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ABSTRACT In this paper, I respond to a critique of one of my papers previously published in this journal,
entitled ‘Dr. Bertlmann’s socks in a quaternionic world of ambidextral reality.’ The geometrical framework
presented in my paper is based on a quaternionic 3-sphere, or S3, taken as a model of the physical space in
which we are inescapably confined to perform all our experiments. The framework intrinsically circumvents
Bell’s theorem by reproducing the singlet correlations local-realistically, without resorting to backward
causation, superdeterminism, or any other conspiracy loophole. In this response, I demonstrate point by
point that, contrary to its claims, the critique has not found any mistakes in my paper, either in the analytical
model of the singlet correlations or in its event-by-event numerical simulation based on Geometric Algebra.

INDEX TERMS Bell’s theorem, determinism, EPR argument, Friedmann-Robertson-Walker spacetime,
geometric algebra, local causality, local realism, quantum mechanics, quaternions, Möbius topology.

I. INTRODUCTION
Mathematical constructions are often obfuscated rather than
enlightened by their misplaced criticisms, and the recent
critique in [1] of the geometrical 3-sphere framework for
local-realistically underpinning quantum correlations I have
presented in [2]–[6] is no exception. Therefore, in Section III
below I first summarize the 3-sphere framework in some
detail before responding in Section IV to the critique in [1].
While the critique is focused on the 3-sphere model presented
in my latest paper [6], it does not raise any new questions.
The issues raised therein have been extensively addressed by
me already, for example in [7]–[9]. It is unfortunate that the
critique in [1] does not directly address any of my previous
responses. In this regard, my response [10] to a separate
critique is also of interest. In addition to these responses,
the critique in [1] has also overlooked the large number of
specific questions that are answered in the appendices of [5]
and [6].

The motivations behind the critique in [1] seem to stem
from the fact that the geometrical framework I have presented
in [2]–[6] appears to contradict the well-known mathematical
theorem proposed by Bell [11]. But as we shall soon see,
the facts are not as black andwhite as the critique has claimed.
The proof of Bell’s theorem relies on the strong correlations
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predicted by the entangled quantum states, such as the singlet
state. The claim of the theorem is that no local and realistic
theory of the kind espoused by Einstein can reproduce all of
the statistical predictions of quantum mechanics, especially
those that are predicted using quantum entanglement. But
in [2]–[6], I have demonstrated that the strong correlations
observed in Nature, including those predicted by the singlet
state, have little to do with quantum entanglement per se.
In general, they are local and realistic correlations among the
limiting scalar points of an octonion-like 7-sphere [4], [12],
which is an algebraic representation space of a quaternionic
3-sphere, taken as the physical space. Thus, the assumptions
underlying [2]–[6] and those of Bell’s theorem are different.

By contrast, in its analysis the critique in [1] begins with
an incorrect version of the above model by writing some of
its equations incorrectly within a flat Euclidean space IR3.
It then derives a constant value of the singlet correlations,
E(a, b) = −1 for all detector directions a and b, by failing
to respect the geometrical properties of the 3-sphere, such as
the spinorial sign changes in the quaternions, criticizes this
incorrect value, and concludes that it has thereby criticized
the 3-sphere model of [2]–[6]. In the process, the critique also
violates the conservation of zero spin angular momentum.

But before I bring out such oversights from the critique [1],
in the next section I first review the status of Bell’s theorem
in order to highlight in which sense it is circumvented by the
3-sphere model of quantum correlations presented in [2]–[6].
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II. BOOLE’s INEQUALITY VERSUS BELL’s THEOREM
Much is made in the critique [1] of the so-called ‘‘theorem’’
of Bell that claims that the models such as the one pre-
sented in [2]–[6] are impossible. But mathematically a
theorem with loopholes [13] is an oxymoron, while physi-
cally we know that the bounds on Bell inequalities are not
respected by Nature. The consequent conclusion that there-
fore Nature must be non-local, non-realistic, or conspiratorial
is not justified. For Bell’s theorem depends on a number of
assumptions [4], in addition to those of locality and real-
ism. And, in fact, Bell inequalities can be derived without
assuming either locality or realism, as shown, for example,
in Section 4.2 of [4].

That is not to say that Bell’s theorem [11] does not have
a sound mathematical core. When stated as a mathematical
theorem in probability theory, there can be no doubt about
its validity. But my work on the subject [2]–[6] does not
challenge this mathematical core, if it is viewed as a piece
of mathematics. What it challenges are the metaphysical
conclusions regarding locality and realism derived from that
mathematical core. My work thus draws a sharp distinction
between the mathematical core of Bell’s theorem and the
metaphysical conclusions derived from it. Let me unpack
these remarks to explain in what sense the local-realistic
framework presented in [2]–[6] circumvents Bell’s theorem.

