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ABSTRACT This work establishes a robocentric framework around a non-linear Model Predictive Con-
trol (NMPC) for autonomous navigation of quadrotors in tunnel-like environments. The proposed framework
enables obstacle free navigation capabilities for resource constraint platforms in areas with critical challenges
including darkness, textureless surfaces as well as areas with self-similar geometries, without any prior
knowledge. The core contribution of the proposed framework stems from the merging of perception
dynamics in a model-based optimization approach, aligning the vehicles heading to the tunnels’ open space
expressed in the x axis coordinate in the image frame of the most distant area. Moreover, the aerial vehicle
is considered as a free-flying object that plans its actions using egocentric onboard sensors. The proposed
method can be deployed in both fully illuminated indoor corridors or featureless dark tunnels, leveraging
visual processing from either RGB-D or monocular sensors for generating direction commands to keep
flying in the proper direction. Multiple experimental field trials demonstrate the effectiveness of the proposed

method in challenging environments.

INDEX TERMS Perception aware control, vision based navigation, micro aerial vehicles.

I. INTRODUCTION

The quest for autonomous MAVs that can reliably navigate
in partially-known or unknown areas brings these platforms
in the forefront of research and technological breakthroughs,
while introducing novel approaches for several application
areas. Infrastructure inspection [1], search and rescue [2],
area coverage/surveillance [3] are fields that already pursue
the incorporation of aerial vehicles in their operation cycles.
These applications can be part of large scale outdoors envi-
ronments (e.g. bridges, wind-turbines, power plants), urban
environments (e.g. cities) and subterranean operating envi-
ronments (e.g. tunnels and cave networks).

This article approaches the problem of autonomous navi-
gation of low-cost aerial robots, referred with the term “‘aerial
scouts”, which is a subcomponent of the NeBula autonomy
framework [4], related to multi-robot exploration missions in
complex environments [5]-[7]. Aerial scouts can be defined
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as consumable vehicles with the main mission to explore
high risk areas, collect sensor data (e.g. laser measurements,
thermal, visual, gas, etc) for the operators to safely assess
the status of the infrastructure. The baseline capability of
these platforms is to navigate along a tunnel-like environ-
ments while returning close to their takeoff position. The
proposed architecture couples a Nonlinear Model Predictive
Control (NMPC) with a visual processing scheme in the
local frame of the robot for maintaining proper obstacle free
direction along the tunnel axis, following the open space area
described with the furthest distance in depth images.

A. BACKGROUND & RELATED WORKS

Several works in the existing literature have addressed the
control and navigation of MAVs in challenging environments
using various sensor configurations. In [8] the fields of esti-
mation, control and mapping for the MAV’s autonomous nav-
igation along penstocks, have been studied. In this work the
major sensors used were a laser range finder and 4 cameras
for the task of state estimation and mapping. In [9] a range
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based sensor array approach has been developed to navigate
along right-rectangular tunnels and cylindrical shafts. The
authors proposed a range sensor configuration, to improve
the localization in such environments and provide the means
for autonomous navigation. In [10], the authors presented a
multi-modal sensor unit for mapping applications, a means
for aerial robots to navigate in dark underground tunnels.
In this work, the unit consists of a stereo camera, a depth
sensor, an IMU and led lights syncs with the camera capture
for artificial lightning. Furthermore, the unit has been inte-
grated with a volumetric exploration method, demonstrating
the capabilities of the overall system. Regarding vision based
optimal predictive control not many works have addressed
the coupling of the control actions with vision, that can
act as the planner for autonomous navigation. In [11] a
perception-aware Model Predictive Control (MPC) algorithm
has been proposed to compute trajectories for quadrotors
that maximize the visibility of a desired target, optimizing
both the action and perception objectives. This method lever-
ages numerical optimization to compute feasible trajectories
solving an optimization problem, where the cost function
respects both the robot dynamics and perception objectives.
In [12] a collision avoidance scheme has been presented that
guides an aerial vehicle around an object along a conical
spiral trajectory using a spherical camera model in a visual
predictive control. In this work the vehicle dynamics have
been linearized and partitioned in two parts, the first part
includes the z axis and the second part the x and y axes,
leading to two individual controllers that provide the control
actions for the low level control. The image and z axis of
the vehicle’s dynamics are included in a process model and
the nonlinear optimization problem is solved over the derived
common state. Other works on vision based control have
approached the navigation from other aspects, such in [13]
where the authors proposed a method to guide a multirotor to
a desired pose, while simultaneously keeping a target within
the field of view of the onboard camera. In this work visual
servoing scheme is used to generate a trajectory based on
the minimization of the target re-projection error, while an
MPC scheme was developed to track the trajectory. In [14]
the authors presented a hybrid visual servoing scheme for
deferentially flat systems formulated as an optimal control.
The method initially computed the final pose of the vehicle
using the desired camera view by solving a Perspective-n-
Point problem and then used optimal control to compute a
feasible trajectory, with a cost function to keep the image
features in the view. In [15] the authors presented a cascaded
formulation of IBVS and Linear MPC control scheme, with
the aim to tackle the under-actuation issues related to the
integration of IBVS on quadrotors. In this work the authors
provide feasibility and stability guarantees of the MPC. Com-
pared to the State-of-the-art, this work proposes an alternative
architecture on the high level model based control for MAVs,
which integrates visual perception state in the command
generation, to enable reactive fast exploration of unknown
subterranean/urban tunnel environments. The presented
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FIGURE 1. Overall block diagram of the proposed system, where signals
X, S represent the vehicle and perception states, while signals

