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ABSTRACT Proto-oncogenes are the genes that have the potential to transform normal cells into cancer
cells as a result of mutations. They usually contain encoding of proteins whose function is to inhibit
cell differentiation, stimulate cell division, and prevent the death of cells. While the prognosis regarding
proto-oncogene may occur at varying phases of cancer, the accuracy of the identification method is always
questionable. The standard procedure for detecting these genes involves in-vitro experimentations but it
proves to be very costly, time taking, and laborious. This problem is addressed by the use of computer-aided
approaches established in studies encompassingmethods in computational biology and bioinformatics. Early
diagnosis of cancer is crucial for the full recovery of the patient. Proto-oncogene proteins are an important
biomarker that helps identify the onset of a specific type of cancer. Keeping this in mind, this study proposes
an efficient methodology for in-silico identification of proto-oncogenes. The predictor proposed in this study
computes position and composition relevant statistical features incorporated into the pseudo-amino-acid
composition (PseAAC) based on Chou’s 5-step rules. Subsequently, the study finds that the use of a random
forest classifier performs the most accurate prediction of proto-oncogene proteins. The method was validated
using the 10 folds cross-validation, Jackknife testing, Self-Consistency, and Independent set testing, giving
95.44%, 97.17%, 99.8%, and 96.41% accurate results, respectively. These results imply that the proposed
model can play a key role in the early prognosis of cancer and aid scientists in the discovery of mechanisms
against cancer.

INDEX TERMS Proto-oncogenes, prediction, PseAAC, 5-steps rule, statistical moments.

I. INTRODUCTION
Every gene is formed by a sequence of nucleotide bases that
contain information regarding the growth and working of
cells. This essentially materializes when the genetic infor-
mation is translated into proteins by the cells. Each protein
has a specific function in the human body. Proto-oncogenes
encode proteins that regulate cell differentiation and growth
in humans [1]. The usually encoded proteomic products
are DNA-binding proteins, protein kinases involved in sig-
nal transduction, growth factors and their receptors, tran-
scription factors, and cell cycle regulators. A mutation in
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its genomic sequence can trigger overexpression of proto-
oncogenes resulting in proliferation, which renders the cell
unresponsive to normal regulatory and growth-inhibitory sig-
nals, consequently causing the formation of a tumor. Proto-
oncogenes are commonly activated in transformed cells by
gene amplification or point mutations [2].

Oncogenomics is the study of genes associated with the
onset of cancer. It involves the biological function of many
genes. Carcinogenic mutations drive cancer development
while mutated forms of proto-oncogenes that cause cancer
are called oncogenes. In general, certain proteins have the
function of stimulating cell division, preventing cell differen-
tiation, and preventing cell death. These processes are imper-
ative for the protection and normal development of tissues
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and organs. However, oncogenes generally increase the trans-
lation of these proteins, which leads to increased cell divi-
sion, reduced cell differentiation, and unmatched cell death.
Taken together, these apparent patterns signify cancer devel-
opment [3]. Oncogenes are currently important molecular
targets for designing anti-cancer drugs. Some primary proto-
oncogenes negatively regulate cell differentiation. Simulta-
neously, tumor suppressor genes (TSG) suppress and rectify
the activity of oncogenes. Methylation of RNA/DNA affects
the activation and expression of genes. N6-Methyladenosine
(m6A) is the most common form of methylation. Cancer
occurs when proto-oncogene mutates and becomes an onco-
gene or when oncogenes are locally hypo-methylated while
tumor suppressor genes are hypermethylated [4].

Scientists are working on the personalized treatment of
cancer. This involves numerous studies based on tumor
suppressor genes, DNA repair genes, oncogenes, proto-
oncogenes, and DNA methylation. Numerous computational
approaches have been devised as in-silico methodologies for
the identification of tumor suppressor genes. Studies have
been performed on gene ontology and pathway enrichment
analysis of TSG and non-TSG data to devise a methodol-
ogy for their identification. A weighted graph was set up
using protein-protein interaction along which the shortest
path method was conceived to identify TSGs while a network
diffusion algorithm has been established for this purpose.
The role of methylation in the onset of cancer and especially
that of RNA m6A methylation has been outlined in various
studies. Similarly, the identification of proto-oncogene pro-
teins plays a crucial role in devising a personalized treat-
ment. Understanding specific biomarkers that cause cancer
can help in the discovery of new drugs and other experimental
treatments. The experimental prediction of protein function
is a laborious task; thus, data scientists use different com-
putational approaches to design assiduous methods for this
purpose (see e.g., [5]–[23]).

