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ABSTRACT Mobile robots contributed significantly to the intelligent development of human society,
and the motion-planning policy is critical for mobile robots. This paper reviews the methods based on
motion-planning policy, especially the ones involving Deep Reinforcement Learning (DRL) in the unstruc-
tured environment. The conventional methods of DRL are categorized to value-based, policy-based and
actor-critic-based algorithms, and the corresponding theories and applications are surveyed. Furthermore,
the recently-emergedmethods of DRL are also surveyed, especially the ones involving the imitation learning,
meta-learning and multi-robot systems. According to the surveys, the potential research directions of
motion-planning algorithms serving for mobile robots are enlightened.

INDEX TERMS Mobile robot, deep reinforcement learning, motion planning.

I. INTRODUCTION
Mobile robots are commonly applied in the dangerous and
complex environments to complete various tasks [1], includ-
ing exploring unknown and chaotic environments, searching
trapped victims and carrying important materials, etc. In the
urgent and dangerous scenes, mobile robots may even be
irreplaceable [2].

In recent decades, the research on mobile robot technol-
ogy may reflect the trend of the advanced technology [3].
Many countries regard mobile robots as a key industry in
the robotics field. With the rapid development of Artificial
Intelligence (AI), sensors, networks and communication tech-
nology, mobile robots become more and more intelligent [4].
Intelligent mobile robot should have the high autonomy, and
thus it could quickly and accurately complete tasks without
the guidance of human, ignoring any environmental restric-
tions [5]. The motion planning is to search for a non-collision
optimal path from the current position to the destination
with the external environment information obtained by the
sensors [6]. It is one of the most important capabilities of
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intelligent robots. Traditional motion planning methods
is commonly incapable to complete the tasks in the
dynamically-changing scenes lacking of the prior knowledge
andmaps, such as areas where fire, earthquake, explosion and
other emergency cases occur [7].

In this context, motion planningmethodswith self-learning
ability becomes an important research direction [8], [9].
Today, Robot AI technology has been deeply applied to all
aspects of society, and Deep Learning (DL) and Reinforce-
ment Learning(RL) technology is considered as the most
appropriate methods to solve the motion planning problems
in an unknown dynamic environment [10].

Deep learning, as an important part of machine learn-
ing, has made remarkable achievements in image process-
ing [11], face recognition [12], video detection [13] and
natural language processing [14] field. Through multi-layer
network structure and nonlinear transformation, deep learn-
ing combines low-level features to form an abstract and easily
distinguishable high-level representation, so as to discover
distributed feature representation of data and enable mobile
robots to have strong environmental awareness.

RL is mainly used to solve sequential decision making
problems. Inspired by the trial-and-error method in animal
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learning, RL uses the reward value obtained from the interac-
tion between agents and the environment as feedback signals
to train agents, which does not need auxiliary means such as
artificial markers. Reinforcement signals is provided by the
environment, which are used to evaluate the effectiveness of
the executive actions, rather than to instruct the agent how to
perform the correct actions. Different from the tutor signal in
supervised learning, the reinforcement signal in RL is easier
to obtain for some decision control problems, and RL has
become an effective method to solve the decision problem
for mobile robot.

Further, DeepMind team combined DL with RL to
propose a deep reinforcement learning(DRL) method. DRL
was applied to Alphago and defeated human champions
in 2016 [15]. Then, OpenAI team proposed an OpenAI-Five
method based on multi-agent DRL (MADRL), which beat
human players in the 5v5 mode of Dota2 game [16]. In 2019,
DeepMind proposed AlphaStar based on MADRL, reach-
ing the level of human masters in the Starcraft game [17].
In closed, static and deterministic environments, DRL can
reach or even surpass human decision-making levels.

The motion planning method based on DRL can enable the
robot to have autonomous learning ability and thus answer the
question ‘‘how to reach the target position’’ [18]. DRL [19]
enables robots to gain the perceptual and decision-making
abilities. The input data are processed to yield the output in
an end-to-end manner [20]. Sensor data (color/depth image,
laser scanning, etc.) serve as the input state, and robot motion
parameters (coordinates, displacement, direction, etc.) are
referred to as outputs. The training depends on the inter-
actions between the robot and the environment [21]. The
optimization process does not depend on the environment
model and any prior knowledge, which can guide the robot
to navigate to the target position without collision in real
time [22]. Compared with other algorithms, DRL has the
following advantages: First, since it does not need sam-
ple labeling, it can solve special cases in the environment
more effectively; Secondly, the end-to-end motion planning
method can treat the system as a whole, which makes the
system more robust. Third, reinforcement learning can better
explore and learn some more excellent movements. These
advantages play an important role in the optimal decision
control of mobile robots. The motion planning method based
on DRL has made substantial breakthroughs in many tasks
involving high-dimensional raw input data and complex deci-
sion control [23]. Many famous research institutions and
companies have devoted plentiful resources to study the
motion-planning methods based on DRL, and a great deal has
been achieved [24].

This paper summarizes the research status and of motion
planning for mobile robots [25]. Aiming at the defect of
conventional motion planning algorithm in complex environ-
ment, the mobile robot motion planning method based on
DRL technology is emphatically summarized and compared.
The main structure of this paper is as follows:

II. Related research

III. Motion planning based on DRL
IV. Multi-robot Cooperative planning
V. Difficulty for DRL motion planning
VI.. Future Research
VII. Conclusion

II. RELATED RESEARCH
A. CONVENTIONAL ALGORITHM
The optimization goal for mobile robot motion planning [26]
is to take the shortest planning path, theminimum system cost
and the minimum training time [27]. Conventional motion
planning algorithms of mobile robots can be divided into two
categories according to the prior knowledge of environmen-
tal: the global motion planning algorithm and the local motion
planning algorithm, which is shown as FIGURE 1.

FIGURE 1. Schematic diagram of mobile robot motion planning.

Global motion planning algorithms [28] belongs to static
and off-line motion planning, which is generally applied
when the obstacle information in the robot operating envi-
ronment is fully understood. However, the motion plan-
ning depends on the accuracy of environment acquisition.
Although the planning results are global and superior, they
have poor robustness to the error of environment model and
noise interference. According to different search methods,
global motion planning algorithm include graph search algo-
rithm, random sampling algorithm and intelligent algorithm.

The commonly used graph search algorithms include
Dijkstra [29], A∗ [30], D∗ algorithm [31] etc. Compared
with Dijkstra algorithm, A∗ algorithm has higher efficiency
by increasing heuristic estimation, reducing search volume.
But the efficiency of A∗ algorithm still cannot be guaranteed
when the environment is complex and large. Random sam-
pling algorithms mainly include probability graph method
(PRM) [32] and rapid Exploration random Tree method
(RRT) [33], and these algorithms search for the optimal path
in the whole space by randomly selecting scatter points.
When the scatters cover the starting point and the end point,
the shortest line between the scatters is the calculated path.
There are still some problems, such as high cost, poor real-
time performance, and the planned path may not be the
optimal path.
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Intelligent algorithm simulates biological evolution and
insect foraging behaviors in nature, mainly including genetic
algorithm(GA) [34], ant colony algorithm (ACO) [35], parti-
cle swarm algorithm [36], etc. GA has the characteristics of
potential parallelism and is suitable for solving and optimiz-
ing complex problems. However, there are problems of slow
operation speed and immature solutions. Particle swarm algo-
rithm overcomes this disadvantage and has the advantage of
fast convergence. The comparison of global motion planning
for global motion planning is shown in Table 1.