Ocmd > Demd > Yemd and Temg represent roll, pitch, yaw-rate and thrust
commands for the low level controller.

control design is independent of x, y position or global map
information, since localization can be an issue in complex,
real-life underground areas. Table 1 summarizes the modules
from all frameworks, depicting the alternative approaches on
vision augmented optimal control for aerial platforms.

B. CONTRIBUTIONS

Based on the aforementioned state of the art, the major con-
tribution of this article stems from the establishment of an
aerial scout robot, capable to navigate along tunnels, lever-
aging visual data for keeping the proper direction along the
tunnel, following open spaces identified through depth image
processing. Initially, in the proposed architecture the platform
is treated as a free-flying object following velocity, rather
than precise position references on x and y axes, under the
policy that velocity estimation can recover faster than position
drift in degenerated environments, since reliable localization
is still a major issue. Moreover, the control design incor-
porates a perception state in the MAV dynamics which is
coupled with the yawrate control input. Thus allowing for a
vision-driven direction control of the platform, since ‘“where
tolook’ is another major issue. Additionally, the fundamental
component of the visual processing is the extraction of the
free space in the tunnel, which is expressed through a 2D
centroid in either a monocular image or an RGB-D depth
image. The proposed control scheme can be directly deployed
on a quadrotor with a camera and without requiring precise or
even rough models of the surrounding areas or large training
datasets. Finally, multiple field tests have been performed
in different areas depicting the performance of the proposed
method. More specifically, this work showcases field tests
from a limited access to the public underground mine, pro-
viding valuable insights on the continuation of the research
field.

C. OUTLINE

The rest of the article is structured as it follows. Section II
describes the overall framework. Section III provides an
overview of extended field trials on different scenarios and
finally, Section IV presents the concluding remarks of the
developed system.

II. AERIAL SCOUT FRAMEWORK
Figure 1 presents the overall proposed system architecture..
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TABLE 1. MAV visual predictive control comparison.

