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ABSTRACT TheNeo-Fuzzy integratedAdaptiveDecayedBrain Emotional Learning (NF-ADBEL) network
has recently been proposed for online time series predicting problems. The NF-ADBEL network is suitable
for online time series prediction with shorter update intervals and offers features such as fast learning,
accuracy, simplicity, and lower computational complexity. However, the neo-fuzzy neuron network in
NF-ADBEL was integrated only in the orbitofrontal cortex (OFC) part of the ADBEL network. This paper
aims to further improve the performance of the NF-ADBEL network by integrating the neo-fuzzy neuron
network into the amygdala (AMY) section as well, inspired by a fully integrated version of a neo-fuzzy-
based pattern recognizer. As is known, the AMY has two outputs: one response is based on imprecise
information received from the thalamus, and the second response is based on information received from
the sensory cortex. In this study, the imprecise response generation is operated as previously, while the
other AMY process is treated by neo-fuzzy neurons. The resultant network is called Expanded Neo-Fuzzy
integrated Adaptive Decayed Brain Emotional Learning (ENF-ADBEL). The modified network is still
simple and meets the requirement for online prediction problems. A few chaotic and stochastic nonlinear
systems, namely the Mackey-Glass, Lorenz, Rossler, disturbance storm time index, Narendra dynamic plant
identification, wind speed and wind power series, are used to evaluate the performance of the proposed
network in terms of the root mean squared error (RMSE) and correlation coefficient (COR) criteria in a
MATLAB programming environment.

INDEX TERMS Amygdala, brain emotional decayed learning, chaotic time series, disturbance storm time
index, dynamic plant identification, forecasting, MATLAB, neo-fuzzy networks, wind speed, wind power
series.

I. INTRODUCTION
A number of different techniques have been applied to the
chaotic times series prediction problem, with varying degrees
of success. The Artificial Neural Network (ANN) is prob-
ably the technique most frequently used. However, due to
its structure and back-propagation training algorithm, there
is no guarantee that the training processes will not land in a
local minima position. Furthermore, there is an increase in
time computational complexity with this approach because
there is no optimal structure for the number of neurons and
number of layers, or for the activation function suitable for the
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objective function. These drawbacks affect the reliability and
accuracy of the prediction.

The Brain Emotional Learning Neural Network (BELNN)
has recently emerged as an alternative to classical artifi-
cial neural networks for approximating nonlinear functions.
BELNN is inspired by both feed-forward neural networks and
fast learning and has been applied to time series prediction
techniques [1]–[3].

Several studies [4], [5] have concluded that, in terms of fear
conditioning, the limbic system (LS) is primarily responsible
for the process of learning emotions, as shown in Fig. 1.
Emotions are highly contingent on this area of the brain,
so the thalamus (TH) is considered not only a gateway to the
LS, but also the means for providing the LS with all available
and received information in the form of emotional stimuli [6].
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FIGURE 1. Routes of limbic system.

The TH sends the received information along a short path to
the amygdala (AMY) and then directly to the sensory cortex
(SC). The SC forwards the received information to the AMY
and orbitofrontal cortex (OFC).

One of the most important characteristics of the AMY’s
emotional learning is that it is permanent and monotonic [7].
The OFC has a mono-direction connection with the SC and
a bi-directional relationship with the AMY. Its functions are
processing stimuli, analyzing emotional stimuli, and evaluat-
ing reinforcement signals and emotional learning to prevent
an inappropriate response from the AMY.

A Neo-Fuzzy Adaptive Decayed Brain Emotional Learn-
ing (NF-ADBEL) network has recently been proposed in
the literature for online time-series prediction problems [2].
The present work aims to investigate and further enhance
the performance of the NF-ADBEL network by the addi-
tion of a neo-fuzzy neuron network into the AMY section.
As is known, the AMY has two outputs: one is based on
imprecise information received from the TH, and the other is
based on information received from the SC. Here, the impre-
cise response generation is operated as previously, while
the other AMY process is treated by neo-fuzzy neurons.
The resultant network, called Expanded Neo-Fuzzy Adap-
tive Decayed Brain Emotional Learning (ENF-ADBEL),
is inspired by a fully integrated version of a neo-fuzzy-based
pattern recognizer [8].

To the best of the author’s knowledge, no such integra-
tion model has yet been explored in the literature. The pro-
posed ENF-ADBEL network is simulated in a MATLAB
(R214a) programming environment to forecast a number of
chaotic time series and stochastic problems in an online
mode, including Mackey-Glass, Lorenz, Rossler, Narendra,
disturbance storm time index, wind speed and wind power
series. Comparing the prediction performance of the pro-
posed ENF-ADBEL to NF-ADBEL, F-ADBEL, MLP, and
other predictor networks in terms of RMSE and correlation
coefficient criteria reveals the superiority of the proposed
ENF-ADBEL network in online forecasting problems.

This paper is organized as follows: the proposed net-
work is described in section II, the results and discussion
are presented in section III, followed by the conclusions
in section IV.

II. PROPOSED EXPANDED NEO-FUZZY ADAPTIVE
DECAYED BRAIN EMOTIONAL
LEARNING NETWORK
A. REVIEW OF ADAPTIVE DECAYED BRAIN
EMOTIONAL LEARNING NETWORK
As mentioned in [2], the ADBEL network has four inputs as
given by (1) and one output as given by (2). This mapping can
be formulated as:

P =
(
p1 p2 · · · pj

)T (1)

Here, index ′j′ refers to the number of past inputs to the
network.