TABLE 1. Comparison of global motion planning.

Local motion planning is to enable the robot to
autonomously obtain an optimal path without collision in
an unknown environment based on the surrounding envi-
ronment information [37]. Its advantage is that it is more
adaptive to the unknown and real-time environment. Local
motion planning belongs to dynamic planning and focuses on
considering the local environment information of the robot,
which enables the robot to have good obstacle avoidance abil-
ity [38]. Robots need to be robust enough to environmental
errors and noise, and they can provide real-time feedback
and correction for planning results through efficient infor-
mation processing capability [39]. The algorithms used in
local motion planning mainly include artificial potential field
method [40], simulated annealing method [41], fuzzy logic
method [42], neural network method(NN) [43], dynamic
window Approach(DWA) [44], etc.

There is no essential difference between global motion
planning and local motion planning. Many methods applica-
ble to global motion planning can also be applied to local
motion planning after being improved. The comparison of
typical local planning for global motion planning is shown
in Table 2.

In order to show the relationship between different algo-
rithms better, the algorithm mechanism diagram is shown in

TABLE 2. Comparison of local motion planning.

FIGURE 2. Traditional motion planning algorithms include
graph-based, sampling - based and data-basedmethods. Intel-
ligent bionic algorithm includes genetic algorithm, ant colony
algorithm, etc. Learn-based algorithm includes deep learning
algorithm, reinforcement learning algorithm, imitation learn-
ing algorithm [45] andmeta learning [46]. Among them,DRL
motion planning algorithm will be reviewed as a key point in
this paper.

FIGURE 2. Classification diagram of motion planning algorithm.

B. SENSORS
Sensors equipped with mobile robots mainly include three
categories: self sensors, Positioning sensors and surrounding
sensors [47].

The self sensors uses proprioceptive sensors to measure
the current state of the robot using preinstalled measurement
units, such as odometer, IMU and CAN bus [48]. Positioning
sensors use GPS or inertial measurement unit dead reckoning
to determine the robot’s global and local positions. Surround-
ing sensors use external sensors to sense road markings,
weather conditions, obstacle status, which includes lidar sen-
sors, vision sensors, infrared sensors and ultrasonic sensors,
etc [49].

C. ENVIRONMENTAL PERCEPTION
Environment perception refers to the process of obtaining
information from objects around it, road surface and its own
state data. It relies on a variety of sensors to help the robot
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understand the shapes and the positions of obstacles [50].
The perceptual algorithms includes two categories: Medi-
ated Behavior Perception and Reflex Perception. Mediated
Behavior Perception develops a detailed map of the robot’s
surroundings by analyzing the distance, pedestrians, trees,
road markers, etc [51]. Behavior Reflex Perception uses arti-
ficial intelligence techniques to apply sensor data directly
to the control system. They include vision, point cloud and
multi-sensor fusion based algorithms.

D. LOCATION MODE
Most of the general positioning systems of mobile robots
are based on GPS. However, they are not suitable for harsh
environments for GPS cannot guarantee a signal in enclosed
areas. So mobile robots are often equipped with positioning
systems that do not rely on GPS [52], which includes visual-
based positioning, light reflection positioning, ultrasonic
positioning, aircraft calculation, Space beacon positioning,
and SLAM(Simultaneous Localization and Mapping) [53].

III. MOTION PLANNING BASED ON DRL
In the face of the dynamic unknown task environment,
the conventional motion planning algorithm still show many
shortcomings for lacking of prior knowledge. DRL com-
bines the decision ability of reinforcement learning (RL)
and deep learning (DL) [10]. DL uses the perceptual abil-
ity of the neural network to extract the features from the
input of the unknown environmental state, and realizes the
fitting of environmental state to the action value function.
On the other hand, RL completes the decision based on
the output of deep neural network and its own exploration,
and realizes the mapping from state to action. The DRL
algorithm has been applied to solve the problem of motion
planning in the high-dimensional environment of robots, and
substantial breakthroughs have been made in such aspects
as unmanned vehicle driving, mobile robot navigation, and
bionic robot skill learning. Mirowski et al. [54] used Google
street view as as the video input in an interactive navigation
environment, and realizes the unmanned vehicle navigation
(FIGURE 3(a)) across the city. Everett et al. [55] used on-
board sensors to judge the state of pedestrians near the
robot, so as to select reasonable movements and speeds and
realize the obstacle avoidance in the crowded pedestrians
(FIGURE3(b)). Through the deep reinforcement learning,
Abhik et al.. [56] trained the quadruped robot ‘‘STOCH’’ to
move in a simulation environment, including all the basic
walking modes of the quadruped robot, and gained trot,
walk, gallop, and standstill skills in a real environment
(FIGURE 3(c)). Chen et al.. [57]. propose a Takagi-Sugeno
(T-S) fuzzy control system based RL, and use UAVs to pursue
UAVs (FIGURE 3(d)).

In additon, DRL algorithms are often combined with
conventionalmotion planning algorithms. Conventional algo-
rithm is preferred for global motion planning in static envi-
ronment, and then deep reinforcement learning algorithm
is used for dynamic obstacle avoidance. This hybrid DRL

FIGURE 3. Application of DRL in the field of robotics.

FIGURE 4. MDP for motion planning.

method can also be suitable for motion planning problems
in dynamic unstructured unknown environments.

A. MDP
The model of RL is a standard Markov decision process
(MDP). Different from supervised learning and unsupervised
learning method, RL uses a feedback signal(reward) instead
of a large number of labeled samples. Classical motion
planning strategies (such as artificial potential field method,
A∗ algorithm, etc.) are based on the environment with certain
information, and usually have certain limitations in the appli-
cation process. MDP provides a unified model description for
the decision-making and solving process in the environment
with incomplete information, which can solve the motion
planning problem in the unstructured environment well.

As shown in FIGURE 4, MDP includes the environment,
Agent, Action, Reward and State [58]. The Agent represents
the mobile robot; The Environment refers to the map infor-
mation of the task. The State is the state space of the mobile
robot. And the action is a set of actions of a mobile robot.
The goal of reinforcement learning is to find a strategy that
maximizes cumulative rewards of the robot. Different from
the immediate reward, the cumulative reward evaluates the
long-term impact of a certain strategy on the performance
of agents in the Environment. The commonly used calcula-
tion methods include discount cumulative reward and step
cumulative reward. When the reward value is not easy to set,
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the Inverse Reinforcement Learning can be used to learn the
reward value function.

In contrast to conventional motion planning methods,
the mobile robot is not told which action to choose, but
instead tries to find the one that will get the most reward.
Motion planning can be viewed as a process of trial evalu-
ation. Firstly, the Agent will select an action for the environ-
ment and changes the state after the environment accepts the
action. The action selection of the current state s is determined
by the strategy π (a|s): π (a|s) = P(At = a|St = s), and it
represents the conditional probability distribution of action
selection, and the effect is evaluated by the value function
V π (s) [59]:

Vπ (s) = Eπ (Rt+1 + γRt+2 + γ 2Rt+3 + . . . |St = s) (1)

where γ ∈ [0, 1] is the discount factor, between [0,1].
Considering the influence of action A on the value func-

tion, the action value function Qπ (s, a) is defined as [60]:

Qπ (s, a) = Eπ (Rt+1 + γRt+2 + γ 2Rt+3
+ . . . |St = s,At = a) (2)

According to the definition of the action-value function
Qπ (s, a) and the state value function Vπ (s), transformation
relationship between them is:

vπ (s) =
∑
a∈A

π (a|s)qπ (s, a) (3)

The purpose of robot motion planning is to find an optimal
strategy for the mobile robot to consistently get more rewards
during movement than any other strategy, and this optimal
strategy can be represented by π∗(a|s):

π ∗ (a|s) =

{
1 if a = argmaxa∈AQ∗(s, a)
0 else

(4)

where: Q∗(s, a) = Ras + γ
∑
s′∈S

Pass′ maxa′ Q∗(s′, a′).