Works Control Vision-Module Navigation Experimental
Evaluation
[11] Reference trajectory tracking MPC  Feature extraction Trajectory following with 3D landmark  Lab
with 3D landmark visibility in image visibility, keeping it in the middle of the
plane (perception states) image plane and minimizing its velocity
[12] Image based MPC design on spherical ~ Object detection Conical spiral trajectory generation for ~ Lab
coordinates (perception states), incor- avoidance based on single point feature
porating conical spiral motion model detection
[13] Reference optimal trajectory generation  Fiducial marker processing for image  Trajectory generation to reach the goal — Indoors
with penalization on 3D landmark re- frame coordinates and relative pose co-  pose of the 3D landmark, keeping the
projection error and tracking NMPC ordinates in camera frame landmark in the middle of the image
plane
[14] Reference dynamically feasible trajec-  Requires initial and goal image. Feature ~ Trajectory tracking to reach goal pose  Outdoors
tory generation and tracking MPC, tracking and PnP processing based on the provided goal image
while maintaining substantial 2D image
features
[15] Cascade IBVS and MPC velocity track-  Feature extraction Reach goal feature positions in image Lab
ing plane
Underground
Ours Reference velocity, altitude and head-  Visual processing of monocular depth ~ Floating object velocity carrot chasing mine tunnel

ing rate (perception state) tracking
NMPC

or RGB-D depth frames to identify cen-
troid area of open space

and reactive motion along tunnel axis
yaw rate tracking

& urban tunnel

FIGURE 2. Coordinate frames, where 7', %, ¢ and < denote world,
body and camera and image coordinate frames respectively.

A. PRELIMINARIES

The world frame % is fixed with the unit vectors
{xW, yW, ZW} following the North-West-Up (NWU) frame
convention. The body frame of the aerial vehicle A is
attached on its base with the unit vectors {x*Z, y’g ,z7}). The
Zis antiparallel to the grav1ty vector, xZ is looking forward
the platform’s base and y is in the NWU convention. The
onboard camera frame % has unit vectors {x(g, ycg, z%}. Fur-
thermore, y? is parallel to the gravity vector and i points
in front of the camera. Finally, the image plane is defined as
# with unit vectors [x*7, y"d ]. Figure 2 depicts the utilized
main coordinate frames of the aerial platform.

B. MAV DYNAMICS

The quadrotor model derived in [16] is used, providing roll
Gcmds pitch Oppg € [—m/2, /2] and thrust Ty € Ry
commands, that are later handled by a low-level controller
mounted onboard the aerial vehicle. Equation (1a) summa-
rizes the quadrotor model.

p.=v” (1)
v 0 0 A 0 07 [V
v/ =RO.¢)| 0 |+|0|=]04 0]
f/z‘%) Ty —8 0 0 A; VZ&?

(1b)
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where p, is the relative distance of the platform with the
ground vZ = [v%, , y’? , % ]—r c R3 represents the linear
velocities on each axis, ¢, 9 € Rareroll and pitch, R € SO(3)
is the rotation matrix without a rotation around the z-axis,
since the coordinates are in the body frame, 7; € R is the
mass normalized thrust, g is the gravitational acceleration,
Ay, Ay, and A; are the normalized mass drag coefficients, 7y
and 7y are the time constants, and Ky, Ky are the roll and pitch
angle gains, and finally ¢, Ocma are the reference values of
the roll and pitch angle for the low level controller. From [17],
the model incorporates the mass normalized thrust 7,; that
is converted to T,y using the derived adaptive acceleration
control scheme.

C. PERCEPTION STATE

Following the Image-based Visual Servoing (IBVS) the-
ory [18] Equation (2) describes the desired relation in the 2D
target motion represented by s, and s, coordinates and the 3D
camera motion, with the assumption that the target is static.

5 o T
I:Sj =L [v;é v;g v w? ;5 a)zg] 2)

where v¢ = [vf,v% v;‘g]—r

Y e R’ and 0¢ =
[a)% a)(g a)(g]—r € R3 represent the linear and angular veloc-
ities in frame %, while the L € R2*® matrix that describes

the coupling is called Interaction matrix and is defined as:

S e L
L= dw” y?) 0 dxe ﬁ V7 Sy 1—sy sy 3)
’ W W 1+S§ —SxSy —Sx
where d(x”, y7) = zZg 4 and d(-) represents the depth map of

S

the image / (x , y/ ), Vx € columns and y~ € rows. The
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interaction matrix L includes the depth Z (g, information that
is lost when working in the 2D image plane.