Here, we propose a predictor for proto-oncogene identifi-
cation by integrating Chou’s PseAAC with various statistical
moments. This work is entirely anticipated by Chou’s 5-step
rule, followed by various initial studies [9], [10], [22], [24].
Moreover, it encompasses incidence matrices that quan-
tify mutual correlation among all the arbitrary residues for
variable-sized primary sequences into a fixed size notation.
Chou proposes these 5 steps for any such classification prob-
lem in the field of proteomics or genomics: (1) Selection
or creation of robust and accurate benchmark dataset for
training and testing of predictors. (2) Providing effective
formulation to transform the dataset into a meaningful feature
set that reflects a clear correlation and uncovers obscure
information for accurate prediction. (3) Introduction of pow-
erful classification algorithms. (4) Performing validation tests
effectively to evaluate the prediction accuracy of the model.
(5) Setting up a web server accessible to general users. Publi-
cations that develop robust sequence analysis methodologies
have the following substantial advantages: (1) Transparency
and understandability in logic development, (2) Complete

clearness in behavior and action, (3) Duplication of reported
results is simple for other researchers; (4) It can stimulate
newer sequence analysis methodology yielding even better
results (5) Very useful when used in scientific research as it
immensely reduces the effort of biologists.

II. MATERIAL AND METHODS
Herein, the salient features of Chou’s 5-step rule are listed.
The overall methodology is highlighted in Figure 1.

FIGURE 1. Flow of the proposed model.

A. BENCHMARK DATASET
This study is based on Chou’s PseAAC which has been
extensively used formerly for the prediction of methyla-
tion sites, SUMOylation sites, signal peptide cleavage sites,
multiple lysine Post Translational modification (PTM) sites,
lysine ubiquitination sites, hydroxylysine sites, hydroxypro-
line, and lysine succinate sites in numerous publications.
Uniprot database is a well-known database of proteins con-
taining experimentally proven information regarding numer-
ous proteins collected from text and otherwise. It also
contains a huge number of uncategorized protein sequences.
Each protein is assigned a unique accession number and has
been annotated according to its known attributes using key-
words and other characteristics. Protein sequences annotated
with the keyword ‘proto-oncogene’ were obtained from the
Uniprot database. Similarly, a converse query was used to
generate negative samples. Strings containing spaces, special
characters, and characters that are not used for an amino acid
(B, J, O, U, X, and Z) were removed from both negative
and positive samples. Also, primary structures that were too
short or contained ambiguous words like potential, probable,
and fragment were excluded. The obtained data still con-
sists of redundancies as many of the sequences maybe be
homologous to each other. Such homology is quite problem-
atic especially when it comes to validation and performance
evaluation. Usually to alleviate this problem scientists make
use of various utilities like CD-HIT that can compute relative
similarity among arbitrary sequences. The CD-HIT suite was
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used to reduce homology bias within extracted data [25].
Generally, within the scientific community, a 60% cutoff for
homology is considered acceptable. Redundant sequences
with a similarity of more than 60% were excluded from the
dataset by setting the sequence identity cutoff at 0.6.

Let an arbitrary sample within the dataset be expressed as

Pξ (Z) = R0R1 · · ·Rξ (1)

where ξ is non-uniform indicating that the length of a
sequence may vary. In other words, ξ represents the arbitrary
length of the primary sequence, which in this case is variable
for each sample.

