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ABSTRACT In the last few years, a great number of methods for identifying the load model parameters have
been proposed. This article discusses the use of statistical approach to estimate the substation equivalent load
model parameters for supplying to oil-producing industrial region. The disadvantages of existing statistical
approach are the low accuracy obtained for the parameter estimates, especially when using samples size is
small. To eliminate this deficiency, the current measurement data archive from SCADA system of electrical
parameters for 15 months was collected. For the purpose of verifying the obtained results of statistical
processing of SCADA data, a full-scale experiment was carried out in relation to the studied substation. The
article describes the statistical method used to process the current SCADA measurement data, the results
of archived statistical processing and experimental SCADA data. The electrical load models’ parameters

received from the experimental studies results are of practical importance.

INDEX TERMS Load modeling, power system, power system study, static load model, ZIP model.

I. INTRODUCTION

In order to effectively manage power grid modes, it is neces-
sary to have adequate models for each element that is included
in it. Because of the sheer numbers, diversity and fickle nature
of electrical loads, their modelling is the greatest challenge.
This task has attracted and continues to attract a great deal of
attention from researchers and engineers around the world.
Traditionally, there are two approaches to identifying load
models [1]-[4]: component-based approach. Here, we con-
sider in detail the measurement-based approach. Hereby
consider the second of them in more detail. Its idea is to
identify the load model and evaluate its parameters using
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the measured voltage and power values. The classification of
methods for identifying load models from measurement data
is given in [5]-[9].

There are staged field tests [10]-[13], laboratory
tests [14], [15], disturbances-based [16]—[21] and statistical-
based approaches. Each of these approaches has its own
field of application, requirements for the organization of the
experiment and the quality of measurements. Staged field
tests require the organization of experiments with interven-
tions in the power supply by consumers. The advantage of
this approach is its high accuracy; the disadvantage is the
impossibility of experimental covering for all existing loads
in all their possible states.

Laboratory tests are designed to produce accurate models
of individual electrical receivers. In the future, a detailed
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model of their electricity supply scheme and computational
experiments are required to obtain a generalized (aggregate)
load model.

Disturbance-based methods use load responses to voltage
supply indignations. These methods are based on complex
mathematical algorithms and allow for the identification of
dynamic load models. Their use is limited by high demands
on the presence of voltage indignations and the quality of
measurements.

Statistical-based approach involves the accumulation of
a large number of voltage and power measurements. The
accuracy of the resulting models is achieved by the help
of mathematical statistics methods. This approach does not
require experiments, voltage indignations and is much less
dependent on the quality of measurements. In addition,
the statistical-based approach allows you to identify the most
likely load states and get a model for each of them.

The article describes the statistical method, used for pro-
cessing current operating mode parameters of collected data
from power system to obtain estimates of load model param-
eters. The method is based on the ideas presented in the
works [7], [22], [23]. A fragment of Unified Energy System
of Russia with a predominant share of oil industry (about
90 %) was selected for testing. The experiments results
related to both the forced change in the voltage on substation
tires and statistical processing of archived SCADA data are
presented. The conducted survey was organized as follows:

o Selection of power system area for conducting the
survey and its coordination with the System operator.

o Data collection of electrical parameters current
measurements from all substations in the survey area.

« Improvement of the existing statistical methods for pro-
cessing measurement data, taking into account the col-
lected measurement data features (voltage quantum up
to 0.105 kV; power 0.12 MW Mvar).

o Drawing up a program for conducting a full-scale exper-
iment on forced voltage changes in the survey area.
Performing the calculation of electrical modes in order
to prevent the emergency situations occurrence during
the experiment.

o Processing and analysis of measurement data col-
lected. A detailed description of survey area is provided
in section 3. The initial data obtained by observing
the load conditions of studied substations are described
in section 4. Section 5 contains processing results of
current observations data. Section 6 contains the results
obtained during the full-scale experiment execution with
a forced change in supply voltage.

Il. THE STATISTICAL-BASED APPROACH

A. LOAD MODEL

Existing load models are presented in [24], and their recom-
mended parameters are described in [25]. Traditionally, static
and dynamic load models are distinguished. In this work, only
the static load model is considered, since:
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« to identify a dynamic load model, you must have mea-
surements with a high sampling rate of PMU;

« static load model is easier to identify and use in calcula-
tion than dynamic one;

o according to the results of the international survey,
the static model has the widest practical application
(assuming constant 4+ ZIP 4 exponential models) for
steady-state analysis — 100 %, dynamic studies — 70 %;

o paper [26] shows the possibility of using nonlinear static
models for transient stability studies;

« according to [27] static model can be easily combined
with dynamic models to form composite models.