The rate of change of s, is mainly affected when the camera
is undergoing a yaw motion a);g and a lateral velocity v,.
The other camera motions have negligible effect in the rate
of change of the target position in the image plane. In the
case where s, is closer to the center of the image, w;g has a
greater impact in the rate of change when compared to the
lateral velocity v¢ of the camera and therefore v¢ can be
ignored. Equation (4) express the simplified image dynamics

that consist the perception state.
s = (1 +5)Wema) “

D. VISUAL PROCESSING

The core concept in the proposed method is the identification
of open space along the tunnel axis using the onboard visual
sensor. The goal is to align the MAV heading towards open
spaces, thus allowing the aerial platform to follow obstacle
free paths. Extending the previous work [19], this article
expands the concept of open space identification by pro-
cessing depth images in two ways, firstly showcasing the
general applicability of the method using depth map from
RGB-D sensor for well illuminated areas and pseudo depth
map monocular sensor in dark environments, while secondly
connects the visual processing with the control framework by
closing the loop.

1) SINGE IMAGE PSEUDO DEPTH ESTIMATION

This method describes the established methodology for cal-
culating a pseudo depth map from single images, with the
main aim to identify areas in the frame that are free space,
without considering metric information. Using the light scat-
tering [20] method an image can be defined as follows:

17y = 067 y) -ty all —ire” 7))
8

where I : [0...M —1]x[0...N — 1] — N? is the observed
image, O : [0...M — 1] x [0...N — 1] — N? is the original
image, a is the color of the atmospheric light, r(x?, yj ) is
the transmission term. The term O(XJ , yj ) - tr(x] , yﬂ ) is
called direct attenuation [21], while term a[l — tr(x, y)] is
called airlight. The transmission term describes the amount
of light that reaches the camera and is defined as:

ir(x” y7) = e P77 ©)

where B is the scattering coefficient of the atmosphere and
dx”, yf ) is the depth of the scene for the pixel coordinates
(xj , y‘ﬂ ). The Dark Channel Prior (DCP) [22] method is
used to calculate the transmission map defined as follows:

dark (.. I
rr(xf,yf)zl—w[—l Cy )] )
a

[9ak (7 Iy = min min 1€z 8
@7, y7) CeR,G,B[ZeQ(xJ,yﬂ) (2)] (®)
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FIGURE 3. On the left onboard RGB image frame with the extracted
centroid denoted with the red circle, while on the right the estimated
pseudo depth image from a single image.

FIGURE 4. On the left onboard depth image frame from Intel RealSense
ZR300, while on the right the processed depth image with the extracted
centroid denoted with the red circle.

where w is a number controlling the desired level of restora-
tion with maximum value of 1, [/ d“’k(xf , y'] ) is the dark
channel, Q(x*, yj ) is a patch of 5 x 5 pixels centered on
(xj R y] ), 1 € is the color channel of the image I, z represents
the index of the pixel of Q(x] , y‘ﬂ ).

The atmospheric light is shown in Equation 9.

[ 7))

&)

arg max

3
a = max Z 1€
1 (xZ 7 )€(0.1%hxw)

C=

where w, h represent the width and height of 744%

This visual processing methodology, part of the proposed
control framework, is employed to tackle the challenge of
identifying the open space in tunnels and caves to regulate
the aerial platform heading accordingly and operates in pitch
dark tunnels without external illumination infrastructure.

In order to extract the centroid location of the area with
the open space in the tunnel, represented as the area with the
maximum distance from the MAV, we first employ a grey
scale morphological operation in the depth map image [23]
and in the sequel employ the k-means [24] algorithm in
order to segment the depth image into a number of clusters
defined as C;,i = 1, ..., 10. Finally, we compute the average
intensity for each cluster and extract the s, of the cluster
with the maximum average intensity C,, from the depth map
image [25]. The s, of the cluster is the arithmetic mean of all
x pixel coordinates in the cluster defined as:

1
Sc=—— Y x (10)
Cul

NECm

where |Cy,| is the number of pixels of the cluster. The overall
method described in this section and impact on the centroid
calculation are depicted in Figures 3, 4.