P̂t = f (P) (2)

After the inputs are presented to the network, the TH com-
putes the presented stimulus’s maximum value (input data)
and sends it along a shorter path to the AMY. At the same
time, the TH dispatches the presented data to the SC, which
sends the information to the AMY and OFC for response
generation, as shown in Fig. 1.

Let ′V ′ and ′W ′ be the row vectors containing the AMY
and OFC weights, respectively. The response to the stimuli is
modelled as follows:

V =
(
v1 v2 · · · vj

)
(3)

W =
(
w1 w2 · · · wj

)
∀j = 1, 2, . . . , 4 (4)

The AMY produces two outputs, EAMY and Éa, as:

Éa = V × P (5)

m = maxj × P (6)

EAMY = Éa + Vth × m (7)

Similarly, the OFC produces one output, EOFC , as:

EOFC = W × P (8)

ADBEL’s output is given by:

P̂t = EAMY − EOFC (9)

The steps shown in (7)-(9) are termed prediction steps
in [1]. After the prediction stage, the ADBEL network is
trained with the help of signals EAMY , Éa,EOFC , pt , and the
constant parameters α, β, γ . The output from the AMY Ea
in combination with the current time series value pt =
target (Tt ) and decay rate γ is used to adjust the AMY
weights in the following way:

V (t + 1) = (1− γ )V (t)+ αmax(Tt
−EAMY , 0)PT

Vth(t + 1) = (1− γ )Vth(t)+ αmax(Tt
−EAMY , 0)m,

(10)

Firstly, to adjust the weights of the OFC, an internal reward
signal Ro is computed as:

Ro =

{
max(Éa − Tt , 0)− EOFC , if (Tt 6= 0)
max(Éa − EOFC , 0) , otherwise

(11)
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Based on this reward signal, the weights of the OFC are
updated as:

W (t + 1) = W (t)+ β × Ro × PT (12)

B. REVIEW OF NEO-FUZZY NETWORK
A neo-fuzzy network is a nonlinear learning system. The
architecture of a neo-fuzzy neuron with multi-inputs and one
output is used in this work, as explained in [2].

C. EXPANDED NEO FUZZY ADAPTIVE DECAYED BRAIN
EMOTIONAL LEARNING NETWORK
Motivated by ADBEL and the common features of neo-
fuzzy networks, this work considers a hybrid model called
expanded neo-fuzzy adaptive decayed brain emotion learning
(ENF-ADBEL) network to improve the further forecast-
ing accuracy of the NF-ADBEL network [2]. In this pro-
posed network, the neo-fuzzy neurons are integrated to the
orbitofrontal OFC section and partially in the AMY section,
as shown in Fig. 2.
The AMY has two outputs, one of which is related to

imprecise information (the maximum value of input data)
received from the TH. This part of the network is kept free
from neo-fuzzy neurons, while the other part of the AMY
network is loaded with neo fuzzy neurons. Note that this
modification will not compromise the BEL network’s fast-
processing feature, i.e., the hybrid network; it can still be
used in online mode for time-series prediction. Thus, we have
replaced the OFC and AMY weights with neo-fuzzy neurons
network weights, except the weight named vth in the AMY
part. The reason for this modification is to add an extra degree
to the AMY part in order to help the AMY in a more involved
analysis of stimuli received from the SC section, while simul-
taneously keeping the imprecise information received from
the TH.

This approach is inline with the computational model
of the limbic system. Collectively, neo-fuzzy neurons are
used in the entire OFC section and partially in the AMY
section of the ADBELmodel. The resulting network is named
ENF-ADBEL, as shown in Fig. 2. The working principle
of the proposed network remains the same as that of the
ADBEL network, but the definition of weight entries and the
application of those entries in the learning rules of the AMY
andOFC sections are different. The output of the OFC as well
as the weights of the neo-fuzzy neurons in the OFC section
(wij), along with the corresponding degrees of membership
functions (hij), are represented as:

EOFC,enf = Wij × Hij (13)

Wij =
(
w11 w12 w13 w21 w22 · · · wij

)
(14)

Hij =
(
h11 h12 h13 h21 h22 · · · hij

)T (15)

Similarly, in the ENF-ADBEL network, the AMY out-
put with a different set of neo-fuzzy weights (vij) and
corresponding degrees of membership functions (hij) is

determined as:

Éa = Vij × Hij (16)

EAMY ,enf = Éa + Vth × m (17)

Vij =
(
v11 v12 v13 v21 v22 v23 · · · vij

)
(18)

which then leads to:

ˆPenf = EAMY ,enf − EOFC,enf (19)

The minimization of the quadratic error function in [2]
through the gradient descendent method yields the new fol-
lowing parameter adjustment rules:

Wij(t + 1) = Wij(t)+ β( ˆPenf (t)− T (t))HT
ij (xi) (20)

Vij(t + 1) = {(1− γ )Vij(t)+ α max(T (t)

− EAMY ,enf (t), 0)× HT
ij (xi)} (21)

Vth(t + 1) = {(1− γ )Vth(t)+ α max(T (t)

− EAMY ,enf (t), 0)m} (22)

The learning parameters α, β and γ are positive constants
and are defined as the learning rates of the neo-fuzzy net-
work. The proposed model mimics emotional learning by
integrating a neo-fuzzy neuron. The gradient descent (GD)
method is employed for the learning algorithm of the pro-
posed model, which aims to enhance the prediction accuracy
in existing computational models that use brain emotional
learning processing.