In general, it is difficult to find an optimal strategy for
motion planning, but a better strategy can be determined by
comparing the advantages of several different strategies.

B. MODEL-FREE RL
RL can be divided into model-based RL and model-free
RL according to whether the environment model needs to
be learned and understood [61]. The model-free RL motion
planning process for the unknown environment model do not
need to estimate the MDP model, and the value function
or policy function can be evaluated directly by sampling to
approximate the solution of reinforcement learning tasks.

The main methods include value-based (Value function
approximation), policy-based (strategy gradient method), and
Actor-Critic algorithm based on the combination of value and
policy, which is shown as FIGURE 5.

FIGURE 5. Classification of RL algorithm.

1) VALUE-BASED RL
Value-based reinforcement learning optimizes strategy by
maximizing value function. The value function of each state
of robot can be obtained by estimation. The commonly
used estimation methods include Monte Carlo(MC) [62],
TD (λ) [63], Q-learning [64], SARSA [65] and so on.
Among them, the most widely used algorithm is Q-learning.
Q-learning algorithm continuously optimizes the strategy
through the information perceived by the robot in the environ-
ment, so as to achieve the optimal performance. It is one of
the most effective reinforcement learning algorithms, which
uses greedy strategy to select actions and can guarantee the
convergence of the algorithm without knowing the model.

The state-action value function Q (s, a) is used as the
evaluation function, and the ε-greedy strategy is used to select
actions. The convergence of the algorithm can be guaranteed
without knowing the model. It is one of the most effective
reinforcement learning algorithms at present. Value function
Q (s, a) is the estimated value rather than the actual value.
The algorithm selects the maximum Q value function from
the estimated values of different actions to update. The update
method of evaluation function is as follows:

Q∗(st , at )=Q(st , at )+ α(rt + γ max
a
Q(st+1, a)−Q(st , a))

(5)

where, Q∗ is the optimal value function, rt is the current
reward, α is the step factor, and γ is the discount factor.
The motion planning algorithm of mobile robot based on

Q-Learning generally uses lidar data or depth camera data as
the state input, stores the discrete state-action value function
Q (s, a) in the Q table, and updates the Q value in the Q
table through iteration. In the complex dynamic environment,
improving the learning efficiency of Q-learning algorithm is
an important problem to be solved in robot motion planning.
Jaradat M [66] established a new state space to limit the
number of state inputs, so as to greatly reduce the size of the
Q table, thus improving the speed of the planning algorithm;
Song [67] based on the known environmental information and
Q table, a mapping is created between the initial values of
the value table. The dynamic wave expansion neural network
is used to specify the initial Q value properly. The prior
knowledge in the environment is integrated into the learning
system to speed up the learning efficiency and obtain better
strategies

In recent years, scholars have been trying to improve
Q-learning algorithm for robot motion planning.
Chakraborty et al. [68] used RL method to drive the robot to

VOLUME 9, 2021 69065



H. Sun et al.: Motion Planning for Mobile Robots—Focusing on DRL: A Systematic Review

navigation in an unknown map and perform the forecasting
task. At the same time, the fuzzy logic control method and
Q-learning are combined to carry out self reinforcement
learning of robot motion strategy. Based on the known topo-
logical map, Romero [69] and others use Q-learning method
to define state, action and reward, and provide navigation
map related to environment map to realize online navigation
algorithm. However, this method only uses odometer mea-
surement to navigate, and can only obtain less and inaccurate
sensor information.

As shown in FIGURE 6(a), in order to enhance the fit-
ting ability of Q-learning, Yi et al. [70] proposed a type-2
fuzzy neural network to realize the robot path planning in
a complex environment. Reinforcement learning based on
value function is also applied to the research of UAV flight
control system. Behzad et al.. [71] studied the problem of
aircraft path planning in a single environment by using a
double-Q learning reinforcement learning method. As shown
in FIGURE6(b), the problem of overestimation of theQ value
of Q-learning has been successfully solved.

FIGURE 6. Robot motion planning based on Q-learning.

As shown in FIGURE 6(c), Song [72] combined
Q-learning with Boltzmann strategy to improve the efficiency
of multi robot system and reduce the number of explorations.
Yuan et al. [73] used a Q-learning approach for obstacle
avoidance by imitating human behavior, which is shown in
FIGURE 6(d).

DQN:When dealing with the problems of motion control,
navigation and obstacle avoidance, the robot needs to make
correct and efficient decisions for the next action accord-
ing to the information it feels, such as visual information,
LIDAR point cloud and so on. Although the basic reinforce-
ment learning method has strong decision-making ability,
its perception of the environment is weak. Especially fac-
ing high-dimensional problems with large state space, there
is still the danger of dimensional disaster. In recent years,
deep Q network (DQN) algorithm and its related improved
algorithms are widely used in robot motion planning tasks.

In order to deal with the task of robot motion planning based
on visual perception, Mnih [74] first combined CNN with
traditional reinforcement learning Q-learning algorithm and
proposed a DQN model. FIGURE 7 has shown the network
diagram of mobile robot based on vision navigation.

FIGURE 7. Architecture diagram of mobile robot motion planning.

DQN uses image or video as input information, constructs
value network with memory ability through convolution neu-
ral network and long-term and short-term memory model
(LSTM), and estimates value function. The number of neu-
rons in the output layer of neural network is the number of
actions that the agent can perform, such as forward, back-
ward, left turn, right turn and so on.

There are still two problems in the process of robot motion
planning based on DQN reinforcement learning algorithm,
one is that theQ value is easy to be highly estimated, the other
is that the sample correlation is too high. To solve these two
problems, Van et al. [75] proposed a double DQN algorithm
based on the double neural network. One network selects
the optimal action, and the other network estimates the value
function, which can better solve the problem. In order to break
the correlation between the collected samples.

FIGURE 8 shows the network structure of the most widely
used dqn algorithm, including two neural networks and a
memory playback unit.

FIGURE 8. DQN algorithm network architecture.

Schaul et al. [76] proposed prioritized replay DQN algo-
rithm by maximizing the absolute value of TD error on the
Q-network, which makes the neural network update more
efficient. With the increase of the training data scale, the
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neural network structure needs to be further optimized to
obtain more effective information. Dueling DQN [77] algo-
rithm decomposes the Q value into State-value and Advan-
tage function, which improves the learning efficiency of the
network.

Furthermore, Noisy DQN [78] improves the exploration
ability of the algorithm, Distributed DQN enhances the sta-
bility of the algorithm [79], and Asynchronous DQN makes
the estimation of target value more accurate [80]. ‘‘Deep-
mind’’ finally integrated the advantages of the improved
DQN algorithm, and proposed a comprehensive algorithm,
named ‘‘Rainbow’’ [81]. Tai et al. [82] use the depth image
as the input of the Q-network, and the action and speed of the
mobile robot are used as the output to train the robot turnlebot
to move (forward, right and left) in the indoor corridor while
avoiding the wall. The navigation effect is verified by using a
variety of different 3D simulation environments. The motion
planning of the mobile robot in the case of a variety of static
obstacles is realized,which has been shown in FIGURE 9 (a).