In this study the static load model in the form of a first (1)

and a second (2) degree polynomial was used (constant Z,
constant I, constant P or ZIP model):

\%
P=P, <bp,0 + bp,1—> (@Y)
Vi
1% V2
P=P,|b bp1— +b — 2
n( P.0 + P,]Vn + P,2<Vn> ) )

where P — active power drawn by the load; P, — rated active
power; V,, —rated voltage; b(P, i) —load model parameters in
per units.

The model represented by a first-degree polynomial will
be called the linear model, and the model represented by
a second-degree polynomial will be called the ZIP model.
Hereinafter, the equations for reactive power are similar.

B. STATISTICAL EQUILIBRIUM LOAD NODE CONDITIONS
The statistical approach is based on the analysis of mea-
surements obtained by passive observation of the object of
study [7], [22], [23]. One of the difficulties is clustering of
measurements related to different load compositions in use.
In this case, we are talking about operation modes of both
individual devices and network elements of internal power
supply network of consumers. To solve this problem, it is
proposed to estimate the load model parameters for some
statistical equilibrium condition of the aggregate load.

Such a statistical equilibrium condition is characterized by
a quasi-steady operation mode of individual devices form-
ing part of aggregate load. The statistical equilibrium load
condition may include measurements related to different time
periods. Between these time periods, the load is either in other
statistical equilibrium conditions or in a transient mode.

The load model corresponding to a given statistical equilib-
rium condition remains practically unchanged. Preliminary
separation of the entire data on statistical equilibrium condi-
tions allows to solve the problem of ambiguity and variability
of the load models in time. Therefore, it is possible to estimate
the parameters of the load models for each statistical equilib-
rium condition. This allows to set your own unique model
parameters for each time interval (for example, 30 minutes)
during the practical calculations.

An aggregate load is a set of different power consumers,
which leads to an increase in the number of statistical
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equilibrium conditions. The probability of finding an aggre-
gate load in a statistical equilibrium condition primarily
depends on the cyclic processes of human activity and tech-
nological cycles of industrial equipment. There is no point
in considering all possible statistical equilibrium load condi-
tions, it suffices to limit the most probable of them for a given
time interval. This allows to simplify the task of aggregate
load model identification.

C. MEASUREMENT CLUSTERING
To separate the measurement data arrays by statistically equi-
librium states, we used the idea of applying cluster analysis
to the measurement data described in [7]. In contrast to [7],
the Bayesian estimation of a Gaussian mixture clustering
algorithm from the skikit-learn library was used. Described
in more detail in [22], [28].

Let the probability of the emergence of a new point of mea-
surement data be described using a mixture of distributions:

M
P(X) =) o Pi(xi)
i=1

where X — measurement data set; r; — measurement data sub-
set, related to statistical equilibrium condition i; M — amount
of statistical equilibrium conditions; P;(x;) - probability of
aggregate load being in condition i; «; — a fraction of subset
ri in set X.

Let the probability P(X) be described using some additive
function:

M
F) =" aifilw)
i=1

Let P;(ri) obey the Gaussian distribution. Then, to obtain
the function parameters, it is necessary to estimate:

« mean of each distribution i

« dispersion of each measurement data subset r;;
o fraction of «;;

« the amount of mixture components M.

In case of general assumptions, the EM algorithm con-
verges to a local optimum. The quality of such a solution and
its degree of convergence, however, are influenced consid-
erably by the initial estimate. The convergence gets worse
when there is an attempt to connect a number of compo-
nents within one group of measurements or to allocate them
between these groups [28]. In order to solve this problem, it is
proposed to complete a number of calculations (from 20 to
40 simulations) with different initial estimates, and as a result
to choose the solution corresponding the greatest likelihood
value.

In order to use the cluster data analysis methodology on an
automatic basis it is required preliminarily to set a quantity
of clusters on which a sample will be divided in. So as to
overcome this obstacle a variational estimation of the number
of clusters based on the Dirichlet process [29] can be used.
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D. PROPOSED ALGORITHM OF STATIC LOAD MODEL
IDENTIFICATION USING THE STATISTICAL-BASED
APPROACH

The algorithm of static load model identification using con-
tinuous field measurements of voltage and active and reac-
tive power is based on the ideas outlined in [7], [23]. The
proposed algorithm consists of three steps: data collection
and pre-processing, measurement clustering into statistical
equilibrium load conditions, and load model identification.