As acknowledged in the critique in [1], the mathematical
core of Bell’s theorem goes back to Boole’s derivation of
an inequality within probability theory, one hundred and
eleven years before the publication of Bell’s theorem [14],
[15]. In the modern form, it is the famous Bell-CHSH [16]
inequality

−2 6 E(a,b) + E(a,b′) + E(a′,b)− E(a′,b′) 6 +2,
(1)

where each of the expectation values is defined as the average

E(a,b) =
∫

Λ
A (a, λ)B(b, λ) dρ(λ) (2)

that satisfies the EPR’s condition of perfect anti-correlation:

E(n,n) = −1, ∀ n ∈ S2 ⊂ IR3. (3)

Here λ ∈ Λ denotes a complete specification of the physical
state of the singlet system at a suitable instant, ρ(λ) denotes
the normalized probability measure on the space Λ of the
complete states, and A (a, λ) = ±1 and B(b, λ) = ±1 are
the measurement functions specifying the results observed
by Alice and Bob for a given run of the experiment. These
functions satisfy the following conditions of local causality:

Local Causality: Apart from the initial state or a
hidden variable λ, the result A = ±1 of Alice
depends only on the measurement direction a, cho-
sen freely by Alice, regardless of Bob’s actions.
And similarly, apart from the initial state λ,
the result B = ±1 of Bob depends only on the
measurement direction b, chosen freely by Bob,

regardless of Alice’s actions. In particular, the func-
tion A (a, λ) does not depend on b or B, the func-
tion B(b, λ) does not depend on a or A , and,
moreover, the initial state λ does not depend on a,
b, A , or B.

In addition, the probability measure ρ(λ) in (2) is required
to depend only on λ, and not on either a or b, which are the
freely chosen detector settings at the time of measurements.

Although I have introduced quite a bit of physics in the
foregoing, the mathematical core of Bell’s theorem is rather
simple. It can be stated simply as the claim that, for the prod-
uct A (a, λ)B(b, λ) = ±1 of any local-realistic functions
A (a, λ) = ±1 and B(b, λ) = ±1, the expectation value

E(a,b) = lim
n�1

[
1
n

n∑
k=1

A (a, λk) B(b, λk)
]

≡
〈
Ak(a)Bk(b)

〉
= −a · b (4)

is impossible to achieve, because it would lead to
‘‘violations’’ of the bounds of±2 claimed in (1) on the CHSH
correlator. The expectation values are therefore constrained to
be within

E(a,b) =


−1 + 2

π
ηab if 0 6 ηab 6 π

+3− 2
π
ηab if π 6 ηab 6 2π,

(5)

where ηab is the angle between the detector directions a
and b. Here I have rewritten the integral in (2) as a discrete
sum because that is what is observed in the experiments, with
λk being an initial state for the k th run of the experiment.

Now, the proof of Bell’s claim follows from the additivity
of expectation values, which allows us to equate the sum of
four separate averages of numbers +1 and −1 appearing in
the CHSH inequality (1) with a single average of their sum:

E(a,b) + E(a,b′) + E(a′,b)− E(a′,b′)
=
〈
Ak(a)Bk(b)

〉
+
〈
Ak(a)Bk(b′)

〉
+
〈
Ak(a′)Bk(b)

〉
−
〈
Ak(a′)Bk(b′)

〉
(6)

=
〈
Ak(a)Bk(b) + Ak(a)Bk(b′)

+ Ak(a′)Bk(b)−Ak(a′)Bk(b′)
〉
. (7)

This immediately reduces the sum (6) of four averages to〈
Ak(a)

{
Bk(b)+Bk(b′)

}
+Ak(a′)

{
Bk(b)−Bk(b′)

}〉
.

(8)

And because Bk(b) = ±1, if |Bk(b) + Bk(b′)| = 2, then
|Bk(b)−Bk(b′)| = 0, and vice versa. Consequently, using
Ak(a) = ±1, it is easy to see that the absolute value of the
above average cannot exceed 2, just as Bell concluded [16]:

−2 6
〈
Ak(a)Bk(b) + Ak(a)Bk(b′)

+ Ak(a′)Bk(b)−Ak(a′)Bk(b′)
〉
6 +2. (9)
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On the other hand, if we substitute E(a,b) = −a · b, etc.,
into (6), then it is easy to demonstrate that the bounds of ±2
in (1) can be exceeded for some detector directions, giving

−2
√

2 6 E(a,b)+E(a,b′) + E(a′,b)−E(a′,b′)62
√

2.
(10)

Consequently, according to Bell’s theorem, the quantum
mechanical correlations E(a,b) = −a · b are impossible to
achieve within the local-realistic framework specified above.