E. MISSION PLANNER
The system incorporates a higher level mission planner which
is responsible to provide the references for the controller. The
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mission planner initially accepts the desired state references
from the operator once. Afterwards, a potential field obstacle
avoidance method is activated, generating linear x-axis and y-
axis reference velocity commands in order to avoid collisions
to the walls or any other obstacle standing in the way of the
MAV, as shown in [26].

F. CONTROL DESIGN

Compared to current State-of-the-Art the NMPC extends the
non-linear dynamic model of the platform derived from (1a)
by integrating the perception dynamics from (4). The state of
the system is defined as x%(t) = [p, vfg, vy‘%, v?, ¢,0] €
R®, where 7 is the estimated state obtained from the
onboard sensor measurements.

Moreover, the perception state vector S(¢) = s, includes
the visual states on the centroid, where S is the estimated
state and the value §, is provided from the visual process-
ing unit discussed in Section II-D. The NMPC objective
is to generate u? = [Pemd s Ocma » 1/'/C,nd, Temdl to keep the
centroid in the center of the image and by doing this the
MAV navigates along the tunnel, while following the tun-
nel altitude changes. Based on the obtained commands u? s
the low-level controller generates motor commands for the
MAV.

For the proposed NMPC, the finite horizon stage cost func-
tion is defined [ : R™ x R™ x R™ — R, and the terminal
cost function [y : R™ x R™ — R, where n, refers to the
number of states, ng refers to the number of the perception
states and n, refers to the number of commands.. The NMPC
scheme can be formulated in the following equation for the
problem of navigation in unknown tunnel-like environments:

: B
Jmn Ufn (xk+N|k’Sk+N|k>
=0

N-1
B B
+ Z Dtk (xk+j|k’ Sktjlk» uk+j\k)
j=0

2 BB -
St X = e W)y J € Niov-11

Sk+j+1lk = g(VﬁH‘k, Sktjikes Vi) J € Nio.v—1]
ik € [ ], J € Ny

x,%( = X}

Seik = Sk (11)

where N € Nis the control horizon, uﬁn and uZ, _are bounds
on control actions. At every time instant k, a finite-horizon
optimal problem is solved with a user defined interval, while

. . . « P
a corresponding optimal sequence of control actions u HTEREE

*AB - : *AB -
U EN—1) Are generated, where the first control action Uy 1s

applied to the low-level controller. In the next time instant
the optimization solves the same problem by using the solu-
tion in the previous interval as the initial guess and updated
information on current states value. More information of the
structure and implementation of the PANOC controller can
be found in [27].
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FIGURE 5. The top two rows depict snapshots from the experimental
trials in the indoor corridor area, while the bottom rows depict the
experimental trials in the underground tunnel.

IlIl. EXPERIMENTAL RESULTS

In the performed field trials the aerial scout has been deployed
in two different environments, a) an indoor corridor located
at Luled University of Technology and b) part of the produc-
tion area of an iron ore mine in northern Sweden, located
1100 meters deep. The main concept of the system was to
takeoff, move along the tunnel and return towards the takeoff
position using a timer strategy, depicting navigation with
return to base capabilities. The designed NMPC is mainly
providing the yawrate command from the x axis open space
in the image frame. Nevertheless, when the timer commands
a turn the yawrate is fixed to a constant value and the cen-
troid measurements are ignored until the rotation of approx-
imately 180 deg is completed. The aim of these experiments
is twofold a) to demonstrate the navigation capabilities of the
platform without any prior knowledge of the area and b) to
showcase that the method is applicable for totally different
tunnel-like environments, while supporting different sensor
modalities. It is of importance to note that the role of the
resource constrained aerial scout is not to provide an accurate
localization of any artifact or 3D map of the visited area, but
rather navigate in extreme locations, collect raw sensor data
and return in a location for the operator to retrieve it.