The ENF-ADBEL network’s functioning is similar to that
of the NF-ADBEL and ADBEL networks. The neo-fuzzy
neurons for the ENF-ADBEL network are realized with three
triangular membership functions, and the universe of dis-
course is selected to be [0, 1] as in [2]. Thus, the output of
the proposed integrated ENF-ADBEL network is given as:

P̂t =
4∑
j=1

3∑
k=1

(Vjk × Hjk −Wjk × Hjk )+ Vth × m (23)

The unknown weights of the amygdala and orbitofrontal
cortex in (23) are adjusted online. Please note that the
proposedENF-ADBELnetwork does not have any knowl-
edge about the time series, as is the case with the
NF-ADBELandADBELnetworks. Previousworks on neo-
fuzzy networks and state-of-the-art consider training the net-
work with the time series data and then deploying the trained
network to do future predictions [9] and [10]. However,
in this work, no prior training of the neo-fuzzy network
is assumed.

III. RESULTS AND DISCUSSIONS
The proposed ENF-ADBEL network is tested in a MATLAB
(R2014a) programming environment for online forecast-
ing of chaotic time-series, including Mackey-Glass, Lorenz,
Rossler, Narendra plant, disturbance storm time index, wind
speed, and wind power. The performance of the proposed
model is accessed in terms of root mean squared error and

65760 VOLUME 9, 2021



H. S. A. Milad, J. GU: Expanded Neo-Fuzzy Adaptive Decayed Brain Emotional Learning Network

FIGURE 2. Expanded Neo-Fuzzy Adaptive Decayed Brain Emotional Learning Network (ENF-ADBEL).

correlation coefficient criteria. A comparison is also made
with NF-ADBEL and F-ADBEL and MLP networks driven
by the near-optimal set of alpha, beta and gamma parameters.

A comparison of the proposed model with trained state-of-
the-art predictors is drawn against the following performance
metrics:

RMSEm =

√√√√ 1
ne − ns

ne∑
i=ns

e2mi (24)

R2m =

∑ne
i=ns (P̂mti −

ˆPmt )(Pti − Pt )√∑ne
i=ns (P̂mti −

ˆPmt )2
√∑ne

i=ns (Pti − Pt )
2

(25)

PI =
PCm1 − PCm2

PCm1

× 100 (26)

subscrpt..(m) can be (m1) denoting:

NF − ADBEL,F − ADBEL,
MLP, ..etc
or(m2)representingENF − ADBEL
ne = numberofsamples
ns = steadystatestarts
i = ns
R2m = correlationcoefficient,
mth = networkused
P̂mti = predictedvaluewithmthnetwork
¯̂Pmt = meanpredictedvaluewithmthnetwork
Pti = t arg etvalue
P̄t = meanoft arg etvalue
PI = percentageimprovementrespectto = m1
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The time series data are first normalized to the range [0, 1]
to run the simulations. The normalized data are then orga-
nized so that the first four samples form the inputs, while the
fifth sample includes the output. We used the same technique
as in [2].

A. MACKEY-GLASS TIME SERIES AS PREDICTED
BY ENF-ADBEL NETWORK
The Mackey-Glass system is presented as a model of white
blood cell production [11]. Let us first predict the time series
data generated from a time-delayed Mackey-Glass nonlinear
differential equation, which has been used as a benchmark
by the researchers for validating their prediction algorithms
[12], [13]. The series can be defined as mentioned in [2].

A total of ne = 1200 data points are generated for test-
ing the networks. By setting the learning parameters to be
α = 0.5, β = 0.5 and γ = 0.07, an ENF-ADBEL network is
first deployed to predict the time series.

The same time series is also predicted with NF-ADBEL
and F-ADBEL networks using the learning parameters:
α = 0.5, β = 0.2, and γ = 0.03, while in the case of
F-ADBEL the parameters vary. The prediction errors are
recorded in all the networks, with analysis showing that the
transient period remains the same: ≤5 s. Thus, the steady-
state starting index is set to es = 5 sec in all the networks to
compute the performance indices.

FIGURE 3. Error comparison for Mackey-Glass time series as predicted by
F-ADBEL, NF-ADBEL and ENF-ADBEL networks.

As can be seen in Fig. 3, the ENF-ADBEL network has
performed better than the F-ADBEL and NF-ADBEL net-
works, showing lower peaks in the prediction error. Further,
the root mean squared error and correlation coefficient are
also determined for all the networks using the relations in
(24) and (25). The computed values are shown in Table 1.

A lower root mean squared error of the ENF-ADBEL
network offers less squared error and a higher correlation
coefficient for predicting the Mackey-Glass time series com-
pared to F-ADBEL and NF-ADBEL networks. A signifi-
cant amount of percentage improvement is also obtained,

TABLE 1. RMSE & R2 for Mackey-Glass time series prediction by
ENF-ADBEL, NF-ADBEL, and F-ADBEL networks.

as expressed in (26). Please note that the results in Table 1
are obtained by the proposed network where no prior training
data is assumed.

The authors in [14] proposed a short-term prediction of
a backpropagation network (BP) based on the difference
method (DMBP). BP is a popular neural network that is
widely used for prediction. The structure of the BP network
is a multilayer feed-forward network, trained according to
error backpropagation. DMBP structures the training layer
as two sub-layers, with the change degree layer reflecting
the absolute value. Note that the change trend layer reflects
by positive and negative data to overcome prediction error.
The DMBP method is applied to the Mackey-Glass time
series and the results compared to other methods such as BP,
support vector regression machine (SVR), and autoregressive
integrated moving average (ARIMA) in terms of RMSE. The
authors in [14] use 70% of the data as training data and
30% as test data. The results for DMBP in [14] are shown
in Table 2.