1) STEP 1. DATA COLLECTION AND PRE-PROCESSING

This step includes the collection and separation of data by
month of the year and daily intervals, and the subsequent
grouping of data according to characteristic load curves.

Data separation by characteristic load curve is necessary
for several reasons. Firstly, it allows to reduce the number
of statistical equilibrium conditions in one sample and leads
to simpler algorithmic solutions at the stage of cluster data
analysis. Secondly, to solve the problem of predicting the load
model, it is necessary to have information about which daily
time intervals and days of the week the identified load models
can be used for.

The need for averaging and the averaging time interval
depend on the accuracy of the source data in terms of quanti-
zation and aperture errors and the nature of the change in load
power and supply voltage.

2) STEP 2. MEASUREMENT CLUSTERING
This step includes the normalization of measurement data and
the search for statistical equilibrium load conditions.

Before using the cluster analysis algorithm to search for
statistical equilibrium load conditions, it is necessary to per-
form data normalization [30]. This is necessary to ensure that
the measurement units of power and voltage do not affect the
results of clustering. Data normalization was performed by
the Min-max normalization algorithm.

The obtained normalized data is fed to the input of
the statistical equilibrium load conditions search algorithm,
described in section C. After the estimates of the accessory
tags of each measurement to a particular cluster are obtained,
one can proceed to the stage of estimating the parameters of
the load models from the original non-normalized measure-
ment data set.

3) STEP 3. LOAD MODEL IDENTIFICATION
This step includes:

1) the preparation of a variety of load models;

2) the load model parameter estimation in absolute units;

3) the normalization of obtained load model parameter
estimations;

4) the filtering of statistically insignificant models;

5) the averaging of load model parameter estimations
for statistical equilibrium load conditions related to
the same time interval of one daily characteristic load
curve.
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One of the difficulties in load modeling is the determina-
tion of the type of model, especially in the cycle of automated
processing of measurement data. To solve this problem, at the
first stage, a number of possible types of load models have
been composed into set M.

At the next stage of calculations, the load model parameters
are estimated for each model from the set M. Parameter
estimation is based on the ordinary least squares technique
(OLS) [31].

It should be noted that it is impossible to directly use
the OLS technique to estimate model parameters (1) and (2)
due to the fact that the values of the rated load power P,
and Q, for each of the statistical equilibrium load condition
are unknown. Therefore, the model parameters were firstly
evaluated in absolute units:

P = (apo+ap;-V) 3)
P = (aP,o +ap1-V+apy- Vz) 4)

where a; — load model parameters in absolute units. Then the
model parameters are found by the method of ordinary least
squares in absolute units.

To obtain load model parameter estimates in per unit
values, it is necessary to perform normalization. For each
statistical equilibrium load condition, load model parameter
estimates were obtained in per unit values:

T
bi=ai~—~V,;, ie0...N (5)
Py
where N - load model polynomial degree.

The estimation of the rated power value in each statistical

equilibrium condition was obtained as follows:

P, = i (ap,i : v,;’) . 6)

i=0

The rated voltage V,, of the aggregate load node is prede-
fined and corresponds to the voltage value that the load model
reduces to. Usually value V,, is taken equal to the voltage
level.

Thus, parameters of each model from the set M are esti-
mated for each statistical equilibrium condition. Statistically
insignificant models are rejected based on an assessment of
statistical significance (F-test).

Taking into account the errors of measuring systems and
small load fluctuations, the dispersion of load model param-
eter estimates can be quite large. In other words, the error in
estimating the load model parameters for a single statistical
equilibrium condition is significant and the obtained param-
eter estimates are not applicable in the power system models.
The accuracy of model parameters estimates can be improved
in the case of a large number of statistical equilibrium con-
ditions with a close load structure. In this case, instead of
individual estimates, their expected values should be used.

The resulting estimates of the parameters of all load mod-
els are calculated by averaging all the remaining parameter
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estimates corresponding to the same time interval of one
characteristic daily load curve:

1 L
Eb) =7 > by @)
j=1

where E(b;) — resulting estimate of load model parameter i,
i€0...N; L—number of statistical equilibrium conditions.

Itis important to emphasize that only load model parameter
estimates for statistical equilibrium conditions belonging to
the same time interval of one characteristic daily load curve

can be averaged.

lIl. OBJECT UNDER STUDY

As the object of study, the load of the nodal substa-
tions 110 kV Substation 1 and Substation 2 were chosen.
A 110-500 kV electrical circuit of the study subsystem is
shown in Fig. 1. The 500 kV power network is highlighted
in red, 110 kV in blue, 35 kV in brown, and 6 kV in green.
This part of the electrical network has a connection with the
Unified Energy System of Russia on the 500 kV and 110 kV
lines, and also has two power plants: one with an installed
capacity of 1 830 MW (6 x 305 MW), and the second with
an installed capacity of 8§ MW.