A. EXPERIMENTAL SETUP

In this work one aerial platform in two different configu-
rations is used to evaluate the proposed method. The first
configuration was used for the indoor corridor experiments
and the second configuration for the underground tunnel

66481



IEEE Access

C. Kanellakis et al.: Towards Autonomous Aerial Scouting Using Multi-Rotors in Subterranean Tunnel Navigation

experiments. Generally, the vehicle weights 1.5 kg and pro-
vides 8 mins of flight time with 4-cell 1.5 Ah LiPo battery.
The flight controller is ROSflight and the Aacon UP-Board'
is the main processing unit, incorporating an Intel Atom
x5-Z8350 processor and 4 GB RAM. The operating system
running on the board is Ubuntu Desktop 18.04 with ROS
Melodic framework. In both scenarios the platform carried
a 2D rotating Rplidar placed on top of the bodyframe, pro-
viding range measurements at 10Hz for the obstacle avoid-
ance component, while the height measurements are provided
from the single beam Lidar-lite v3 at 100 Hz installed on the
bottom of the vehicle pointing down. Furthermore, the aerial
platform is equipped with three 10 W LED light bars, two
in both front arms and one facing downwards for providing
additional illumination.

As mentioned above due to sensor limitations different
sensors were employed for velocity estimation and the vision
based open area identification. More specifically, in scenario
a) the velocity estimation is based on IntelRealsense T265 at
200 Hz, installed on the backside of the vehicle pointing
backwards, while for scenario b) the PX4Flow optical flow
sensor at 20 Hz was installed on the bottom of the vehicle
pointing down, since T265 had poor performance in dark-
ness. Additionally, in scenario a) the depth camera RealSense
ZR300 has been used to provide depth image at 20Hz, while
in scenario b) the PS3 Eye camera has been used to generate
pseudo depth images at 10 Hz and provide the x axis coor-
dinate of the open space in the image plane. The onboard
Inertial Measurement Unit (IMU) is used to provide the atti-
tude states [¢, 6] of the aerial platform, while the proposed
framework does not require any position measurements on
the x and y axis.

The NMPC has a prediction horizon of 40 steps, while the
tuning parameters used by the NMPC were:

Q" = diag(5,1,1,1,3,3), Qf =100,
0% = diag(10). QF =100°,
R = diag(2, 10, 10, 2)

where diag denotes a square diagonal matrix. Additionally,
in the control design, the following bounds have been con-
sidered as: —0.4rad/s < [¢dcmd, Ocmd » 1'ﬂcmd] < 0.4rad/s and
Tema € [0, 1].

1) FIRST SCENARIO
In this case the environment is well-illuminated and the main
challenge is that it’s geometry is self-similar. the tunnel is 3 m
wide and 3 m height, while the MAV navigated for 40 m for-
ward and back. In this scenario the operator defined reference
state vectors were x,.s = [0.3m/s, 0,0, 0, 0] and S,,r = [0].
Furthermore, the first subfigure of Figure 6 presents the
tracking of v to the desired reference. In this case the con-
troller was able to follow the reference with Mean Absolute
Error of 0.1 m/s. The velocity is tracking the desired values

1 https://www.aaeon.com/
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FIGURE 6. Linear velocities vZ¢ and vy@, altitude p and centroid sx
reference tracking during the navigation in the 1st scenario.

and in the majority of the experiment was close to 0.3 m/s.
Nevertheless, around 60 seconds the turn was initiated and
the MAV floated towards the wall, which activated the poten-
tial field reactive planner providing less or equal than 0 m/s
references. The second subfigure of Figure 6 showcases the
reference tracking performance of v‘y% over time. In this case
the controller was able to follow the reference with Mean
Absolute Error of 0.05 m/s. In this case the reactive planning
from potential fields is activated more frequently, especially
after the turn. The third subfigure of Figure 6, depicts the
altitude of the MAV relative to the commanded reference.
In this case the Mean Absolute Error was 0.05 m. The fourth
and final subfigure depicts the x axis coordinate tracking of
the open space. In this case the Mean Absolute Error was
0.07 units. In the majority of the flight to coordinate is close
to zero, expect around the time instance 60sec where the
MAV is turning and the measurements do not have any value
and are omitted. Generally, the centroid extraction has some
oscillation which is negligible and does not affect the overall
navigation.