FIGURE 9. Motion planning using DQN algorithm.

DQN algorithm also uses other types of images as input.
Based on the depth image information, Zhang et al. [83]
migrated the learned navigation strategy to the unknown
environment by means of inheriting features, and realized
the migration of robot navigation strategy from simulation to
reality by DQN, as shown in FIGURE 9(b). In the 3D simu-
lation environment, Barron T et al. [84] used RGB image as
the input of DQN and used deeper neural network to train the
robot in complex tasks, which achieved better performance
than the depth image and video. As shown in FIGURE 9(c),
their theory was verified in the virtual natural environment.

As shown in FIGURE 9(d), Haora et al. [85] trained special
robots to make automatic navigation exploration in unknown
environments, and proposed a decision algorithm named
AFCQN. The algorithm used deep neural network to learn
exploration strategies from local maps and constructed a full
convolutional Q network (FCQN). Compared with the basic

DQN method, AFCQN can effectively reduce the probability
of navigation failure. Similarly, Hussein et al. [86] proposed
an improved DQN method combining demonstrations learn-
ing and experiential learning, which can shape a potential
reward function by training a supervised convolutional neural
network, and the algorithm is proved to be efficient in the
navigation task of learning from raw pixels.

Kang et al. [87] applied DQN method to control four-
rotor UAV. This method uses real-world data to learn system
dynamics, and uses simulated data to learn a scalable sensing
system, so that the robot can avoid collision with only one
monocular camera, which is shown in FIGURE10.

FIGURE 10. Motion planning for four rotor UAV.

The Value-based reinforcement learning motion planning
method has the advantages of simplicity and efficiency, but it
also has some disadvantages:

(a) Deterministic Strategy: Value-based RL is an indirect
method to get the optimal strategy. According to value
function, the action with the best value is selected by
greedy. Facing the same state every time, the selected
action is the same.

(b) Policy Degradation: The method based on value func-
tion is to use approximators to fit the real value func-
tion. There must be some errors, which may lead to
poor strategy.

(c) Discrete Control: DQN is not suitable for scenes with
continuous control or large action space, because the
output action value of DQN is discrete and finite

(d) Slow Convergence: Value-based RL optimizes itera-
tively through value function and strategy, which has
the disadvantage of low efficiency

2) POLICY GRADIENT ALGORITHM
The output motion parameters of value-based RL is not suit-
able for the continuous action space system of mobile robot.
Policy-based reinforcement learning makes it possible to
solve the above problems based on policy gradient [88], [89].
Rather than learning a value function, the policy gradient
directly attempts to optimize the policy function π . The
strategy is expressed as a function πθ with parameter θ , and
the optimization of the strategy is indirectly transformed into
the optimization of parameter θ . The given policy evaluation
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function is:

η(θ ) = E

[
H∑
t=0

r (st , at) |πθ

]
(6)

According to the policy gradient method, by solving the
derivative of the policy evaluation function with respect to
parameter θ , the search direction of the strategy parameter θ
is ∇θη(θ ):

∇θη(θ ) =
∑
τ

p(τ ; θ )∇θ log p(τ ; θ )R(τ ) (7)

where, p (τ ; θ) represents the probability distribution of tra-
jectory τ obtained by executing strategy πθ .

Then, the updated strategy parameter θi+1 is:

θi+1 = θi + α∇θη(θ ) (8)

where, α is the updating step size.
In the aspect of robot motion planning [90], as shown in

FIGURE 11 (a), Andrew [91] used the appropriate ‘‘prompt’’
to shape the optimal return function, and proposed a PEGA-
SUS search strategy to automatically design a stable UAV
controller, which got the flight test though the remote control
helicopter.

FIGURE 11. Policy-based RL Motion Planning.

In order to reduce the training time of mobile robot
motion planning based on visual navigation, as shown in
FIGURE 11 (b), Kulhanek et al. [92] added auxiliary tasks
of visual data processing to pre train part of the network
based on the extended strategy search algorithm, thus signif-
icantly reducing the training time and increasing the learning
efficiency. Li et al. [93] based on the learning termination
function interruption mechanism, added human experience
into the algorithm framework, derived a hybrid hierarchical
reinforcement learning structure, and realized the motion
planning and target exploration tasks of mobile robot in
indoor environment in simulation environment.

The policy-based RL uses the rewards as the estimation
of state value. Although it is unbiased, the noise is relatively
large. The policy gradient needs complete sequence samples
to iterate, and the variability is always too high. In addition,
the direction of updating the policy parameters is probably
not the optimal direction of the policy gradient. Therefore,
the policy-based RL needs to be further improved. So the
most widely used improvement method is actor-critic RL
algorithm.

3) ACTOR-CRITIC
The motion planning method based on Actor-Critic (AC)
combines policy gradient and value function, which includes
two parts: Actor and Critic [93]. Among them, Actor is the
policy function equivalent to the policy gradient, which is
responsible for generating actions and interacting with the
environment. Critic uses the value function similar to DQN
instead of Monte Carlo method to calculate the value of each
step and get the value function. Then, the value function
is used to evaluate the performance of the Actor and guide
the action of the Actor in the next stage. In the Actor-Critic
algorithm, two groups of approximations are needed

πθ (s, a) = P(a|s, θ) ≈ π (a|s) (9)

The second group is the approximation of value function

v̂(s,w) ≈ vπ (s); q̂(s, a,w) ≈ qπ (s, a) (10)

The parameter update formula of the strategy is as follows:

θ = θ + α∇θ logπθ (st , at )vt (11)

where, vt is the optimal state value calculated by Critic
through Q-network.

Actor uses vt to update the parameter θ of policy func-
tion, and then select actions to get feedback and new state.
Critical uses feedback and new state to update Q-network
parameter w. Finally, Critic uses new network parameter w
to help Actor calculate the optimal value of state vt . The
mobile robot motion planning with continuous action space
can obtain better performance based on Actor-Critic.

Jaderberg M et al. [95] added auxiliary control and reward
prediction into Actor-Critic algorithm, and Let the robot learn
to navigate in the 3D Labyrinth environment. The method
improved the data efficiency and parameter robustness suc-
cessfully; Brunner G et al. [96] based on Actor-Critic and
relocation unit, used 2DMaze global map and first-person
perspective image as input to train the robot. In the DeepMind
Lab virtual environment, the robot can quickly locate itself
and estimate its orientation angle.

Compared with the traditional strategy iteration method,
the Actor-Critic method can be updated in every step. But its
disadvantage is that the network convergence depends on the
evaluation of the Critic. However, the Critic itself is difficult
to converge.

a: DDPG
One of the main reasons for Actor-Critic motion planning
algorithm difficult to converge is that the data correlation
is too strong. Based on the experience replay technology
of DQN, Lillicrap et al. [97] from the DeepMind team
fused deep neural networks with Actor-Critic, and proposed
a model-free off-line Actor-Critic algorithm: Depth Deter-
ministic Policy Gradient algorithm (DDPG). DDPG is also
divided into Actor part and Critical part. Actor is responsible
for updating the network, and Critic part is responsible for
updating the action-value function.
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FIGURE 12. Motion Planning principle of DDPG.