TABLE 2. RMSE & R2 for Mackey-Glass time series prediction by
ENF-ADBEL, BP, SVR, NARIMA, and DMBP networks.

To obtain a fair comparison of the presented network with
the methods in [14], the ENF-ADBEL proposed network
readjusted the learning parameters to α = 0.54, β = 0.5 and
γ = 0.07, and the steady-state was selected as 50 seconds,
which reflects 4% of the data points. The results presented
in Table 2 show that the proposed ENF-ADBEL network had
a better performance in RMSE. Specifically, it recorded a
running time of 0.18 seconds, reflecting its simplicity and fast
learning. It thus can be deployed for online prediction.

Furthermore, a multilayer perceptron (MLP) neural net-
work is used for the same Mackey-Glass data points to
compare the proposed ENF-ADBEL. According to [15],
MLP is the most popular neural network for time series
data forecasting. In MLP, we structured the network for ten
hidden layers and used the GD method, and the data were
divided 70% as trained data, 15% as validated data, and 15%
as tested data. The results presented in Table 3 show how
ENF-ADBEL’s performance was significantly improved and
gave better outcomes.
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TABLE 3. RMSE & R2 for Mackey-Glass time series prediction by
ENF-ADBEL and MLP networks.

B. LORENZ TIME SERIES AS PREDICTED BY
ENF-ADBEL NETWORK
The Lorenz system was presented in 1963 by Lorenz in [16].
We simulated the ENF-ADBEL to predict the x-dynamics
of the Lorenz chaotic time series. This series has also been
used in various studies to verify the performance of prediction
algorithms [17]- [18]. The series is generated by [16] from the
coupled differential equations; for more details, refer to [2].

For the generated Lorenz time series with ne = 16380,
we first evaluate the prediction performance of the ENF-
ADBEL network, with the learning parameters set as
α = 0.5, β = 0.3, and γ = 0.04.
It was found that the prediction results of the ENF-ADBEL

network for the Lorenz time series performs better when
compared to results for theMackey-Glass time series. Specif-
ically, it is difficult to distinguish the predicted Lorenz time
series from the target data. The running time for the proposed
network was 1.47 seconds. For comparison purposes, we sim-
ulated the NF-ADBEL and F-ADBEL networks to predict the
Lorenz time series. We found the best learning parameters
for the NF-ADBEL network in predicting the Lorenz time
series to be α = 0.8, β = 0.2, and γ = 0.01, while for
F-ADBEL the parameters varied; the running time was found
to be 1.42 and 20.50 seconds, respectively. By recording and
analyzing the prediction error in all cases, it was found that
the transient period is less than 5s, and therefore the steady-
state starting index is taken as ns = 5.

TABLE 4. RMSE & R2 for Lorenz time series as predicted by ENF-ADBEL,
NF-ADBEL, and F-ADBEL networks.

A zoomed view of the prediction error as returned by all
networks in steady-state is shown in Fig. 4. The figure shows
that the proposed ENF-ADBEL network has a lower error in
predicting the Lorenz time series compared to the existing
NF-ADBEL and F-ADBEL networks. The prediction perfor-
mance in all cases is also analyzed in terms of root mean
squared error in (24), as shown in Fig. 4, and in terms of
the correlation coefficient criterion (25). The results for this
analysis are included in Table 4. As can be seen, superior
performance is provided by the ENF-ADBEL network due to
the lower root mean squared error, higher correlation coeffi-
cient, and significant percentage improvement offered by this
network.

FIGURE 4. Error comparison in Lorenz time series as predicted by
F-ADBEL, NF-ADBEL and ENF-ADBEL networks.

The authors in [10] used a long-short-term-memory
(LSTM) recurrent neural network to predict the Lorenz time
series. However, the LSTM recurrent network had difficulty
representing temporal and non-temporal inputs simultane-
ously in multivariate data. In [10], the authors proposed a
hierarchal decomposition of univariate LSTMs and combined
the resulting features in final feed-forward layers. The model
was selected based on early stopping, with 20% validation
data of the 3,000 data samples used over 1,000 epochs.
The condition was: If the validation performance is not
improved within 100 epochs, then training is stopped. The
authors in [10] applied the proposed LSTM to the Lorenz
time series and compared one-step-ahead prediction error
in terms of lowest RMSE and high correlation coefficient
to other approaches such as Naïve LSTM and multivariate
interpolated LSTM. The LSTM approach gave better results
compared to the other methods.

For fair comparison to the ENF-ADBEL network, we used
75% data as a steady-state. The parameters of ENF-ADBEL
were tuned as α = 0.49, β = 0.42, and γ = 0.04. The pro-
posed ENF-ADBEL showed better results in low prediction
error and high correlation, as presented in Table 5. According
to [10], the used LSTM converged within several hours of
training, while the proposed ENF-ADBEL performed conver-
gence within a few seconds. The running time was 1.44 sec-
onds, showing the best performance and fastest response.

We then applied a multilayer perceptron (MLP) neural
network to the same Lorenz data to validate the proposed
ENF-ADBEL. The comparison results are given in Table 6,
showing that the ENF-ADBEL network performed with bet-
ter accuracy.

C. ROSSLER TIME SERIES AS PREDICTED BY
ENF-ADBEL NETWORK
Wedeployed the ENF-ADBEL network to predict the Rossler
chaotic time series, as it has been used in the literature to eval-
uate the performance of prediction algorithms [19]. The time
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TABLE 5. RMSE & R2 for Lorenz time series prediction by ENF-ADBEL,
Naive LSTM, multivariate interpolated LSMT, and LSTM approach
networks.