For the collection of the peptides the following two cate-
gories can be defined:

Pξ (POG) ∈

{
P+ξ (POG) , if its a protooncogene

P−ξ (POG) , otherwise
(2)

where true proto-oncogenes and the corresponding false
proto-oncogenes are represented asP+ξ (POG) andP

−

ξ (POG),
respectively. The symbol ∈ is from the set theory which
depicts ‘‘a member of’’ and suffix ξ signifies that sequence is
of arbitrary length. Homology among sequences was reduced
to 60% using the CD-HIT suite. A representative was selected
from each homologous cluster returned by CD-HIT. Subse-
quently, the obtained benchmark dataset after preprocessing
is denoted as:

Z = Z+ ∪ Z− (3)

where Z+ and Z− contain 252 positive and 630 negative
samples respectively. For the ease of readers, 252 + 630 =
882 samples are listed in Supplementary Information File S1.
For such classification problems, the dataset is usually split
into a test dataset and a training dataset. The training dataset
is used to train the proposed model, whereas the test dataset
is used for testing and validation of the model. Furthermore,
evidence regarding the effectiveness of the model is accu-
mulated based on various tests such as jackknife and cross-
validation tests. Additionally, the benchmark dataset is also
used for performing independent set testing by subdividing it
into two subsets.

B. SAMPLE FORMULATION
The number of biological sequences reported is on a rapid
rise. This scenario poses significant problems for com-
putational biologists. A formulation that can transform
these sequences into numeric discrete models and yet keep
sequence pattern-related traits intact is in great demand. Most
of the machine learning models are not designed to handle
raw varying length proteomic data. Hence they need to be
transformed into specific size vectors only [26]. To solve
this problem, a position and composition-based statistical
feature-based model is proposed [27]. Such models are cur-
rently being abundantly used in the field of computer-aided
proteomics [28], [29], biomedicine, and drug discovery [30].

With the successful development of such models for pro-
teomic analysis, scientists have successfully developed simi-
lar models pertaining to DNA / RNA sequences for genome
analysis [31]. The peptide sequence samples within the
benchmark dataset are transformed based on this concept into
a feature vector. Where 9i represents a feature coefficient
for an arbitrary sample from the dataset and the transpose
operator is denoted by T .

V = [91 92 · · · 9u · · · 9�]T (4)

All the features obtained from the primary sequence are
furnished into a vector V having a fixed length�. The overall
set of feature vectors hence obtained is used for training
and validation. The computational elements used to compute
features in Eq (4) are further discussed in subsections C-F of
the current section.

C. STATISTICAL MOMENT’S CALCULATION
Statistical moments were employed for the quantitative anal-
ysis of the obtained dataset. Moments are generally used
to mine specific properties of data. Few of the moments
represent the eccentricity and orientation of data, while
some represent properties like its size, skewness, and vari-
ance. Numerous moment-defining polynomials exist based
on specific distributions [32]–[36]. The central moments, raw
moments, andHahnmoments for the proposed predictor were
calculated up to order 3. Raw moments exhibit position and
scale variant properties. Subsequently, central moments are
position invariant and scale variant. Order up to 3 generates
sufficient information regarding the nature of data in numeric
form as discussed in [37]. Also, the Hahn coefficient was cal-
culated using Hahn polynomials which generates yet another
set of moments describing original data [35]. These statis-
tical moments were chosen for their orthogonal properties.
Orthogonal moments exhibit varying traits and can be used to
reconstruct the original data, hence they encode within them-
selves crucial innate characteristics that accommodate precise
classification. Overall, these moments sufficiently transform
information regarding the positioning and composition of
residues in the primary structure. The use of location and
scale-invariant moments was eluded as scale and location
play a primary role in determining a protein function [34].
These moments use a two-dimensional matrix P′ of dimen-
sion n∗n as the source. It is a sequential transformation of all
the amino acid residues of protein covered in P.

P′ =


β11 β12 · · · β1n
β21 β22 · · · β2n
...

βn1

...

βn2 · · ·

. . .
...

βnn

 (5)

The use of function ω has been reported in another study by
Akmal et al., (2017) which transforms P into P′ and each
of its arbitrary element βij is an amino acid residue now
put into a two-dimensional context. Unique ordinal values of
elements of P′ were utilized to calculate all the moments up
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to degree 3 [38]. The equation (6) mentioned below was used
to compute raw moments.

