizadeh, ‘‘Plug-in electric vehicle behavior modeling in energy
market: A novel deep learning-based approach with clustering technique,’’
IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 4738–4748, Nov. 2020, doi:
10.1109/TSG.2020.2998072.

[21] S. M. Moghaddas-Tafreshi, M. Jafari, S. Mohseni, and S. Kelly, ‘‘Optimal
operation of an energy hub considering the uncertainty associated with
the power consumption of plug-in hybrid electric vehicles using infor-
mation gap decision theory,’’ Int. J. Electr. Power Energy Syst., vol. 112,
pp. 92–108, Apr. 2019, doi: 10.1016/j.ijepes.2019.04.040.

[22] N. Rezaei, A. Ahmadi, A. Khazali, and J. Aghaei, ‘‘Multiobjective riskcon-
strained optimal bidding strategy of smart microgrids: An IGDT based nor-
mal boundary intersection approach,’’ IEEE Trans. Ind. Informat., vol. 15,
no. 3, pp. 1532–1543, Mar. 2019, doi: 10.1109/TII.2018.2850533.

[23] M. Vahid-Ghavidel, N. Mahmoudi, and B. Mohammadi-Ivatloo, ‘‘Self-
scheduling of demand response aggregators in short-termmarkets based on
information gap decision theory,’’ IEEE Trans. Smart Grid, vol. 10, no. 2,
pp. 2115–2126, Mar. 2019, doi: 10.1109/TSG.2017.2788890.

[24] R. Mafakheri, P. Sheikhahmadi, and S. Bahramara, ‘‘A two-level model for
the participation of microgrids in energy and reserve markets using hybrid
stochastic-IGDT approach,’’ Int. J. Elect. Power Energy Syst., vol. 119,
Jul. 2020, Art. no. 105977.

[25] C. Zhang, J. Zhou, C. Li, W. Fu, and T. Peng, ‘‘A compound structure
of ELM based on feature selection and parameter optimization using
hybrid backtracking search algorithm for wind speed forecasting,’’ Energy
Convers. Manage., vol. 143, pp. 360–376, Jul. 2017.

[26] N. Amjady and F. Keynia, ‘‘Day-ahead price forecasting of electricity
markets bymutual information technique and cascaded neuro-evolutionary
algorithm,’’ IEEE Trans. Power Syst., vol. 24, no. 1, pp. 306–318,
Feb. 2009, doi: 10.1109/TPWRS.2008.2006997.

[27] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao, ‘‘Independently recurrent neural
network (IndRNN): Building a longer and deeper RNN,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 5457–5466.

[28] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[29] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H,
Schwenk, and Y. Bengio, ‘‘Learning phrase representations using RNN
encoder-decoder for statistical machine translation,’’ in Proc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP), 2014, pp. 1724–1734.

[30] P. A. González and J. M. Zamarreño, ‘‘Prediction of hourly energy con-
sumption in buildings based on a feedback artificial neural network,’’
Energy Buildings, vol. 37, no. 6, pp. 595–601, 2005.

[31] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int.
Conf. Neural Netw. (ICNN), Perth, WA, Australia, vol. 4, Nov. 1995,
pp. 1942–1948, doi: 10.1109/ICNN.1995.488968.

[32] M. Parvania, M. Fotuhi-Firuzabad, and M. Shahidehpour, ‘‘Optimal
demand response aggregation in wholesale electricity markets,’’ IEEE
Trans. Smart Grid, vol. 4, no. 4, pp. 1957–1965, Dec. 2013.

[33] T. V. Sohrabi, M. A. Jirdehi, and R. Hemmati, ‘‘Energy management in
microgrid based on the multi objective stochastic programming incorpo-
rating portable renewable energy resource as demand response option,’’
Energy, vol. 118, no. 1, pp. 827–839, Jan. 2017.

[34] M. R. Ebrahimi and N. Amjady, ‘‘Adaptive robust optimization framework
for day-ahead microgrid scheduling,’’ Int. J. Elect. Power Energy Syst.,
vol. 107, pp. 213–223, May 2019.

[35] M. A. Hossain, H. R. Pota, S. Squartini, and A. F. Abdou, ‘‘Modified PSO
algorithm for real-time energy management in grid-connected microgrid,’’
Renew. Energy, vol. 136, pp. 746–757, Jun. 2019.

[36] PJM Electricity Market. [Online]. Available: https://www.pjm.com
[37] H. Jahangir, M. A. Golkar, F. Alhameli, A. Mazouz, A. Ahmadian, and

A. Elkamel, ‘‘Short-term wind speed forecasting framework based on
stacked denoising auto-encoders with rough ANN,’’ Sustain. Energy Tech-
nol. Assessments, vol. 38, Apr. 2020, Art. no. 100601.

[38] D. L. Duan, X. D. Ling, X. Y. Wu, and B. Zhong, ‘‘Reconfiguration of
distribution network for loss reduction and reliability improvement based
on an enhanced genetic algorithm,’’ Int. J. Elect. Power Energy Syst.,
vol. 64, pp. 88–95, Jan. 2015.

[39] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, no. 3, pp. 459–471, 2007.

[40] G. Deb, K. Chakraborty, and S. Deb, ‘‘Spider monkey optimization
technique–based allocation of distributed generation for demand side
management,’’ Int. Trans. Elect. Energy Syst., vol. 29, May 2019,
Art. no. e120009.

[41] L. A. Wong, V. K. Ramachandaramurthy, S. L. Walker, P. Taylor, and
M. J. Sanjari, ‘‘Optimal placement and sizing of battery energy storage
system for losses reduction usingwhale optimization algorithm,’’ J. Energy
Storage, vol. 26, Dec. 2019, Art. no. 100892.

[42] B. M. Hussein, ‘‘A new scaled fuzzy method using PSO segmentation
(SePSO) applied for two area power system,’’ Int. J. Elect. Comput. Eng.,
vol. 9, no. 2, pp. 815–825, 2019.

HYUNG JOON KIM received the B.S. and M.S.
degrees from the Department of Energy System
Engineering, Chung-Ang University, Seoul, South
Korea, in 2018 and 2021, respectively, where he is
currently pursuing the Ph.D. degree. His research
interests include data-driven approaches for power
system analysis, renewable energy resources,
microgrids, demand response, and energymanage-
ment systems.

HYUN JOON KANG received the B.S. degree
from the Department of Energy System Engineer-
ing, Chung-Ang University, Seoul, South Korea,
in 2021, where he is currently pursuing the M.S.
degree. His research interests include electric vehi-
cles and vehicle-to-grid.

MUN KYEOM KIM received the Ph.D. degree in
electrical and computer engineering from Seoul
National University. He is currently a Professor
with the School of Energy System Engineering,
Chung-Ang University, Seoul, South Korea. His
research interests include operational techniques
in hybrid AC/DC power systems, AI-based smart
power networks, big data-based demand response,
real-time market design, and multi-agent-based
smart city intelligence.

VOLUME 9, 2021 66435

http://dx.doi.org/10.1109/TSG.2020.2998072
http://dx.doi.org/10.1016/j.ijepes.2019.04.040
http://dx.doi.org/10.1109/TII.2018.2850533
http://dx.doi.org/10.1109/TSG.2017.2788890
http://dx.doi.org/10.1109/TPWRS.2008.2006997
http://dx.doi.org/10.1109/ICNN.1995.488968