TABLE 6. RMSE & R2 for Lorenz time series prediction by ENF-ADBEL and
MLP networks.

series is generated through the differential equations [20],
as referred to in [2]. A total of ne = 8188 samples were
generated for the Rossler time series. To simulate the pro-
posed ENF-ADBEL network for predicting this time series,
the learning parameters were selected as α = 0.5, β = 0.4,
and γ = 0.1.

We also simulated the NF-ADBEL network driven by the
parameters α = 0.5, β = 0.25, and γ = 0.08 to forecast the
Rossler time series as well as the F-ADBEL network with
various parameters. A comparison of all networks in terms
of the prediction error is displayed in zoomed view in Fig. 5.
The transient period happens to be the same as in the case of
the Mackey-Glass and Lorenz time series, i.e., ns = 5 s.

TABLE 7. RMSE & R2 for Rossler time series prediction by ENF-ADBEL,
NF-ADBEL, and F-ADBEL networks.

Furthermore, the amplitude of the error signal for the ENF-
ADBEL network is lower compared to the NF-ADBEL and
F-ADBEL networks, as shown in Fig. 5. This figure indicates
the better prediction accuracy of the ENF-ADBEL network.
Analysis of the predicted results for the Rossler time series
in terms of the root mean squared error and correlation
coefficient criteria are shown in Table 7. As can be seen,
the results reveal the superiority of the ENF-ADBEL over
the NF-ADBEL and F-ADBEL networks. Finally, a reason-
able amount of percentage improvement is yielded by the
ENF-ADBEL network for predicting the Rossler time series,
as presented in Table 7.

Moreover, we applied anMLP neural network for the same
Rossler data to validate the proposed ENF-ADBEL. The
comparison results, as shown in Table 8, demonstrate that the
ENF-ADBEL network performed with better accuracy.

FIGURE 5. Error comparison in Rossler time series as predicted by
F-ADBEL, NF-ADBEL and ENF-ADBEL networks.

TABLE 8. RMSE & R2 for Rossler time series prediction by ENF-ADBEL
and MLP networks.

D. DISTURBANCE STORM TIME INDEX PREDICTED
BY ENF-ADBEL NETWORK
Precise forecasting of space weather, especially solar storms,
has become increasingly urgent because of the destructive
effects these storms can have on infrastructures such as
satellites, telecommunication, and power grids [7]. Recently,
the ADBEL network also proposed predicting this important
index [1], along with NF-ADBEL in [2], which has been
modified in the present work to yield to the ENF-ADBEL net-
work. Here, we simulated the ENF-ADBEL network to pre-
dict the disturbance storm time index Dst time series for the
month of April 2000, when considerable geomagnetic activ-
ity was observed. The data for this month have been down-
loaded from the website World Data Center (WDC) [21],
‘‘WDC for Geomagnetism, Kyoto.’’

With the learning parameters set as α = 0.15, β = 0.38
and γ = 0.25, the ENF-ADBEL network was deployed to
predict theDst index for themonth of April 2000. The number
of samples is ne = 716 for that month.

TABLE 9. RMSE & R2 for Dst April 2000 by ENF-ADBEL, NF-ADBEL, and
F-ADBEL networks.

The predicted results provided by the ENF-ADBEL net-
work are shown in Table 9. The transient period of the ENF-
ADBEL network is ns = 10 hrs, which then becomes the
steady-state starting index. It can be observed that, despite
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the high initial transients, the ENF-ADBEL network can fol-
low the Dst time series in steady-state. The important valley
points are also well-predicted, which points to the possible
occurrence of geomagnetic storms.

To draw a comparison, an existing NF-ADBEL network
in [2] is used to predict the Dst time series. For this pur-
pose, the learning parameters of the NF-ADBEL network are
assigned the values of α = 0.3, β = 0.3, and γ = 0.01. This
comparison in terms of the prediction error and correlation
coefficients showed that the ENF-ADBEL network has better
performance than the NF-ADBEL and F-ADBEL networks,
as illustrated in Fig. 6 and Table 9.

FIGURE 6. Comparison error of disturbance storm time index for
April 2000 as predicted by F-ADBEL, NF-ADBEL and ENF-ADBEL networks.

The authors in [9] designed an NFCBEL predictor that
combines a type of emotional neural network and neo-
fuzzy neurons. The NFCBEL is deployed to predict Dst
between 2000 and 2006. After training the NFCBEL offline,
70% and 30% of the data are used for predicting. The perfor-
mance of RMSE and correlation is shown in Table 10.

TABLE 10. RMSE & R2 for Dst prediction by ENF-ADBEL and NFCBEL
networks.

To make a fair comparison between the proposed model
and the model in [9], the proposed ENF-ADBEL is deployed
to predict Dst for April 2000 for 28% of 716 data points
as ns = 200. The ENF-ADBEL network is then assigned
the values of α = 0.1, β = 0.3, and γ = 0.93. The
proposed model performed with good results for RMSE and
high correlation, as shown in Table 10. The running time
was 0.98 seconds. ENF-ADBEL performed well compared to
NFCBEL, which performed its outcomes after 50 iterations.
Please note that because the length of the data is not the same,

the results in Table10 reflect the performance of the proposed
model based on available data, in this case, April 2000.

To provide a fairer comparison, anMLPwas used to predict
Dst for the same data (April 2000). The comparison results
are displayed in Table 11. As can be seen, the ENF-ADBEL
network performed with better accuracy.

TABLE 11. RMSE & R2 for Dst for April 2000 prediction by ENF-ADBEL
and MLP networks.