Mij =
∑n

p=1

∑n

q=1
piqjβpq (6)

where i + j represents the degree of the moments, βpq is
an arbitrary element of matrix P′. Further, raw moments
were represented as M00,M01,M02, M03,M10, M11,M12,
M20,M21 and M30 for degree up to 3. Subsequently, central
moments are calculated using the following equation:

ηij =
∑n

p=1

∑n

q=1
(p− x̄)i(q− ȳ)jβpq (7)

where x̄ = M10
/
M00

and ȳ = M01
/
M00

represents the
centroid of data.
P was transformed into a square matrix P′ as it offers

a substantial advantage for enumeration of Hahn moments.
Hahn moments are discrete orthogonal moments that require
a square matrix of data as input. The orthogonal property of
Hahn moments offers several dividends as these moments
can help reconstruct data using an inverse function. This
essentially implies that it preserves the information pertaining
to sequence structure and relative positioning of original data
within these moments.

The following formulation is used to compute the Hahn
polynomials of order n for a one-dimensional matrix of
size N .

hu,vn (r,N )

= (N + V − 1)n (N − 1)n

×

n∑
k=0

(−1)k
(−n)k (−r)k (2N+u+v−n−1)k

(N + v− 1)k (N − 1)k

1
k!

(8)

where n is the order of the moment, N is the size of the data
array, u and v are predefined constants. Further, the equation
makes use of the Pochhammer symbol which in turn uses the
gamma operator as mentioned in [38]. Based on this Hahn
coefficient the two dimensional Hahn moments are computed
as

Hij =
∑N−1

q=0

∑N−1

=0
βpqh

ũ,v
i (q,N ) hũ,vj (p,N ) , (9)

where i + j is the order of the moment, u, v are prede-
fined constants and βpq is an arbitrary element of the square
matrix P’.

Furthermore, while working with abundant statistical data
problems like collinearity or multi-collinearity might be
encountered. Multi-collinearity is problematic as it under-
mines the significance of independent variables and increases
overheads. In a feature set, if a coefficient is linearly derived
from other coefficients then the feature set is bound to be
collinear. One way to ensure that feature set coefficients
are not collinear is the correct choice of feature extraction
technique. In this study, only those statistical moments are
used that are independently formulated. Orthogonal moments
quite much ensure that values are not collinear since each
coefficient is computed as a bivariate function formulated

such that the sum of the power of variables is the order of the
moment. However, since raw, central, and Hahn moments are
used, more measures need to be taken to remove collinearity.
Principle Component Analysis (PCA) is performed to elimi-
nate collinear coefficients.

D. DETERMINATION OF INCIDENCE MATRICS
Acomputational model was formed based on the composition
and relative positioning of amino acid residues. It played a
crucial role in computationally determining the characteris-
tics of proteins. A Position Relative Incident Matrix (PRIM)
was formulated as 20 × 20 matrix to enumerate the relative
positioning correlations among amino into a fixed size nota-
tion. It is given as

SPRIM =


s1→1 s1→2 · · · s1→j · · · s1→20
s2→1 s2→2 · · · s2→j · · · s2→20

s
...
i→1 s

...
i→2 · · · s

...
i→j · · · s

...
i→20

s
...
20→1 s

...
20→2 · · · s

...
20→j · · · s

...
20→20

 (10)

Each component of this matrix signifies the sum of the posi-
tions of the jth residue relative to the first occurrence of the
ith residue given as Si→j. Hence, this matrix encompasses
400 coefficients which is a huge size. Statistical moments
provide the prospect to transform this information into a
succinct form. Computing raw, central and Hahn moments
for PRIM matrix yields 30 coefficients in all for degree
up to 3. Similarly, the Reverse Position Relative Incidence
Matrix (RPRIM) was formed using a primary sequence of
proteins. It was represented as:

SRPRIM =


s 1→1

s1→2 · · · s 1→j
· · · s1→20

s2→1 s2→2 · · · s2→j · · · s2→20

s
...
i→1 s

...
i→2 · · · s

...
i→j · · · s

...
i→20

s
...
20→1 s

...
20→2 · · · s20→j · · · s

...
20→20


(11)

Statistical moments applied for RPRIM reduced the dimen-
sionality of RPRIM and resulted in the formation of a set
of 30 elements. The PRIM (Eq. (10)) reveals position rel-
ative information of amino acid residues in the polypep-
tide chain, this information is augmented by the RPRIM
(Eq. (11)) matrix which uncovers even further obscured infor-
mation by performing the same operation on the reverse of
primary sequence.