The control signals (roll, pitch, and normalized thrust ref-
erences) generated by the nonlinear solver are depicted at
Figure 7. An interesting note in the presented responses is
that that around 52 sec the timer based turn is initiated and
the yawrate has been fixed to 0.2 rad/sec. Interestingly from
the experiment is shown that the yawrate command after the
turn takes few second to stabilize, which is affected by the
depth image processing. Moreover, after the turn the velocity
estimation slightly drifts leading the MAV close to the wall
and causing small sign alteration on the MAV roll command.
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FIGURE 7. Control signals generated from the PANOC solver to the
low-level controller during the navigation in the 1st scenario.
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FIGURE 8. Linear velocities v? and v, altitude p and centroid sx
reference tracking during the navigation in the 2nd scenario.

2) SECOND SCENARIO
In this case the environment is more challenging, pitch
dark, wider and with limited access. In this environment
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FIGURE 9. Control signals generated from the PANOC solver to the
low-level controller during the navigation in the 2nd scenario.

the RealSense sensor T265 could not provide proper veloc-
ity measurements. Therefore the PX4flow sensor has been
selected. The tunnel is 7 meters wide, 10 meters height and
the MAV navigated for 20 meters forward and back. In this
scenario the operator defined reference state vectors were
X = [0.5m/s, 0, 0,0, 0] and S,y = [0].

Similar to scenario 1, the first subfigure of Figure 8
presents the tracking of vfg to the desired reference. In this
case the controller was able to follow the reference with
Mean Absolute Error of 0.27 m/s. Although the error is higher
compared to scenario 1, the MAV was still able to perform the
desired task.

The second subfigure of Figure 8 showcases the reference
tracking performance of v, over time. In this case the con-
troller was able to follow the reference with Mean Absolute
Error of 0.1 m/s. Compared to scenario 1 the tunnel was wider
leading to less frequent activation of the reactive potential
fields, keeping vy close to 0. Nevertheless, the potential fields
were activated during the turn around the 100 sec to keep the
MAV away from the tunnel surface. The third subfigure of
Figure 8, depicts the altitude of the MAV relative to the
commanded reference. In this case the Mean Absolute Error
was 0.03 m. The forth and final subfigure depicts the x axis
coordinate tracking of the open space. An important aspect
to consider is that the k-means cluster selection affects the
centroid extraction and an optimal clustering number is not
always available. Nevertheless, although s, was oscillating
more around 0 compared to scenario 1 the MAV was able to
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maintain the proper direction during the overall navigation,
even after the turn. In this case the Mean Absolute Error was
0.22 units.

The control signals (roll, pitch, and normalized thrust ref-
erences) generated by the nonlinear solver are depicted at
Figure 9. An interesting note in the presented responses is
that that around 82 sec the timer based turn is initiated and
the yawrate has been fixed to 0.2 rad/sec. It is shown that the
yawrate command follows the oscillatory behavior of the s,
which is affected by the depth image processing.

In a summary, the performed experiments demonstrate
the effectiveness of the vision based method to detect open
spaces and align the MAV heading, facilitating the tunnel
navigation. Nevertheless, the presented method is a baseline
capability that can be enhanced with more features for a
more robust behaviour. More specifically, the takeoff and
landing can be automated using markers like apriltags, while
junction detection methods can be incorporated to comple-
ment the navigation task when the tunnels have multiple
branches.

IV. CONCLUSION

This article approached the problem of autonomous navi-
gation in challenging tunnel-like environments by coupling
a NMPC control architecture that aligns the robot motion
along the tunnel axis. A visual processing method on both
RGB-D or RGB sensors was developed to identify free space
in the image plane and use it to regulate the heading of
the MAV. Experimental results in a corridor as well as a
harsh underground mine tunnel demonstrated the ability of
the proposed system to navigate along areas that are previ-
ously unknown with the main purpose to collect raw sen-
sor data and come back to the base. Future directions of
the proposed scheme include the incorporation of bread-
crumb following navigation planner (visual landmarks) on
top of the control framework top allow complex navigation
manoeuvres in large scale areas, while focusing in areas
that either visual or lidar based odometry is not sufficiently
accurate.
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