There are two step-down transformers (with capacity
of 25 MVA each) supplying 35 and 10 kV loads at Substa-
tion 1 and Substation 2. The main share of the transformers’
load is made up of pumps of oil producing installations, there
is also a small share of residential load (about 3 %). The total
maximum load level of Substation 1 and Substation 2 is about
40 MW.

The task of applying the statistical-based approach is to
obtain static load models of an aggregate load, which is pow-
ered by 110 kV buses of substations 1 and 2 via step-down
transformers T1 and T2.

The peculiarity of the 6-35 kV electric network is the radial
structure of the network. This leads to the fact that each
step-down transformer connected to the 110 kV network has
its own load. The load of each transformer has its own unique
properties. Consequently, the task of load model identifica-
tion must be solved for each transformer separately.

The measurements were carried out on the high voltage
side of the transformers T1 and T2, the measurement points
are shown in Fig. 1.

The approximate active power consumption curve over
time for one oil producing installation is shown in Fig. 2.
It is clearly seen that most of the time, this device is in the
active power consumption mode, which is variable in time,
and a small part of the time in the mode of active power
generation. The shape and period of the curve shown in Fig. 2
depend on the depth at which oil is pumped, and the setting
of the pump mechanical system. In the studied part of the
power system, oil pumps are driven by asynchronous motors
without automatic control systems. It is necessary to note that
the pumping unit generates active power due to the partial
recuperation of the pumping jack motion kinetic energy.
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FIGURE 1. Part of the Power System of Russia used in experimental investigations.

-10%

2.0
Z 1.0

0 5 10 15 20 25 30
Time, sec

FIGURE 2. Approximate active power curve for a single consumer within
the oil industry.

If we take this single individual device as the object of
study, then the task of identifying a static load model has
no practical meaning. This is due to the fact that power
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consumption changes over time, and consequently the model
parameters will constantly change. For each separate extrac-
tion unit, it would be more appropriate to use a dynamic load
model.

However, hundreds of such extraction units are con-
nected to the buses of the considered 110 kV Substation 1
and Substation 2. Random power fluctuations of individual
devices are not correlated; therefore, their dynamic charac-
teristics are neglected in total. This fact allows to make the
assumption that there is a quasi-steady state of the node with
aggregate load. In this case, the presence of active power
generation periods by extraction units is also neglected. This
is due to the fact that all the energy is redistributed in the
electric network (35; 10; 6 and 0.4 kV) and generated energy
does not flow into the 110 kV supply network.
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FIGURE 4. Average half-hour voltage, active and reactive power values, Substation 2, T2 110 kV.

IV. FIELD MEASUREMENT

To estimate load model parameters, arrays of telemetry data
consisting of voltage and active and reactive power that were
received through the SCADA system to the dispatching center
of the System operator throughout 15 months were used.
Telemetry data on the 110 kV side of the step-down trans-
formers of Substation 1 and Substation 2 was used. Telemetry
data consists the values of voltage, active and reactive power,
averaged over a time interval of one second. The sampling
depth was 15 months, which amounted to approx 39.4 - 10°
data points for each telemetry data channel. The voltage
quantum value is 0.105 kV, the power quantum value is
0.12 MW and 0.12 Mvar. The maximum error in estimating
the timestamp of each second measurement is up to 200 ms,
and the average is about 100 ms. The total amount of data
was about 120 GB for all substations of the power subsystem
under study.

The composition in use and operation mode of the studied
group of devices may not change for extended period of time
(up to several days). This is clearly seen in the active and
reactive power consumption daily curves shown in Fig. 3.
Pale lines indicate daily curves, and bright lines highlight
the average daily curve for the month. Small fluctuations of
the residential load of these substations are within one quan-
tum of power and voltage, therefore, the measured values of
voltage, active and reactive power may not change over long
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periods of time (minutes). The rise and fall of power con-
sumption in Fig. 3 is mainly caused by the 6 and 35 kV
network maintenance diagrams. Significant power deviations
mainly occur when the network elements are undergoing
maintenance outage, when the load is switched between
110 kV bus sections of substation or when the load is trans-
ferred over a 6 and 35 kV network to adjacent 110 kV
substations.