E. FREQUENCY VECTOR DETERMINATION
The frequency vector is simply computed by counting the
occurrence of each amino acid residue within the primary
sequence. Each element in the frequency vector represents
the frequency of occurrence of the corresponding amino acid
residue within the given sequence. Hence, the frequency
vector yields 20 coefficients.

ρ = {τ1, τ2, . . . , τ20 } (12)
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The frequency of occurrence of the ith residue is represented
as τi. The frequency matrix provides further compositional
information regarding the sequence.

F. ABSOLUTE POSITION INCIDENCE VECTOR
The frequency matrix essentially provides information
regarding the composition of amino acid residues. Summa-
rization of positioning of residues is provided by yet another
vector namely Accumulative Absolute Position Incidence
Vector (AAPIV). It constitutes a single coefficient corre-
sponding to each amino acid residues hence forming a length
of 20 elements. Elements of the vectorAAPIV contain the sum
of the position of occurrence of each natural amino acid in the
primary structure given as

K = {µ1, µ2, µ3, . . . , µ20} (13)

where Equation 14 enables to compute arbitrary ith element
of AAPIV

µi =
∑n

k=1
pk (14)

where pk is the position of the ith amino acid residue.
Subsequently, reverse accumulative absolute position vector
(RAAPIV) further evaluated detailed information based upon
the absolute position of amino acids in peptide samples.
Reversing of primary sequence and then calculating AAPIV
yielded RAAPIV, denoted as:

3 = {γ1, γ2, γ3, . . . , γ20} (15)

where γ i represents the sum of all the positions where the
ith amino acid residue occurs in the primary structure.

G. FEATURE VECTOR DESCRIPTION
Primary sequences processed through all the above steps are
ultimately combined to form an accumulative feature vector.
Two-dimensional representation of the primary sequence P′,
PRIM, and RPRIM matrices are transformed into a succinct
form by computing their statistical (raw, central, and Hahn)
moments. Consequently, it yields 90 coefficients. Further-
more, the frequency vector (ρ), AAPIV (K ) and RAAPIV (3)
are also pooled into the vector account for 60 more
coefficients. Overall, a fixed-sized feature vector with
150 coefficients formulated for each primary structure of
arbitrary length as depicted in Fig 2.

Eventually, the combined feature set is subjected to PCA
for the removal of collinearity and dimensionality reduction.
Varying permutations were probed in several experiments,
it was observed reducing the 150-column feature set data into
100 columns provides optimal outcome.

H. CLASSIFICATION ALGORITHM
Random Forest (RF) is a powerful machine learning
Classifier that assiduously performs classification or predic-
tion. Random forest operates by constructing a multitude of
decision trees during training. The advantage of the Ran-
dom Forest classifier includes their non-parametric nature,

FIGURE 2. Structure of feature vector.

maximum classification accuracy, and capability to adapt to
the features that bear importance for maximum accuracy.
Assimilated input feature vectors based on primary sequences
as described in the previous section are furnished into an
input matrix. Similarly, an expected output matrix was also
improvised which contained the expected output for the cor-
responding row in the input matrix. Both the matrices were
used to train an RF classifier (Figure 3) constructed using
parameters shown in Table 1.

FIGURE 3. Architecture of random forest classifier for the proposed
prediction model.

TABLE 1. Probed and optimal set of parameters for RF.
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The details of the most optimal parameters of the
RF classifier for the identification of proto-oncogene proteins
are shown in Table 1. The number of estimators was set
at 50 while the maximum depth was kept at 16. Several
classifiers exist and the choice of a robust, efficient, and
accurate classifier is a pivotal task. RF classifiers form a
decision based on opinion received from a federation of deci-
sion trees. The opinions received from each decision tree are
combined into a single outcome. The ability of RF classifiers
to consult multiple opinions insulates it against over-fitting
without compromising on prediction error as compared with
other monolithic classifiers like neural networks. Another
feature that renders more diversity to RF classifiers is the
fact that a decision tree at each node splits based on the best
feature rather than the most important one. RF classifier also
bears superior performance while dealing with multiclass
data as compared to other binary classifiers like Support Vec-
tor Machine (SVM) which requires cascading. SVM is binary
classifiers that attempt to partitions the multi-dimensional
feature vector space using a hyper-plane. It makes use of
support vectors to determine the most optimal parameters for
partitioning the feature vector space. SVM has also been used
successfully in machine learning problems. Table 2 provides
a range of probed values along with the most optimal values
encountered for SVM.