E. NARENDRA DYNAMIC PLANT PREDICTED BY
ENF-ADBEL NETWORK
We also simulated the ENF-ADBEL network for the online
identification of the Narendra dynamic plant, which was
described in [2].

A total of ne = 1996 samples are used in this work.
The ENF-ADBEL network was first deployed to identify
the dynamic plant using the learning parameters α = 0.4,
β = 0.49, and γ = 0.09. As can be seen, the ENF-ADBEL
network was able to identify the dynamic plant. The steady-
state starting index was taken as ns = 5 sec. To compare the
performance of ENF-ADBEL network to NF-ADBEL and
F-ADBEL, the simulation is run with the learning parameters
for the NF-ADBEL network set as α = 0.3, β = 0.5, and
γ = 0.01 as in [2]. Varying parameter values were used for
the F-ADBEL network. The identification error is presented
in Table 12.

TABLE 12. RMSE & R2 for Narendra identification plant by ENF-ADBEL,
NF-ADBEL, and F-ADBEL networks.

The transient period of the NF-ADBEL network is the
same as that of the ENF-ADBEL network. However,
the ENF-ADBEL network shows better performance com-
pared to the NF-ADBEL and F-ADBEL networks, as illus-
trated in Fig. 7, owing to the lesser identification error
being offered by this network during steady-state. A lower
root mean squared error, higher correlation coefficient
and sufficient percentage improvement as obtained by the
ENF-ADBEL network validates its superior performance
over the NF-ADBEL and F-ADBEL networks in identifying
the Narendra plant, as presented in Table 12.

We applied an MLP neural network for the same Narendra
plant data to validate the proposed ENF-ADBEL. The com-
parison results are presented in Table 13. The results show
that the ENF-ADBEL network performed with significant
accuracy.
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FIGURE 7. Comparison error of Narendra dynamic plant as predicted by
F-ADBEL, NF-ADBEL and ENF-ADBEL networks.

TABLE 13. RMSE & R2 for Narendra plant prediction by ENF-ADBEL and
MLP networks.

F. WIND SPEED PREDICTED BY ENF-ADBEL NETWORK
Conventional methods of generating electricity are continu-
ously polluting the environment. Renewable energy resources
have the potential both to overcome the problem of air pollu-
tion and to meet the load demand. Among various renewable
energy resources, wind energy offers a viable way to harness
electricity, owing to its cost-effectiveness and sustainable
nature [22]. However, available wind power depends on wind
speed.

Due to the randomly fluctuating characteristics of wind
speed, the prediction results of wind power may change
rapidly. Accurate wind speed prediction can significantly
improve power quality, security, supply-demand balancing
and, in general, wind generation management in the intel-
ligent grid [23]. Therefore, applying wind speed prediction
techniques that offer the best forecasting accuracy over time
scales is required [24].

In this paper, a proposed ENF-ADBEL is used to pre-
dict wind speed. Hourly wind speed data for three months
(January, February and March 2020) are obtained from a
Canadian meteorological station located in Lunenburg, Nova
Scotia [25], and applied to the proposed network.

To investigate the behaviour of ENF-ADBEL in forecast-
ing wind speed, the network is first employed using the learn-
ing parameters α = 0.3, β = 0.015, and γ = 0.25. As can be
seen, the ENF-ADBEL network can predict wind speed for
one hour ahead. The steady-state starting index is taken to be
ns = 1hr . For comparison purposes, the simulation runs with
the learning parameters for the NF-ADBEL network set as
α = 0.77, β = 0.04, and γ = 0.19, with varying parameters
values for the F-ADBEL network. The forecasting errors

FIGURE 8. Comparison error of wind speed as predicted by F-ADBEL,
NF-ADBEL and ENF-ADBEL networks.

TABLE 14. RMSE & R2 for wind speed ENF-ADBEL, NF-ADBEL, and
F-ADBEL networks.

are shown in Fig. 8, and the outcome results are presented
in Table 14.

As can be seen, the ENF-ADBEL network gives a better
performance than the NF-ADBEL and F-ADBEL networks,
owing to fewer forecasting errors by this network during
steady-state. In terms of running time, the proposed ENF-
ADBEL took 1.09 seconds, NF-ADBEL took 1.03 seconds,
and F-ADBEL took 3.7 seconds. A lower root mean squared
error, higher correlation coefficient and sufficient percent-
age improvement as yielded by the ENF-ADBEL network
validates its satisfactory performance over the NF-ADBEL
and F-ADBEL networks in wind speed prediction, as shown
in Table 14.

The authors in [26] built eight models to predict
wind speed (BPNN, GA-BPNN, PSO-BPNN, LSTM, SVR,
GA-SVR, Bagging and Boosting) supported by GA and PSO
to help find a global optimal. They used a dataset from Open
EI with a data size of 36,295 samples. The data are from
May 13, 2003 to Jan 20, 2004 and are randomly split into a
training set and a test set, with 70% of the data for training and
30% for testing.We used the correlation coefficient criteria to
compare the results of the different models to the proposed
ENF-ADBEL network. The results in Table 15 show that
the proposed model has high correlation and fast processing,
since the other methods were trained and accomplished the
performance within 1,000 iterations. Please note that the data
used in the proposed model, in this case, are different in size
and location.

We applied an MLP neural network for the same wind
speed data to validate the proposed ENF-ADBEL. The com-
parison results indicate that it performed with fair accuracy,
as shown in Table 16.
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TABLE 15. R2 for wind speed prediction by ENF-ADBEL, BPNN, GA-BPNN,
PSO-BPNN, LSTM, SRV, GA-SVR, bagging, and adaboost models.