Any change in the adjacent 110 kV network (operation
mode and composition in use of devices, composition in use
of network elements, etc.) will cause a change in the mag-
nitude of the supply voltage on the buses of the substations
under study. The presence of long-time intervals of the quasi-
steady-state operation mode of the load under study allow to
use all (even insignificant) changes in the external electrical
network to obtain the information necessary to identify load
models.

Points in Fig. 4 indicate voltage, active and reactive power
measured values of the transformer T2 averaged over the
half-hour interval. Points corresponding to different months
are depicted in different colors.

V. STATIC LOAD MODEL IDENTIFICATION
A. STEP 1 - DATA COLLECTION AND PRE-PROCESSING

Measurement data was not divided into typical daily load
curves due to the fact that the share of residential loads is
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insignificant, and the total load of extraction units has a uni-
form load curve. Also, seasonal changes in power consump-
tion were not taken into account due to their insignificance.

Measurement data was divided into monthly intervals.
This is necessary to reduce the number of clustering errors
during the search for statistical equilibrium load conditions.
Measurement data clustering error reduction means that the
individual statistical equilibrium load conditions become
more distinct and it is easier to draw boundaries between them
using monthly slices. This effect can be seen comparing the
entire 15-month sample presented in Fig. 4 for the load of
transformer T2 of Substation 2, and the results of clustering
according to January 2017 Fig. 5 for the transformer T2 of
the same substation.

In this example, the averaged half-hour values presented
in Fig. 4 are selected for further calculations. For practicabil-
ity, averaging and averaging time interval are chosen assum-
ing that a significant number of small parameters changes
are present within one quantum, and the same measured
parameter value can be repeated many times in a second data
set. It is necessary to reduce the temporal discreteness and
the value of the quantum of measurements, in the case of
reducing of time intervals of the aggregate load node presence
in a statistical equilibrium condition.
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B. STEP 2 - MEASUREMENT CLUSTERING
Each month interval of active and reactive power measure-
ments was normalized using the Min-max normalization
algorithm. After that, the normalized month arrays were input
to the statistical equilibrium load conditions search algorithm.

An example of cluster analysis results for the transformer
T2 of Substation 2 is shown in Fig. 5 and 6. The lines show
the results of a point estimate of the linear load model for each
of statistical equilibrium load conditions that were found.
Presented sets of clusters have gaps in the numbers. This
is a consequence of the operation of the variational cluster
determination algorithm. The software implementation of the
algorithm in the library Scikit-learn that was used starts with
the maximum possible number of clusters (set manually)
and gradually reduces their number by combining several
clusters. The Fig. 6 shows that cluster O is erroneous, since
it does not represent a statistical equilibrium load condition,
but is formed by parts of two statistical equilibrium conditions
and data points showing the transition from one state to
another. Most of these clusters will be filtered in the next
step by a F-test or simply using a threshold filter with the
minimum required number of points in the cluster.

Practical calculations for processing the results of cluster-
ing showed that the F-test at the next stage of calculations
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FIGURE 7. Distribution histogram of load model parametrs in statistical-based approach for Substation 2.

does not always allow to reject erroneous clusters, especially
in cases when there are a small number of points in them.
To solve this problem after data clustering, a threshold filter
was used, which neglects all clusters containing less than
50 points. The minimum number of points was determined
experimentally based on a series of calculations. Given that
each point corresponds to a half-hour interval, the load must
be in equilibrium for more than a day. However, due to the
fact that the sampling depth is rather large and the power
consumption curve is close to uniform, this filter can be used.
By the criterion of the minimum required number of points,
clusters 7 and 15 were also neglected (Fig. 6).

During practical testing of the proposed approach to the
processing of measurements, it was revealed that a large num-
ber of statistically equilibrium states found have a voltage
swing of only 2-3 kV, which is only about 2.3 % of the rated
voltage.

C. STEP 3 - LOAD MODEL IDENTIFICATION

An estimation of the load model parameters from the set M
was made for each cluster remaining after the threshold filter.
Due to the fact that the data normalization algorithm did not
use the nominal values P,,, Q,, and V,,, but the maximum ones
over the one-month interval, the original arrays in absolute
units were used to estimate the load model parameters, taking
into account the resulting cluster markers. Then, all obtained
model parameter estimates in absolute units were converted
to per units.

The share of residential load is insignificant and all found
statistical equilibrium load conditions correspond to one gen-
eral uniform characteristic load curve. Therefore, all param-
eter estimates of the load models M can be combined into
one set. The frequency distribution histograms of the model
parameter estimates are shown in Fig. 7. Then the resulting
model parameter estimate will correspond to the expectation
of the entire set of parameter estimates for each model.
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The estimate of the confidence interval for each resul-
tant coefficient is based on the analysis of the parameter
distribution histogram. Let the confidence level be 95 %,
then the estimate of the confidence interval is reduced to the
calculation of percentiles: 2.5 % and 97.5 %.