TABLE 2. Probed and optimal set of parameters for SVM.

Artificial neural networks (ANN) are also prevalently used
as robust classifiers. A trend in the use of artificial neural net-
works is seen as multiple researchers have used ANN inmany
bio-computational decision problems. In this study, ANN is
used with a back-propagation algorithm for the prediction
of proto-oncogene proteins. ANN has been inspired by the
working of the human brain. The human brain consists of
neurons that work together to process and receive information
and learn skills from experience. ANN algorithm also works
similar to the brain as it consists of multiple nodes that are
linked with each other. The first layer of nodes in the input
layer, the second layer is called the hidden layer while the
third layer is the output layer. Data that needs to bemodeled is
passed onto the input layer while the hidden layer(s) are used
for intermittent processing. Subsequently, the output layer
shows the resultant outcome. In back-propagation, the values
received at the output layer are again used as feedback for
the hidden layer for improving its accuracy upon each iter-
ation and also to reduce or minimize the error rate in clas-
sification. Subsequently, Table 3 provides the probed set of

parameters for ANN along with the most optimal parameters
observed.

TABLE 3. Probed and optimal parameters for ANN.

III. RESULTS AND DISCUSSION
This section focuses on analyzing the accuracy of the model
using rigorous and standard testing methodologies. Testing
for a genomic or proteomic application is quite different from
other conventional applications as new data is not readily
available. To avoid inconsistencies only non-homologous
and naturally occurring experimentally established data is
used.

A. ACCURACY ESTIMATION
Objective evaluation of a prediction model requires estima-
tion of its accuracy described within well-defined parame-
ters. The choice of the testing and validation methodology
described in form of well-understood accuracy metrics aimed
at quantifying the performance of the method is a crucial task.
A regular and well-known set of metrics for the estimation
of accuracy is defined here. The most commonly used tests
are self-consistency, Cross-validation, and Jackknife test-
ing. For each test, various metrics are calibrated to evaluate
accuracy.

1) METRICS FOR ACCURACY ESTIMATION
Based on different perspectives, four different metrics are dis-
cussed which evaluate the accuracy of the prediction model:
(1) Acc for overall accuracy (2) Sp for model specificity
(3) Sn for Model sensitivity, and (4) MCC for model sta-
bility. These metrics have been prevalently used in litera-
ture to gauge the predictive quality of a proposed model.
In particular, Matthew’s correlation coefficient (MCC) is a
crucial indicator that echoes the stability of the model. The
balance between the capability of the model to recognize
positive samples and the inability to recognize positive or
negative samples is given by the Fscore. Consequently, these
intuitivemetrics were derived based on various prediction and
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classification studies, as given in Eq.16 below.

Sn = 1−
N+−
N+

0 ≤ Sn ≤ 1

Sp = 1−
N+−
N−

0 ≤ Sp ≤ 1

Acc = 1−
N+− + N

−

+

N+ + N−

0 ≤ Acc ≤ 1

MCC =
1−

(
N+−
N+ +

N−+
N−

)
√(

1+ N−+−N
+
−

N+

)(
1+ N+−−N

−
+

N−

)
where − 1 ≤ MCC ≤ 1

Fscore =
N+

N+ + 1
2 (N
+

− + N
−

+ )

(16)

where N+ signifies the number of proto-oncogenes truly
predicted as proto-oncogenes and N+− denotes the number
of proto-oncogene proteins predicted inaccurately as the
non-proto-oncogene proteins. Moreover, N− represents the
number of non-proto-oncogenes predicted accurately while
N−+ denotes the number of non-proto-oncogenes predicted
inaccurately. Equation (16) comprehensively shows how sen-
sitivity, specificity, overall accuracy, stability in terms of
MCC and Fscore are computed [39], and is reported in various
studies (see, e.g., [40]–[42]). However, it is for binary class
data, and for multi-class, other metrics are proposed.