DDPG uses deterministic strategy µ to select actions
at = µ(st |θµ), θµ are the parameters of the policy network
that generates deterministic actions. The strategy network µ
is the actor, and the value network is the critic part forQ (s, a)
function. In the process of motion planning, the objective
function of DDPG is as follows:

J (θµ) = Eθµ [r1 + γ r2 + γ 2r3 + · · · ] (12)

The goal of DDPG is to maximize the objective function
and minimize the loss function of value-networkQ. The opti-
mal deterministic behavior policy µ∗ could be found through
the objective function, which is equivalent to maximizing the
gradient of the objective function on the parameters θµ of the
policy network,

Similar to the structure of using DQN, DDPG uses Q
networks to fit Q functions. In other words, policy µ is used
to select robot actions in state s, and the expected return could
be obtained:

Qµ(st , at ) = E[r(st , at )+ γQµ(st+1, µ(st+1))] (13)

The gradient of Actor network is:

∇θJβ (µθ ) = Es∼ρβ [∇θµθ (s)Q
µ(s, a)|a=µθ ] (14)

On the other hand, the value gradient of Critic network is

∂L(θQ)
∂θQ

= Es,a,r,s′∼D[(TargetQ− Q(s, a|θQ)
∂Q(s, a|θQ)

∂θQ
]

(15)

where, TargetQ = r + γQ′(s′, π(s′|θµ′)|θQ′)
Using the gradient formulas of Eq.(14,15), the network

can be updated with gradient descent algorithm. The motion
planning method of mobile robot based on DDPG is shown
in FIGURE 12.

Heess et al. [98] further extended the DDPG method to
POMDP by using two recursive neural networks to approx-
imate Actor and Critic, and developed an algorithm called

FIGURE 13. Motion Planning Method Based on DDPG.

repeated deterministic policy gradient (RDPG). In terms of
robot motion planning, Alejandro et al. [99] applied the new
DDPG algorithm to design a general reinforcement learn-
ing framework, which solved the landing operation of UAV
on a mobile platform. Better results were achieved in both
simulation and actual flight experiments, which is shown in
FIGURE 13 (a). Tai L et al. [100] proposed a learning-based
Mapless motion planner: asynchronous DDPG (ADDPG)
using the improved DDPG.

As shown in FIGURE13(b), with sparse 10-dimensional
Lidar information and target position coordinates as inputs
and continuous steering instructions as outputs, the map-
less motion planner can be trained end-to-end without
any prior human intervention. The trained policy can be
applied directly to both virtual and real environments.
Wang et al. [101] used the deterministic policy gradient to
control the flight of the quadrotor helicopter. DDPG directly
maps the system state to the control command, and introduces
the integral compensator into the criticism structure, so that
the tracking accuracy and robustness of the quadrotor heli-
copter are greatly improved.

DDPG deals with the problem of continuous control of
mobile robots well, and solves the problem of Actor-Critic
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convergence through dual network structure and priority
experience replay mechanism, which is widely used in the
field of robot motion planning. However, in the process of
updating policy parameters, parameter replication needs to
choose a appropriate step, which will directly affect the train-
ing effect of the algorithm, and even lead to the collapse of
the motion planning system.

b: TRPO
In order to find an appropriate step in the policy gradient
and guarantee the return function monotonically increased,
Schulmam et al. [102] from Berkeley proposed a Trust region
policy optimizatio(TRPO) method. TRPO decompose the
return function of the new policy into the old policy and
other items. If the other terms of the new strategy are greater
than or equal to zero, the new policy could ensure that the
return function remains monotonous. The objective function
of TRPO method is:

maximize
θ

Êt

[
πθ (at |st )
πθold (at |st )

_

At

]
subject to Êt

[
KL

[
πθold (• |st ) , πθ (• |st )

]]
≤ δ (16)

where, Ât is the estimated value of the Advantage function;
πθ and πθold respectively represent the new and old policy
on the same batch of training data. δ is a small value, which
is used to limit the differences in KL divergence between the
old and new policy. The motion planning principle of mobile
robot based on TRPO is shown in FIGURE 14.

FIGURE 14. Motion Planning principle of TRPO.

Finally, the data samples are obtained by sampling to solve
the optimization problem. TRPO algorithm has been suc-
cessfully applied to robot operation skill learning in virtual
and real scene. Li et al. [103] adopted TRPO for end-to-
end optimization to solve the problem of social navigation
in living environment. William et al. [104] used the TRPO
algorithm to realize the autonomous flight of the quadrotor
UAV with a stable posture in the high-fidelity simulation
environment.

TRPO motion planning algorithm has solved the problem
of choosing appropriate update step. However, Thre too many
approximations used in the solution process, which not only

complicate the process, but also bring large errors. At the
same time, it is a difficult process to solve a constrained
optimization problem. Because of these problems, TRPO has
not been widely used in the field of robot motion planning.

c: PPO
In order to simplify the solution process of TRPO, Ope-
nAI [105] proposed an algorithm that is simpler than TRPO
theory and simpler in specific operation: Proximal Policy
Optimization (PPO). PPO not only has a good performance
in continuous action space of mobile robot, but also is easier
to implement compared to TRPO. The objective function of
PPO method is:

LCLIP+VF+St (θ) = Êt
[
LCLIPt (θ)− c1LVFt (θ)

+ c2S [πθ ] (st)] (17)

where, LCLIPt (θ) is the main objective function of strategy
optimization;The loss between network output value and TD
error target value is required to be minimum by LVFt (θ);
S [πθ ] (st) is the information entropy of measuring the latest
strategy gradient function.
Under the condition of satisfying the sampling to be the

maximum likelihood probability, the policy is random and
has the least factors assumes. The motion planning principle
of mobile robot based on PPO is shown in FIGURE 15.

FIGURE 15. Motion Planning principle of PPO.

PPO policy can realize some very complex motion plan-
ning task, and the policy can even help mobile robot to make
rotation, roll and other random behaviors when arriving at
its destination. Chen et al. [106] trained the motor skills of
wheel-leg robots based on an improved PPO algorithm. This
algorithm directly maps high-dimensional images to motor
commands and decomposes complex navigation tasks into
manageable navigation behaviors.

In order to solve the problem of indoor maze navigation,
Marchesini et al. [107] proposed a PPO algorithm based on
double deep Q-network, which greatly reduces the training
time though multi-batch priority to experience replay, which
is shown in FIGURE16. In addition, a domain randomization
technique is proposed in PPO motion planning algorithm,
which enables the robot to navigate to the target position
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FIGURE 16. Navigate through the PPO algorithm.

while avoiding obstacles. It overcomes the problems of low
data efficiency and sparse reward, and improves the efficiency
of robot motion planning.

d: A3C
An important problem in robot motion planning is the fast
convergence. To achieve this goal, the correlations between
data must be broken. Both DQN and DDPG make use of
the principle of empirical replay. However, experience replay
is not the only method. Another method is the principle of
asynchronous training. The asynchronous approach is that the
data are not generated simultaneously. Based on this idea,
DeepMind team Mnih et al. [108] developed Asynchronous
AdvantageActor-critic(A3C) for reinforcement learning. The
basic framework of A3C is also the Actor-Critic framework.
Instead of using a single thread, it uses multiple threads to
train simultaneously. Each thread trains a robot in a random
exploration environment, multiple robots explore and com-
pute policy gradients in parallel. These policy gradients are
used together to update the weights of the shared model θ .