The estimates and confidence intervals of the load models
parameters in per units, obtained using the statistical-based
approach, are presented in tables 1, 2, 3 and 4.

V1. VALIDATION BY STAGED FIELD TEST

The verification of the results obtained using the statistical-
based approach was carried out on the basis of a staged field
test specially conducted on the power subsystem under study.
It was held in September 2018, in the second half of a week-
day. The duration of the experiment was slightly less than
two hours. Voltage regulation in the power subsystem was
carried out by sequential voltage changes on 110 kV buses
of Power Station by adjusting the reactive power (excitation)
of synchronous generators. The generators participating in
the tests worked according to the active power dispatch load
curve. All operations associated with the sequential change
in the reactive power of the generators were performed in
accordance with a previously developed experiment program.

During the test, the transformer T2 was put into repair at
Substation 2, with a large share of the load transferred to
the transformer T1 and a small share of the load to adjacent
110kV substations. Therefore, in the field test at Substation 2,
only the model parameters of the load supplied from T1 were
estimated. The parameters of the load model supplied from
T2 were not estimated.

The range of voltage variation in the power subsystem
under study is limited by the highest allowable operating
voltage, the adjusting range of generator excitation systems,
and the voltage stability. in this case, it was 116-124 kV
(rated voltage level is 110 kV). The change of the voltage
and power during the field test is shown in Fig. 8 and 9.
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FIGURE 8. The change of the voltage and power during the field test, Substation 1.
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FIGURE 9. The change of the voltage and power during the field test, Substation 2.

The figures clearly show that changes in the active and
reactive power of the load correlate well with supply volt-
age fluctuations. This conclusion is confirmed by the scat-
ter plots presented in Fig. 10 and 11. The results of field
test data processing are presented in tables 1, 2, 3 and 4.
The confidence intervals of the load model parameters were
estimated on the basis of T-criterion with confidence level
95 %. in per units for Substation 1 and Substation 2 is shown
in Fig. 12.

Dotty assessment of static load characteristics obtained
during the Field Test are located within the confidence
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interval of assessments based on SCADA data. At the same
time, dotty assessments on the results of field tests and statis-
tical approaches are close.

VII. RESULTS AND DISCUSSION
A comparison of the results obtained using the statistical
approach with the results obtained using staged field test
shows the following:
o In all cases, the confidence intervals of the load
model parameters in field test are less than in the
statistical-based approach.
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FIGURE 10. Dependencies of active and reactive power on voltage during the field test, Substation 1.

12.0 9.0
11.8 = 85
g 2
- 11.6 §.
= = 80
o
11.4 c

110

115
V, kV

110

115
V, kv

FIGURE 11. Dependencies of active and reative power on voltage during
the field test, Substation 2.

TABLE 1. Line load model parametrs for active power.

Active power, Substation 1

Trans Exp. Koef E(b;) 95% CI
Tl Stat. bpo 3 0.59 (+40.40to +0.73)
T1 Stat. bp HEH 0.42 (40.27 to +0.60)
T1 Test. bpo ] 0.70  (40.68 to 4-0.72)
Tl Test. bp 1 [ ] 0.30  (40.29t0 +0.32)
T2 Stat. bp o re—— 0.69 (+40.50t0+1.19)
T2 Stat. bpy1 +H—e— 0.31  (—0.19to 4+0.50)
T2 Test. bpo ° 0.49 (+40.47to +0.50)
T2 Test. bp1 | ° 0.51 (+0.50to +0.53)
0 05 1
Active power, Substation 2
Trans Exp. Koef E(b;) 95% CI
Tl Stat. bpo HE— 0.55 (+0.09 to +1.39)
Tl Stat. bp 1 R 0.46 (—0.39to 40.91)
Tl Test. bpo [ ] 0.36 (+0.35to 40.37)
Tl Test. bp [ ] 0.64 (+0.63 to 40.65)
T2 Stat. bpgo e 1.82 (+40.47 to +2.46)
T2 Stat. bp; +He—H —0.82 (—1.46t040.53)
0 2

Notes: Stat. — statistical-based approach; Test. — staged field test

In most cases, the field test parameter estimates are in the
confidence intervals of the statistical-based approach.

The expected values of model parameter estimates,
obtained with the statistical-based approach, are quite
close to the parameter estimates obtained using field
test. In the case of Substation 2, where during the field
test most of the load was transferred to the transformer
T1, its coefficients during field test are close to the
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TABLE 2. Line load model parametrs for reactive power.