B. VALIDATION TESTS
Typically, experimentally validated datasets are used for
model training and testing. However, readily producing ran-
dom test cases is not possible since proteomic data is innate
to nature. Naturally occurring proteomic sequences are fur-
nished into the study that is supported by some experimental
verification. Methodologies still exist that could rigorously
test the effectiveness of the model even though the test cases
are limited. These tests are designed to evaluate the accuracy
and reliability of the model based on its ability to identify
unknown data. Generally, for such a bioinformatics problem
self-consistency test, k folds cross-validation test, jackknife
test, and independent test are used [43]. The jackknife test
is very exhaustive and will always give the same results for
a particular dataset. A cross-validation test is a convenient
choice for estimating that an established model is functioning
satisfactorily if new test cases are not readily available to
validate the model’s accuracy.

A self-consistency test was performed using the previously
derived benchmark dataset for training as well as testing of
the proposed predictor using. This is the most trivial sort of
test that simply tests the model on the same data that was

used for its training. This test works as a benchmark to gauge
the ability of a classifier to identify hidden patterns within a
dataset. The self-consistency test results are shown in Table 4.
It depicts all the metrics obtained from the self-consistency
test. The test yields an MCC equivalent of 0.99 for RF,
0.76 for ANN, and 0.67 for SVM, which clearly shows that
the RF model is capable of readily, and quite accurately
identify the specific unique patterns within the primary struc-
ture of proto-oncogene proteins. Furthermore, the Receiver
operating characteristics (ROC) graph obtained from the test
for all three classifiers is also depicted in Figure 4. The graph
shows a huge area under the RF curve, which signifies the
high accuracy of the RF model.

TABLE 4. Self-consistency result via random forest classifier.

FIGURE 4. ROC curve for self-consistency tests for each classifier.

The self-consistency test is clear proof of the appropri-
ateness of the RF classifier for the problem. Hence, further
validations are performed using only the RF classifier.

Cross-validation requires that the benchmark dataset is
split into k disjoint partitions. Each fold or partition is
randomly selected as a mutually disjoint data partition for
validation while the rest of the data was used to train the
model. Consequently, all partitions of the dataset are exhaus-
tively used for both training and testing. The overall result is
reported as the mean of all the results received from each fold.
The method is applied uniformly to negative and positive data
samples. Random partitions were formed using k=10. Cross-
validation is potentially a better verification method since it
exhaustively tests all the data. Table 5 depicts the outcomes
obtained with 10 folds cross-validation while Figure 5 shows
the ROC curve for 10 folds. The overall MCC score for
10 folds cross-validation is 0.91 which signifies a high rate of
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TABLE 5. Cross-validation result via random forest classifier.

FIGURE 5. ROC curve of validation tests.

accuracy. Subsequently, the standard deviation (σ 2) obtained
from the set of experiments carried is also depicted as 7.39

Jackknife testing is themost rigorous and consistent testing
technique. In each iteration, it leaves out a sample and trains
the model on the rest of the samples. The trained model was
later tested using the left-out sample. In this way, this exhaus-
tive technique evaluates the behavior of the classifier for
each sample. Jackknife always returns a unique output for a
specific dataset. Jackknife test completely evades intentional
problems due to inconsistencies in subsampling and inde-
pendence. The results of the jackknife test for the proposed
predictor are shown in Table 6 while the ROC curve is shown
in Figure 4. The model exhibits an MCC of 0.931 showing
that the model performs quite accurately for unknown data.
Continually, the standard deviation, for all the results received
from each iteration of jackknife testing is also listed and
measured as 24.4.

Subsequently, independent set testing was performed by
splitting the dataset into 70-30% partitions. RF classi-
fier was trained on 70% partition, which was later tested
using the remaining 30% samples. The results are shown
in Table 7 while ROC is shown in Figure 6. It depicts the
number of samples identified as TP, FN, TN, FP along with
the accuracy metric. Independent data set is a simple but

TABLE 6. Jackknife test result via random forest classifier.

TABLE 7. Independent dataset testing.

adequate benchmark to establish the accuracy of themodel on
bulk unknown data. Results show that the predictor performs
satisfactorily on independent set testing as well.