TABLE 16. RMSE & R2 for wind speed prediction by ENF-ADBEL and MLP
networks.

G. WIND POWER PREDICTED BY ENF-ADBEL NETWORK
In recent decades, immense efforts have been made to
develop efficient wind power forecasting models at multiple
scales. Accurate wind power forecasting can help to arrange
generation plans, maintain grid stability, and provide a reli-
able basis for grid operation [27]. Different approaches were
used for different time scales and data sources [28].

In this work, we used seven-day-ahead hourly wind
power data obtained from [29] to apply to the proposed
ENF-ADBEL network. These wind power data indicate the
amount available to Alberta, Canada, from a grid for a seven-
day-ahead basis with energy updates every six hours. The
data indicate three expected wind power availability levels:
minimumwind power, most-likely available wind power, and
maximum wind power forecast.

Firstly, we simulated the proposed ENF-ADBEL network
for predicting wind power in terms of minimum wind power
data. The learning parameters were α = 0.47, β = 0.32, and
γ = 0.14. The NF-ADBEL network driven by the parameters
α = 0.4, β = 0.5, and γ = 0.13 was also simulated to
forecast minimumwind power, as was the F-ADBEL network
with various parameters. The proposed model’s outcome
in terms of low RMSE and high correlation is presented
in Table 17.

TABLE 17. RMSE & R2 for minimum wind power predicted by ENF-ADBEL,
NF-ADBEL, F-ADBEL networks.

A comparison of all networks in terms of the prediction
error is displayed in Fig. 9. As can be seen, the amplitude
of the error signal for the ENF-ADBEL network is lower

FIGURE 9. Comparison error of minimum wind generation as predicted
by F-ADBEL, NF-ADBEL and ENF-ADBEL networks.

than for the NF-ADBEL and F-ADBEL networks, with ENF-
ADBEL indicating better prediction accuracy. Analysis of
predicted results for minimum power forecasting data in
terms of RMSE and correlation coefficient criteria is given
in Table 17. As shown, ENF-ADBEL gives a better per-
formance than the NF-ADBEL and F-ADBEL networks.
Overall, a reasonable amount of percentage improvement is
yielded by the ENF-ADBEL network for predicting mini-
mum wind power.

We also applied an MLP neural network for the same
wind power data (minimum power) to validate the proposed
ENF-ADBEL. The comparison results are given in Table 18,
showing that the ENF-ADBEL network performed with bet-
ter accuracy.

TABLE 18. RMSE & R2 for minimum wind power prediction by
ENF-ADBEL and MLP networks.

TABLE 19. RMSE & R2 for most likely wind power predicted by
ENF-ADBEL, NF-ADBEL, and F-ADBEL networks.

Secondly, the proposed ENF-ADBEL network was
deployed for predicting the most likely wind power data. The
learning parameters were selected as α = 0.4, β = 0.44,
and γ = 0.24. The NF-ADBEL network, using the param-
eters α = 0.43, β = 0.49, and γ = 0.13, was also
simulated to forecast the most-likely wind power, along with
the F-ADBEL network, which applied varying parameters.
The results in terms of low root mean square error and high
correlation are given in Table 19.
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FIGURE 10. Comparison error of most-likely wind generation as predicted
by F-ADBEL, NF-ADBEL and ENF-ADBEL networks.

A comparison of all networks in terms of the prediction
error is displayed in Fig.10. As can be seen, the amplitude
of the error signal for the ENF-ADBEL network is lower
compared to the NF-ADBEL and F-ADBEL, which have
considerable fluctuation. This shows the better performance
accuracy of the ENF-ADBEL network. Analysis of the pre-
dicted results for most-likely power forecasting data in terms
of the RMSE and correlation coefficient criteria are pre-
sented in Table 19. As can be seen, ENF-ADBEL has better
results than the NF-ADBEL and F-ADBEL networks, with
ENF-ADBEL showing a fair amount of percentage improve-
ment for predicting most-likely wind power.

TABLE 20. RMSE & R2 for most-likely wind power prediction by
ENF-ADBEL and MLP networks.

The comparison error for the most-likely wind power MLP
neural network was used for the same wind power data
(most-likely power) to validate the proposed ENF-ADBEL.
The comparison results are given in Table 20. The results
indicate that the ENF-ADBEL network performed wind gen-
eration prediction with better accuracy than the F-ADBEL,
NF-ADBEL and ENF-ADBEL networks.

Finally, the proposed ENF-ADBEL network was arranged
for predicting maximum wind power data. The learning
parameters were selected as α = 0.23, β = 0.45, and
γ = 0.09. The NF-ADBEL network, using the parameters
α = 0.2, β = 0.5, and γ = 0.18, was also simulated
to forecast maximum wind power, as well as F-ADBEL
network, the latter with varying parameters. The results in
terms of low root mean square error and high correlation are
given in Table 21.
A comparison of all networks in terms of the predic-

tion error is displayed in Fig. 11. As can be seen, the

TABLE 21. RMSE & R2 for max wind power ENF-ADBEL, NF-ADBEL, and
F-ADBEL networks.

FIGURE 11. Comparison error for max wind generation as predicted by
F-ADBEL, NF-ADBEL and ENF-ADBEL networks.

amplitude of the error signal for the ENF-ADBEL network
is lower compared to the NF-ADBEL and F-ADBEL net-
works, which have considerable variation. Therefore, the
ENF-ADBEL network presented a remarkable and fair per-
formance accuracy.