For the loss function part of Actor and Critic network,
the entropy term of policy π is added, and the coefficient is c.
That is, the gradient of the strategy parameter is updated as:

θ = θ + α∇θ logπθ (st , at )A(S, t)+ c∇θH (π (St , θ)) (18)

Using asynchronous advantage reinforcement learning
algorithm, Zhang et al. [109] trained four-wheel robot nav-
igation in USAR environment on rugged terrain. As shown
in FIGURE 17 (a). The training process provides the target
position for the task, and the robot autonomously learns how
to move forward, backward and turn. The whole navigation
task consists of the robot performing a series of these basic
actions to reach a predefined target position. This method has
been successfully validated in different 3D simulated USAR
environments.

Zhu et al. [110] input both the first-angle image and the
target object image into the A3C model and approximate the
target function based on the general value function. After
100 million frames of training, the strategy obtained by
A3C algorithm can not only be applied to the simulation

FIGURE 17. Navigating in complex environments based on A3C.

environment, but also be able to navigate the robot in the real
environment, which is shown in FIGURE 17(b).

Niroui et al. [111] applied the deep reinforcement learn-
ing algorithm to the urban search and rescue robot. The
method combines A3C network with frontier exploration to
enable the robot to explore the unknown messy environment
autonomously. This exploration method can effectively nav-
igate to the appropriate boundary position in the unknown
clutter environment of different sizes and layouts. It is also
robust to different environment layouts and layouts.

Zeng et al. [112] proposed an Actor-Critic method
(MK-A3C) based on asynchronous advantages of memory
and knowledge for the navigation problem of nonholonomic
robots with continuous control. MK-A3C constructs a mem-
ory neural network based on GRU to enhance the tempo-
ral reasoning ability of the robot. At the same time, the
robot is given a certain memory ability. Through the esti-
mation of the environment model, the local minimum trap
is avoided and the non-convergence strategy problem caused
by reward sparse is solved. Mk-A3C can effectively navigate
in unknown dynamic environments, and the robot can suc-
cessfully navigate in unknown and challenging environments
through the output of continuous acceleration instructions.

e: SAC
In order to improve the exploratory and robust of mobile
robots motion planning, Tuomas et al. [113] from the Univer-
sity of California, Berkeley proposed an off-policy algorithm
Soft Actor-Critic (SAC) in 2018. SAC has achieved good
performance in robot motion control and can be directly
applied to robots in real environment. In contrast to DDPG,
SAC uses a random strategy. At the same time, the problems
of high sensitivity to over parameter and weak convergence
are improved.

Compared with TRPO, A3C and PPO, SAC can reuse
the past experience and improve the utilization efficiency
of training samples. It is based on maximum entropy rein-
forcement learning framework, in which the entropy increase
objective function is:

J (π ) = Eπ

[∑
t

r (st , at)− α log (π (at |st))

]
(19)

where, s and a represent states and actions respectively, and
theEπ expectation contains dynamic parameters from the real
system.
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The goal of strategy optimization not only needs to maxi-
mize the expectation, but also needs to maximize the entropy
of expectation, and the parameter α balances the influence of
these two parts on the result.

When α is 0, the Eq(19) degenerates to the traditional
objective function. The objective function can be regarded as
the maximum expected return of entropy constraint, and the
α parameter is automatically learned instead of the hyperpa-
rameter. The robot motion planning principle based on SAC
algorithm is shown in FIGURE 18.

FIGURE 18. Robot motion planning principle based on SAC.

In order to verify the ability of SAC in the real world,
Haarnoja et al. [114] made the robot learn from zero without
relying on simulation or manual teaching, and realized the
autonomous planning in the complex walking system of the
foot robot. The algorithm directly mapped the sensor input
to low-level actions. The learning process requires only a
small task adjustment and a moderate number of experi-
ments to learn better neural network strategies. As shown in
FIGURE19, the robot learns a stable gait in the real world
within two hours without relying on any model or simulation.
The strategy obtained is robust enough to moderate changes
in the environment.

FIGURE 19. Quadruped robot in real and simulation environment.

The gait control training data of robot in simulated envi-
ronment were transferred to reality, and the stable walking
of a medium-sized dog-sized quadruped robot ANYmal was
realized.

AnyMal can run faster than ever before, and can even self-
recover from falls in complex environments with a high level
speed commands, which is shown in FIGURE20.

FIGURE 20. Train the quadruped robot ANYmal to walk.

DRL algorithms have been widely used in motion planning
of mobile robots. Value-based DQN algorithm is the most
widely used and simplest method in reinforcement learning
field, and has a good performance in most discrete action
Spaces. The algorithms based on Actor-Critic framework,
such as DDPG, TRPO, PPO, A3C and SAC, have great
advantages compared with DQN in continuous action space.
The comparison of these deep reinforcement learning algo-
rithms is shown in Table 3.

TABLE 3. Comparison of DRL Algorithms.

C. MODEL BASED RL
Motion-planning method based on Model-Free Reinforce-
ment Learning requires a lot of sample training, which limits
its wide application in real environment. For example, we can
train a control algorithm for a UAV in a simulated environ-
ment by constantly letting the UAV explore and learn. But in
the real world, it is very difficult. We have to consider the risk
of collision, the cost of repairs, the cost of exporting data to
the GPU for training. All these problems indicate that the cost
of data acquisition in the actual physical scene is far greater
than that in the simulation environment.

In real physics scenarios, especially robotics projects,
the more data-efficient approach is quite popular.
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Model-based reinforcement learning is one of them. It obtains
an environment model through supervised training, and
then expands to learn this value function implicitly in
order to expect maximum return. Compared with model-
free RL (MFRL), model-based RL (MBRL) has higher
sample efficiency, faster convergence speed and lower data
requirement.

Xi et al. [116] combined MBRL with MFRL and proposed
a Gaussian process (GP) model with two independent levels.
The algorithm overcomes the problem of over-fitting in the
complexity model, and reduceds the amount of training data.
The biped robot can stabilize itself on the rotating platform,
and can adapt to the platform with different angular velocity
(FIGURE 21).

FIGURE 21. Biped Robot on a Rotating Platform.

Munk et al. [117] proposed an model learning Deep
Deterministic Policy Gradient(ML-DDPG) for continuous
control policies of robot based on model-state representation
learning. ML-DDPG includes three deep neural networks:
Model network, Critic network and Actor network. As shown
in FIGURE 22, this method can learn a series of dif-
ferent challenging continuous control strategies, which
improves the robustness and efficiency of the algorithm.
Nursultan et al. [118] applied model-based algorithm to
solve the flight control problem of UAV in the execution of
practical tasks.

FIGURE 22. ML-DDPG Algorithm architecture.

Model-based RL algorithm can realize rapid and targeted
exploration of uncertain effective strategies and fast learning
with few samples.

D. IMITATION LEARNING
Imitation learning refers to an mobile robot’s ability to mimic
a desired behavior by learning from observations, which aims
to learn reward functions from a expert-controlled agent.
The mobile robot will be trained to perform a task from
demonstrations by learning a mapping between observations
and actions [119]. The mothin planning methods based on
Imitation learning will use prior knowledge and recordedvex-
pert experiences to generate reward functions and movement
trajectories, which can rapidly improve the performance of
the initially learned policy and significantly reduce the quan-
tity demand of samples.

Many researchers apply imitation learning to 3D motion
planning for mobile robots. Based on DL and Imitation learn-
ing, as shown in FIGURE 23, Hussein et al. [120] proposed a
deep imitative learning method to perform navigation tasks
in 3D simulation environment. Combining demonstrations
and experience, the algorithm employs deep CNN and raw
visual input, which significantly improves the training effi-
ciency and generalization ability.

FIGURE 23. Imitation learning in a 3D simulation environment.