Reactive power, Substation 1

Trans Exp. Koef E(b;) 95% CI

T1 Stat. bgo HH —3.09 (—3.93to —2.28)
Tl Stat. b1 HEH 4.09 (+3.28 to +4.93)
Tl Test. bg,0 [ —1.65 (—1.67to—1.63)
T1 Test. bg,1 [ 2.65 (+2.63to +2.67)
T2 Stat. bgpo e —3.13 (—3.83t0 —2.62)
T2 Stat. bg 1 3 4.13 (+3.62to +4.83)
T2 Test. bg,o ° —2.86 (—2.88t0 —2.84)
T2 Test. bg,1 ° 3.86 (+3.84to +3.88)

0 5
Reactive power, Substation 2

Trans Exp. Koef E(b;) 95% CI

Tl Stat. bg o —3.34 (—4.10to —2.60)
TI  Stat. bo, 4.34 (+3.60 to +5.10)
TI  Test. b —2.02 (—2.03to —2.00)
Tl Test. bg,1 3.02 (+3.00 to +3.03)
T2 St boo —2.06 (—2.66 to —1.48)
T2 Stat. b1 3.06 (+2.48t0 +3.66)

arithmetic mean values of the coefficients for T1 and
T2 in the statistical-based approach.

With the statistical-based approach, the linear model
confidence intervals are significantly shorter than the
ZIP model confidence intervals.

According to different transformers of different substa-
tions, the model parameters are quite close to each other,
but not exactly equal. This may be due to both small
differences in the load structure, and the error of model
parameter estimates.

For the transformer T2 of the Substation 2, the active
power load model has a negative slope, which is due to
the large length of the 6-35 kV distribution network and
a small load value. This leads to the fact that in the total
load of the transformer T2 a large share is occupied by
the heat losses of wires and cables. Therefore, when the
voltage drops, losses in the 6-35 kV network grow faster
than the load decreases.

This allows to draw the following conclusions:

the staged field test with all its shortcomings allows to
obtain the most reliable model of the load for a given
period of time and composition of the load, which is
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FIGURE 12. Comparison of collected load models in p.u. (Stat. - statistical-based approach; Test - staged field test).

achieved by increasing the range in which the voltage
changes;

« the statistical-based approach, having obviously less
accuracy, nevertheless, allows to make an estimate of
load model parameters and to make their confidence
intervals estimation;

o for similar but not identical in composition loads,
the parameters of the models in the absolute units may
differ significantly, however, after converting to per
units, these differences are usually not significant.
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If the dependence of load power on voltage is rather flat,
then parameter higher than the first-degree polynomials may
not be statistically significant. This fact is clearly seen when
comparing the obtained confidence intervals of linear and
ZIP models for active power in tables 1 and 3. At the same
time, the staged field test gives the estimates of ZIP load
model parameters [E(b;), which are close to the results of
the statistical-based approach. This allows to use ZIP load
model parameters obtained using statistical-based approach
in power flow analysis.
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TABLE 3. ZIP load model parametrs for active power.

Active power, Substation 1

Trans Exp. Koef E(b;) 95% CI
T1 Stat. bp o 7.36 (—7.55t0 426.06)
T1 Stat. bpq —12.35 (—47.68to +15.67)
T1 Stat. bp o 6.00 (—7.13to 422.62)
T1 Test. bpo 3.06 (+2.14to0 +3.99)
T1 Test. bp1 —4.51 (—5.98to —2.45)
T1 Test. bpo 2.15 (+1.31to 4+2.99)
T2 Stat. bp o 6.33 (—28.39to +32.19)
T2 Stat. bp; +—e—— —10.23 (—58.97to +55.57)
T2 Stat. bp o et 4.90 (—26.18to +27.78)
T2 Test. bpo ® 3.12 (+42.21to 4+4.03)
T2 Test. bp 1 L —4.51 (—6.26to —2.76)
T2 Test. bpo » 2.40 (+1.56to +3.23)
—-50 0 50
Active power, Substation 2
Trans Exp. Koef E(b;) 95% CI
T1 Stat. bpgo 0.99 (—58.54to +45.70)
T1 Stat. bpq —0.39 (—85.30to +112.90)
T1 Stat. bpo 0.40 (—53.36 to +40.74)
T1 Test. bpo 0.87 (+0.39to +1.35)
T1 Test. bp1 —0.34 (—1.27to 4+0.59)
T1 Test. bpo 0.47 (+40.02to +0.92)
T2 Stat. bp o = —0.54 (—35.55to +32.30)
T2 Stat. bpq —eo— 3.35 (—58.21to +70.65)
T2 Stat. bp o Fo —1.81 (—34.11to +27.41)
—100 0 100
TABLE 4. ZIP load model parametrs for reactive power.