Additionally, analysis of the predicted results for maxi-
mum power forecasting data in terms of the RMSE and corre-
lation coefficient criteria is presented in Table 21. As shown,
the ENF-ADBEL network gives a better performance than
the NF-ADBEL or F-ADBEL network. Finally, a fair amount
of percentage improvement is yielded by the ENF-ADBEL
network for predicting maximum wind power. The pro-
posed ENF-ADBEL network illustrates the best fitting ability
for multiple wind power series among all the implemented
networks.

The authors in [30] used a hybrid model for short-term
wind power forecasting. This model includes vibrational
mode decomposition (VMD), the K-means culturing algo-
rithm, and a long-short-term memory (LSTM) network. The
model used in [30] evaluated and compared seven dif-
ferent models, including the backpropagation neural net-
work BPNN, the Elman neural network ELMAN, LSTM,
VMD-MP, VMD-LSTM, and VMD-K-means-LSTM. The
models were applied to forecasting four wind power series
for multiple scales. The data utilized in [30] were obtained
from the last quarter of 2012 and the first quarter of 2013,
while the data used for wind power forecasting were divided
as 80% for training data and 20% for testing data.

Table 22 presents the results of methods in [30] in terms
of the RMSE index to forecast 1h ahead. Please note that
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TABLE 22. RMSE for wind power series prediction by ENF-ADBEL, BPNN,
ELMAN, LSTM, VMD-BPNN, VMD-ELMAN, VMD-LSTM, and
VMD-K-means-LSTM models.

the proposed ENF-ADBEL was deployed for different wind
power series and that no prior training was required, making
the proposed ENF-ADBEL a perfect candidate for online
prediction.

TABLE 23. RMSE & R2 for max wind power prediction by ENF-ADBEL and
MLP networks.

We applied the an MLP neural network for the same
wind power data (max power) to validate the proposed
ENF-ADBEL. The comparison results given in Table 23
clearly show that the ENF-ADBEL network performed with
better accuracy.

1) Highlight 1: In the proposed ENF-ADBEL model,
neo-fuzzy neurons are applied in the orbitofrontal cor-
tex section and partially in the amygdala section of
the adaptive decayed brain emotional learning network.
Partial integration is done purposefully, as the amyg-
dala section has two outputs: the one that relies on
the imprecise information is set free from neo-fuzzy
integration to keep the limbic system’s computational
principle.

2) Highlight 2: The integration of the neo-fuzzy network
in the amygdala section does not increase the result-
ing proposed model’s computational complexity to a
noticeable extent.

3) Highlight 3: The Learning parameters, named α, β,
and γ , play a crucial role in the proposed ENF-ADBEL
performance. Currently, an exhaustive search is done to
find the near-optimal parameters.

4) Highlight 4:The proposed ENF-ADBEL model has no
prior knowledge of the time-series data, implying that
no prior training is required.

5) Highlight 5: A comparison of the proposed predictor
with F-ADBEL [3], NF-ADBEL [2] and others reveals
its superiority for time series prediction problems with
shorter update intervals.

6) Highlight 6: It is known that the size of data can affect
the performance of predictors. The proposed model
can also be deployed where the size of the data is
considerably large.

IV. CONCLUSION
This paper presented a novel design for a hybrid model
of a neo-fuzzy adaptive decayed brain emotional learning
network, intending to enhance the prediction accuracy of
NF-ADBEL for online time series prediction. The resulting
prediction network is called the expanded neo-fuzzy adap-
tive decayed brain emotional learning (ENF-ADBEL) net-
work. The proposed model was developed by integrating the
neo-fuzzy neurons in the orbitofrontal cortex (OFC) section
and partially implemented in the amygdala (AMY) section.
The proposed model combines competitive emotional neu-
ral networks with neo-fuzzy neurons to yield an effective
ENF-ADBEL predictor that offers features such as low com-
putational complexity and fast learning. Low complexity is
obtained as a result of fewer membership functions being
used in neo-fuzzy neuron networks, while fast learning is
inherited by employing the emotion-processing mechanism
of the mammalian brain.

The proposed ENF-ADBEL network is implemented in a
MATLAB programming environment and deployed to pre-
dict a selection of chaotic time series classes, including
Mackey-Glass, Lorenz, Rossler and the disturbance storm
time index. Simulationswere conducted to identify a dynamic
Narendra plant model and stochastic problems, namely, wind
speed and wind power series. To keep the computational
complexity at a minimum, we only used three neo-fuzzy
neurons membership functions for processing each feature in
all OFC and AMY sections of ENF-ADBEL. The proposed
model enhanced the prediction accuracy of online time series
prediction with no prior training.

The performance of the model was also evaluated in terms
of RMSE and R2. To draw a comparison, the NF-ADBEL
and F-ADBEL networks were simulated as well to fore-
cast the same time series with near-optimal parameters, and
the MLP network was applied to draw a comparison to
the proposed model. Furthermore, a comparison of the pro-
posed ENF-ADBEL with other used methods in state-of-
the-art was made, and a percentage improvement index was
defined to compare the proposed model’s performance with
the NF-ADBEL and F-ADBEL networks.

Comparing the proposed ENF-ADBEL model with some
state-of-the-art predictors reveals its superior performance.
The model offers low RMSE and high R2. A fair amount
of percentage improvement in wind speed and wind power
forecasting was obtained along with significant improvement
in accuracy for online time series prediction. Finally, the sim-
ulation results demonstrate that ENF-ADBEL gave the best
performance.

Future work could involve neo-fuzzy neuron implementa-
tion in the thalamus and sensory cortex sections to further
investigate and test the ENF-ADBEL network’s performance.
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