On the other hand, Wu et al. [121] present a motion plan-
ning method for UAV, which is based on generative imitation
learning, and realizes mapless navigation in indoor scene.
As shown in FIGURE 24(a), this method can automatically
learn a navigation strategy, imitate data by experts, and
apply to multi-robot system. As shown in FIGURE 24(b),
Zhang et al. [122] proposed an imitation learning model
(IADRL) to drive UAV to cooperate with each other to com-
plete more complex tasks. The model provides a strategy for
multi-UAV system, which makes multi-UAV complete the
task with the minimum system cost.

FIGURE 24. Navigation in a complex environment.
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In order to solve the obstacle avoidance problem of UAV
visual navigation, Park et al. [123] proposed an imitation
learning strategy based on human experts sharing flight data.
As shown in FIGURE 25, the strategy takes UAV visual
image as input, uses neural network to extract features, and
trains UAV obstacle avoidance strategy.

FIGURE 25. Human data-based imitation learning framework using
sequential neural networks.

E. META-LEARNING
A certain amount of training data is required whether for
reinforcement learning or imitation learning. Using a small
amount of training data to learn new operational skills has
become more important for the application of robots.

Meta learning is an improved reinforcement learning
method based on a small amount of training data, which
trains policy through a large number of related tasks. Each
task contains a small amount of tagged data in the task
set, which can automatically learn the common knowledge
of the training task set. Many scholars have applied this
method to the fast motion planning learning of mobile robots.
Gaudet et al. [124] proposed an adaptive guidance model
based on meta learning, which combines loop strategy and
value function approximator. As shown in FIGURE 26,
the model solves the problem of landing on Mars and aster-
oids, and realizes the combination of guidance and motion
planning.

FIGURE 26. Adaptive guidance system.

In order to improve the adaptability and robustness of robot
motion planning, Wortsman et al. [125] proposed an adaptive
visual motion planning method (SAVN) based on meta rein-
forcement learning. As shown in FIGURE 27 (a), this method
does not need any explicit supervision, but optimizes its own
navigation strategy by learning a self supervised interaction

FIGURE 27. Indoor navigation based on meta-learning.

loss. In the low resource training environment with only a few
labeled objects, Liu et al. [126] proposed a new unsupervised
transferable meta skill based on visual navigation meta rein-
forcement learning. As shown in FIGURE 27 (b), as long as
the reward information is provided to the robot, the robot can
use these meta skills to quickly adapt to the environment with
few resources.

IV. MULTI-ROBOT COOPERATIVE PLANNING
As the working environment becomes more and more
complex, the working mode of a single robot shows disad-
vantages, such as limited perception ability, low task reli-
ability and low execution efficiency. In the past 10 years,
it has become more advantageous to carry out multi-robot
cooperation to perform tasks together [127], and it has grad-
ually become a research consensus and hotspot in the field
of robotics. The working mode of multi-robot cooperation
brings more challenges to the inter-individual motion plan-
ning in the group. How to carry out the cooperative motion
planning effectively becomes the unique feature of this field,
which is different from the single robot motion planning.
The architecture of reinforcement learning motion planning
system for multi-mobile robots can be mainly divided into
two categories: centralized [128] and distributed [129].

Centralized reinforcement learning takes the common task
of multiple robots as the training goal, and there is a cen-
tralized computing unit that can obtain the state and sensor
information of all robots, and the centralized computing unit
is responsible for the centralized strategy training and distri-
bution. The advantage of centralized reinforcement learning
is that real-time position, speed and target information of
any robot can be obtained directly. Moreover, it can direct
all individual robots to complete tasks such as task objective
assignment, cooperation mechanism and path collaboration
under optimal conditions. While ensuring the completion of
the task, energy, time and other personal losses can be reduced
as much as possible [130].

Distributed reinforcement learning is different from cen-
tralized reinforcement learning. Firstly, the whole task needs
to be segmented in real time, and then the segmented sub task
is sent to a single robot. After receiving the task, the robot,
as a separate individual, participates in the training of the
sub task independently, just like the movement plan of single
robot reinforcement learning. Taking the maximum reward as
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FIGURE 28. Motion planning for RL of multi-robots.

the goal and considering the overall total return, the overall
task and planning can be realized through cooperation. The
advantage of distributed reinforcement learning is that it can
fullymobilize the resources of each robot and improve the uti-
lization of hardware. Each robot is an independent individual
with strong fault tolerance and redundancy.

Although the centralized reinforcement learning motion
planning algorithm can get the global information, but the
computational consumption will become huge when facing
the large-scale mobile robot system, and the accuracy and
real-time performance cannot be guaranteed. In order to solve
this problem, Chen et al. [131] estimated the reach-time to
the target by predicting value function, and degraded the
centralized online calculation into a distributed offline cal-
culation process. By learning a value function of ‘‘implic-
itly encoding cooperative behavior’’, a more real-time and
efficient multi-robot motion planning system is obtained.
As shown in FIGURE 28 (a), the cooperative obstacle avoid-
ance in a crowded environment for multi-robot system is
realized. To solve the efficient logistics transportation prob-
lem in dynamic production environment, Malus et al. [132]
used reinforcement learning method to train multiple mobile
robots for logistics scheduling. Themodified algorithm learns
to bid on orders based on their observations and their own
positions and current plans to maximize the benefits of the
system. Compared with the common transportation schedul-
ing rules, the cooperative planning based on reinforcement
learning is more efficient.

On the other hand, Long et al. [133] proposed a dis-
tributed RL model based on multi-sensor in order to solve
the motion planning problem of multiple robots. As shown in
FIGURE 28 (b), the algorithm maps the original sensor data
containing speed information to the steering command, and
uses the multi-scene and multi-stage framework for training
to obtain the optimal strategy.

In order to ensure that each driverless vehicle learns to
cooperate with each other, Shi et al. [134] uses interactive fea-
ture attention mechanism to capture interactive information
between autopilot cars, and promotes information sharing
strategy of multiple autonomous driving vehicles. As shown
in FIGURE 29, the cooperation performance of the whole
transportation system is improved by adjusting the human
driven traffic flow.

The number of mobile robots directly affects the motion
planning effect of multi robot system. In order to solve the

FIGURE 29. A highly collaborative autonomous driving.

problem that the DRL multi robot motion planning system
deviates from the real goal with the increase of the number
of robots, Michael [55] used an A3C framework to simu-
late the complex interaction and cooperation between robots.
As shown in FIGURE 30, with LSTM recurrent neural net-
work, it breaks the limitation that the conventional colli-
sion avoidance network needs to input fixed length in the
convolution layer and pooling layer feed-forward network,
and realizes the collision avoidance algorithm only through
learning without preset behavior norms of other dynamic
robots.

FIGURE 30. [122] RL network framework for multiple mobile robots.

In addition, Samaneh et al. [135] designed a hybrid rein-
forcement learning motion planning method based on the
mechanical motion planning method. A new mixed reward
function reduces the chance of collisions in crowded envi-
ronments. As shown in FIGURE 31, the algorithm can switch
automatically according to the complexity of different envi-
ronments, and achieves good results in both 3D virtual envi-
ronment and real environment.

FIGURE 31. Hybrid control framework for DRL.

In conclusion, the centralized reinforcement learning
motion planning system has strong coordination ability, and
does not need to consider the cooperation between robots.
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However, the system needs huge amount of computation and
has poor scalability. The distributed reinforcement learning
motion planning system is more flexible and convenient, and
the processing ability is stronger. However, the cooperation
between individual robots and collision avoidance are impor-
tant problems to be studied in motion planning of multi-robot
in complex dynamic environment.