Reactive power, Substation 1

Trans Exp. Koef E(b;) 95%CI
T1 Stat.  bg.0 HH 17.39 (—7.81to 4+42.65)
TI  Stat. bo, = —34.23 (—81.22to +12.81)
Tl Stat. bg 2 - 17.84 (—4.00to 4+39.57)
Tl Test. bgo 10.33 (+9.20 to +11.46)
TI  Test. boa n —20.19 (—22.34to —18.04)
Tl Test. bg 2 L 10.86 (+9.83to +11.88)
T2 Stat. bgo 8.60 (—37.19to +41.58)
T2  Stat bo, +——e—— —17.87 (—81.461t0+70.45)
T2 Stat. bq 2 —eo— 10.27 (—32.26 to +40.88)
T2 Test. boo o 8.68 (+7.49 to 4+9.87)
T2 Test. b1 ° —18.23 (—20.52to —15.95)
T2 Test. bo.o o 10.56 ( 49.46 to +11.65)

—50 0 50

Reactive power, Substation 2
Trans Exp. Koef E(b;) 95%CI
TI  Stat. bgoo ? 7.38 (—43.98t0 +76.35)
TI  Stat. bos ~18.47 (—147.70 to +81.21)
Tl Stat. bg,2 10.81 (—36.24 to 4+72.35)
Tl Test. bgo 6.40 (+5.59 to +7.20)
TI  Test. boa —13.29 (—14.84to —11.73)
Tl Test. bg 2 7.89 (+47.14to 4-8.65)
T2 Stat. bgo o 0.18 (—26.93 to +40.76)
T2 Stat. bg, — o ~1.38 (—79.75 to +48.99)
T2 Stat. bq 2 o 2.20 (—21.06 to +39.99)

—100 0 100

Each aggregate load is characterized by its own unique load
model. This fact is confirmed by the results of processing
experimental data for two substations with a similar load
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structure, but different configurations and the length of the
6-35 kV power supply network.

It is necessary to have as wide voltage range as possible
to obtain statistically significant load model parameter esti-
mates. In this case, the wider the voltage range, the smaller
the confidence intervals of the load model parameters will be
and the higher the probability of identifying more complex
relationships between power and voltage.

Concluding the discussion of the results, we would like
to highlight the scope of the proposed approach. The
statistical-based approach works quite well on the aggregate
load nodes, in which the load is in one statistical equilib-
rium condition for enough time periods. But, for example,
an attempt in the same way to process continuous measure-
ments data of the substation that feeds an automobile plant
assembly line was unsuccessful. This is due to the fact that the
sharply variable nature of the load allows to obtain the power
system reaction, but does not give any information about
the load model. It is possible that the use of more complex
data processing algorithms for each statistical equilibrium
condition of the load, in comparison with OLS, will solve this
problem.

VIil. CONCLUSION

The experiments results showed that static load characteris-
tics determination is fundamentally possible on the basis of
voltage current measurements, active and reactive power. The
use of the statistical method makes it possible to analyse the
available data of SCADA systems using modern methods and
Data Science software packages.

The area of the electric grid selected for experimental
studies contains about 90 % of the load in the oil industry.
A characteristic feature of this load is a uniform load curve.
This allows us to sufficiently accumulate large amounts of
current measurement data for the close composition of indi-
vidual electrical receivers in the network under study. This
makes it possible to accumulate large arrays of measurement
data for close switched-on composition and operational mode
of individual electric receivers in the distribution network of
0.4...6 kV. At the same time, the question of the possibil-
ity of using a statistical method for an electric load, which
include the composition and mode of operation of which
changes during the day (for example, utility load), remained
unexplored.

In this investigation:

o The possibility of using a statistical approach to solve
the problem of estimating the load models parameters
based on archived SCADA data is shown.

o The load models parameters obtained from statis-
tical processing results of archived SCADA data
(tables 1, 2, 3 and 4) are presented.

o The shortcomings of the statistical approach for process-
ing archived SCADA data are revealed; i.e., the inabil-
ity to predict the load actual behavior at large voltage
deviations, and the significant difficulties in collecting
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statistical information for the load with sharp variable
behavior.

When processing the archived data, the most reliable
results were obtained only for the case of linear load model.
This is due to the small-supply voltage on substation tires
under survey during the day.
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