Because of rigorous scrutiny of the proposed model based
on these validation tests, it is concluded that the proposed
predictor is accurate and an efficient way of identifying
proto-oncogene peptides based on their primary structures.
An overview of all the results is shown in Figure 4 in form
of ROC graphs. The area under the curve for these tests is
considerably high which signifies the high accuracy of the
proposed predictor.

Furthermore, the proposed model is also evaluated in com-
parison with other baseline and state of art feature extraction
techniques. PseAAC is one of the most popular and pre-
dominantly used feature extraction techniques for proteomic
identification in unison with a multitude of classifiers. Based
on the correlation of amino acid residue positions and their
composition this model yields a set of coefficients [7] which
are used as a feature set. Scientists have used a multitude
of classifiers in combination with PseAAC. Subsequently,
another method namely Position Specific Scoring Matrix
(PSSM) [44] is used to extract features based on basic
sequence-related statistics. Here, PSSM is being used as a
baseline method as it merely bears coefficients dependent on
the positioning of amino acid residues. PSSM is one of the
most basic and simplistic feature extraction methodologies.
Comparison of the proposed methodology is performed with
PseAAC and PSSMbased feature extraction techniques while
RF is employed as the classifier. The results of indepen-
dent set testing for all these techniques are illustrated in the
ROC curve below.

The ROC in Figure 6 depicts that the proposed feature
extraction technique works better than classical PseAAC and
PSSM which means it is more capable of sieving out the
most momentous features required for the identification of
proto-oncogenes proteins.

IV. WEBSERVER
Another aspect of such computational studies is the devel-
opment of a user-friendly public web-server for biologists as
shown in recent publications by various researchers. As stated
in a previous study [45], a publicly available web-server
is the imminent course of action for reporting recent
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FIGURE 6. Comparative analysis with state of art and baseline models.

significant computational insights and analyses. They have
greatly helped to advance the usefulness of computational
methods in medicine, leading drug discovery to an unprece-
dented revolution [46]. Thus, the proposed work also endeav-
ors to make available a webserver providing a web-based
implementation of the methodology, in the future. However,
all the source code and other materials have been made
available at https://github.com/csbioinfopk/protoncogene.

V. CONCLUSION AND DISCUSSION
Mutations in proto-oncogenes are one of the major causes
of cancer due to exposure to a mutagen. Proto-oncogenes
translate to form proto-oncogene proteins. These proteins
work as a biomarker for such susceptibility to cancer. The
proposed work presents a robust in-silico technique for the
identification of such proteins. Scientists are working to find
intelligent and personalized ways to predict the onset of can-
cer. The identification of proto-oncogene proteins works as a
component of such prognosis. The proposed technique adapts
all the state of art recommendations to form a computation-
ally intelligent predictor. Robust and non-homologous data
is collected supported experimental evidence only from the
well-known Uniprot database. Features like PRIM, RPRIM,
AAPIV, FM, and statistical moments of a two-dimensional
representation of the primary structure of proteins are gath-
ered to form feature vectors. Random forest classifier is used
for the training of data because it exhibits less susceptibility
to overfitting. The yielded results are tested using rigor-
ous tests like self-consistency, cross-validation, indepen-
dent set, and jackknife testing. All these tests except the
self-consistency test partition the actual data into different
partitions using diverse methodologies to evaluate the per-
formance of the predictor. The results of these tests show
that the model performs well for unknown data. The vali-
dation tests of 10 folds cross-validation, jackknife testing,
and independent set testing yielding an accuracy of 95.44%,
99.81%, and 96.41 respectively. The remarkable yield of the
model in terms of accuracy can be attributed to the combined

capability of the feature extraction technique and random
forest classifier. The feature extractionmethodology enriched
into the model exhibits the capability of extracting obscure
patterns comprised of the sequence and composition of the
primary structures. Thus, the proposed predictors help pre-
dict proto-oncogenes efficiently and accurately and provide
baseline data for the discovery of new drugs and biomarkers
against cancer. Furthermore, these results also suggest that
the proposed predictor is a potent computational tool for rapid
and cost-effective identification of proto-oncogene proteins.
Proto-oncogene proteins are an important biomarker that
can prove useful in detecting the early onset of cancer. The
proposed predictor is also a potential tool for researchers to
devise diagnostic tests for cancer-related disorders.
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