V. DIFFICULTY FOR DRL MOTION PLANNING
A. DIFFICULTY FOR DESIGNING REWARD FUNCTION
In the motion planning task of DRL, mobile robots learn opti-
mal policies by estimating cumulative rewards, and it can be
performed well in a conventional task environment. However,
this training type based on cumulative rewards has a huge
search space and needs to make multi-step decisions in the
whloe process. when facing a complex working environment,
the robots will not get rewards unless they reach the predeter-
mined goals, and less effective information will be obtained
from the intermediate proces. Such ‘‘sparse rewards’’ will
make it difficult for robots to learn effective strategies and
fail in motion planning. How to design an efficient reward
function to improve search efficiency is one of the problems
in DRL movement planning field.

B. INSUFFICIENT DATA SAMPLE
DRL motion planning requires a large number of data sam-
ples to train the strategy, and the data samples are mainly
acquired in the process of ‘‘trial and error’’. However, the col-
lection process in the real environment is difficult due to
mechanical reliability and time cost,, which will lead to the
problem of insufficient training data sample. So the advan-
tages of data-driven DRL method in feature extraction and
parameter optimization will not be fully exerted. How to
overcome the problem of insufficient data sample in the real
environment is one of the problems to be solved urgently at
present.

C. POOR UNDERSTANDING ABILITY
DRL can solve problems of modeling with conventional algo-
rithms, but it still relies on a large amount of data training
to fit the motion model. The intelligence level of DRL is
low and still in the stage of computational intelligence for
lacking of knowledge and understanding of environmental
models. The time consumption and sample data requirements
are enormous even in the face of simple models. How to
enhance the cognitive and understanding ability of the DRL
and learn from integrate the experience of human experts,
is one of the important problems

D. INSUFFICIENT GENERALIZATION ABILITY
At present, DRL motion planning is mainly used in static,
closed and deterministic environments, such as mazes, facto-
ries and indoor scenarios. However, many task environments
of mobile robots are dynamic, opening and uncertain. The
performance of the training model has certain deviation when

the simulation is transferred to the real environment, and it is
difficult to apply the strategy of the same task to different
physical robots. Therefore, how to improve the generaliza-
tion ability of DRL motion planning algorithm in practical
application scenarios, so that mobile robots can obtain better
adaptability, will be a huge challenge.

VI. FUTURE RESEARCH
A. REPRESENTATION OF COMPLEX ENVIRONMENT
Environment perception of mobile robots is one of the key
abilities of motion planning in DRL. At present, the main
way to obtain environmental state is to rely on optical sensors,
such as ordinary cameras, depth cameras, three-dimensional
Lidar, etc., but these sensors generally have common prob-
lems such as insufficient sampling efficiency, delay in real-
time feedback, lack of environmental information, and insuf-
ficient accuracy [3].

In addition, the real environment of the robot has the
changes of light, season and weather, which further restricts
the effect of mobile robot on environment observation and
recognition, and then poses a huge challenge to the robot
motion planning. How to ensure DRL accurately perceive the
characteristics of time-varying real environment in complex
environment, and obtain the ability for semantic description
and abstract reasoning representation, will be an important
research direction in the field of motion planning for deep
reinforcement learning.

B. COLLABORATIVE PLANNING FOR HETEROGENEOUS
SYSTEMS
With the demand of three-dimensional task, the working envi-
ronment becomes collaborative working mode. At present,
the DRLmotion planning is mostly used to solve the problem
of navigation and collision avoidance in the low dimensional
plane ground environment, while the research on the compre-
hensive planning in the three-dimensional space is less, such
as the land marine amphibious robot and land air cooperative
bionic robot system [136]. Compared with two-dimensional
land space, high-dimensional motion planning will face more
complex dynamic constraints and more uncertainties. This
will put forward more stringent requirements for data collec-
tion and perception, deep network model construction, policy
training and migration. In the future, large-scale deep neural
networks can be combined to construct deeper Actor-Critic
networks. At the same time, data preprocessing should be
enhanced to further improve the perception and extrac-
tion ability for input features, and different data priorities
should be used to cope with the surging data information in
heterogeneous.

C. MULTI-SOURCE DOMAIN MIGRATION
The training process of motion planning is time-consuming.
A model with good generality and mobility will greatly
improve the efficiency of robot motion planning. How-
ever, in the practical application, especially in the face of
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multi-robot motion planning system, model migration in the
actual environment is faced with huge problems due to the
difference of original data and target domain and the gap
between robot systems. At present, most of the multi-source
domain transfer learning algorithms for reinforcement learn-
ing are still in their infancy, and the effect of task transfer
depends on the correlation between the source domain and the
target domain. The source and target domains need to be in the
same data space. In the future, we will study how to measure
the difference of characteristics of multiple source domains
and target domains adaptively according to environmental
samples of different source domain tasks of mobile robots.
How to extract common features or parameters and automat-
ically align them to a specific state space. How to express
features in a unified standard form, obtain invariant feature
parameters between multi-source domains, and realize task,
parameter and feature migration of multi-source domains in
DRL. All these are important guarantees for mobile robots to
perform tasks in a more diversified environment in the future.

D. DATA-MODEL HYBRID RL
The model-free DRL motion planning algorithm is based
on data and does not depend on the system model, which
requires less prior knowledge of the environment. However,
it faces the problems of very low sample efficiency and
difficult design of reward function, so that the algorithm
is easy to fall into local optimality and can not find the
optimal programming model. Model-based motion planning
algorithm is based on robot ontology and environment model,
and even shows more efficient performance than model-free
DRL in static environment, especially when the map is
known. However, in the face of complex tasks, the modeling
is too complex, and the dynamic characteristics cannot be
represented.

One of the solutions is to combine the model-based RL
motion planning algorithm with the model-free RL motion
planning algorithm. The hybrid algorithm can learn the envi-
ronment model from the data, then optimize the policy based
on the learned model, and reverse update and improve the
model. It can make full use of environmental samples to
approach the model, greatly improve the use efficiency of
training sample data and shorten the learning process of
the robot. In addition, when the mobile robot encounters a
new environment, it can combine with multi-source domains,
quickly adapt to the new model and greatly improve its own
generalization ability based on the models. This Data-model
hybrid reinforcement learning algorithm will be an important
direction of motion planning in the future.

VII. CONCLUSION
The robot-motion-planning method based on DRL promotes
the policy improvement of the robot through its interac-
tions with the environment. Robots based on the method
may obtain the robust ability of automatic learning and
decision-making. This ability is critical for the unstructured
environment, e.g., partial mapped and dynamically-changing

environments. The method based on DRL lowers the pro-
gramming complexity, and removes the dependency of the
prior knowledge about environments. The method not only
enables the robot to analyze the environment, but also boosts
its ability of planning motion, avoiding obstacles in real time,
searching object, and making decisions. Therefore, the meth-
ods based on DRL promote the development of intelligent
robots.

However, the robot-motion-planning method based on
DRL is rarely found in practice mainly due to its limited
theoretical development and the low interpretability. Accord-
ingly, the positioning accuracy, motion dexterity and stability
required by the real-time application cannot be guaranteed.
Additionally, laboratory environment differs drastically from
the real world, e.g., ground disorganization, data delay and
the mechanical structure unreliability, etc. These facts chal-
lenge the trial-and-error way of training the robots based
on DRL. Thus, the solution remains to be developed in the
further.
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