The above proof, however, while mathematically sound,
harbors a profound physical mistake. The mistake is hidden
in the assumption (7) of the additivity of expectation values,
and it is the same mistake that von Neumann’s ex-theorem
against the general hidden variable theories was based on,
as I have explained in [17]. Both von Neumann’s theorem and
Bell’s theorem unjustifiably assume the additivity of expec-
tation values within hidden variable theories to derive their
respective conclusions. However, for observables that are not
simultaneously measurable, such as those involved at one of
the stations in the Bell-test experiments, the equivalence of
the sum of expectation values and the expectation value
of the sum of corresponding measurement results, although
respected within quantum mechanics, need not hold within
hidden variable theories, as noted by Einstein [17]. Once this
oversight is removed from Bell’s argument and local realism
is implemented correctly, the bounds on the CHSH correlator
derived in Eq. (9) above work out to be ±2

√
2 instead of

±2, thereby mitigating the conclusion of Bell’s theorem [17].
Consequently, what is ruled out by Bell-test experiments is
not local realism but the additivity (7) of expectation values.

III. REVIEW OF THE S3 MODEL OF CORRELATIONS
Let us now review the quaternionic 3-sphere model for the
strong correlations proposed in [2]–[6]. As far as the correla-
tions predicted by the singlet state are concerned (which are
the focus of [1] and [6]), it will be sufficient to restrict to
the 3-sphere instead of its algebraic representation space S7

considered in [4]. A quaternionic 3-sphere can be defined as

S3 :=
{

q(ψ, r) := exp
[
J(r)ψ2

] ∣∣∣∣∣||q(ψ, r)||2 =1
}
, (11)

where J(r) is a bivector (or pure quaternion) rotating about
r ∈ IR3 with the rotation angle ψ in the range 0 ≤ ψ < 4π.
Here the notations and conventions of Geometric Algebra are
used [18]. Now, the central hypothesis I have put forward
in [5] and [6] is that the strong correlations we observe in the
Bell-test experiments are consequences of the fact that three-
dimensional physical space is best modeled as a closed and
compact quaternionic 3-sphere, S3, using Geometric Alge-
bra, as in (11), rather than as a flat and open space IR3 using
‘‘vector algebra.’’ This is by no means an ad hoc hypothesis.
Note that S3 happens to be isomorphic to the spatial part of
one of the well-known cosmological solutions of Einstein’s
field equations of general relativity, representing a closed
universe with positive curvature [5], [6]. It is universally

accepted that the spacetime geometries of our universe are
described by the Friedmann-Robertson-Walker line element

ds2 = dt2 − a2(t)dΣ2, dΣ2 =
[

dρ2

1−κρ2 +ρ2dΩ2
]
, (12)

where a(t) is the scale factor, Σ is a spacelike hypersurface,
ρ is the radial coordinate within Σ, κ is the ‘‘normalized’’
curvature of Σ, and Ω is a solid angle within Σ [19]. Since
we are primarily concernedwith a galactic, solar, or terrestrial
scenario, in what follows, without loss of generality, we will
restrict our attention to the current epoch of the cosmos by
setting the scale factor a(t) = 1 in the above line element.
It then allows three possible geometries for the spacetime
with the product topology IR× Σ so that the corresponding
spacelike hypersurfaces Σ can be isomorphic only to IR3,
S3, orH3, withH3 being a hyperboloid of negative curvature.
Among these possible three-geometries, only S3 represents a
closed universe with compact geometry and constant posi-
tive curvature. Moreover, the cosmic microwave background
spectra recently mapped by the space observatory, Planck,
now prefers a positive curvature at more than 99% confidence
level [20], [21]. And yet, topologically S3 can be constructed
by adding only a single mathematical point to IR3 at infinity:

S3 = IR3 ∪ {∞} . (13)

What is more, unlike IR3 and H3, S3 is parallelizable using
quaternions. That is to say, given three linearly-independent
vector fields forming a basis of the tangent space at some
point of S3, using quaternions it is possible to find three
linearly-independent vector fields forming a basis of the tan-
gent space at every other point of S3. In other words, it is
possible to set all of the points of a quaternionic S3 in a
smooth flowing motion at the same time, in any direction,
without a fixed point, or a pole, or a singularity, or a cowlick.
On the other hand, the tangent bundle of S3 happens to be
trivial: TS3 = S3 × IR3. This renders the tangent space at
each point of S3 to be isomorphic to IR3. Consequently, local
experiences of the experimenters within S3 are no differ-
ent from those of their counterparts within IR3. The global
topology of S3, however, is clearly different from that of
IR3 [2], [3]. In particular, the triviality of the bundle TS3

again means that S3 is parallelizable. As a result, a global
anholonomic frame can be defined on S3 that fixes each of
its points uniquely. Such a frame renders S3 diffeomorphic
to the set of all unit quaternions, as in (11). The proper-
ties of S3 are thus uniquely captured by the properties of
quaternions.

Now, given two unit vectors x and y in IR3 and a rotation
axis r, each element of the set S3 can be factorized into a
product of corresponding bivectors J(x) and J(y) as follows:

q(ηxy, r) = −J(x)J(y) (14)
= −(Ix)(Iy) (15)
= −I2xy (16)
= xy (17)
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= x · y + x ∧ y (18)
= cos(ηxy) + J(r) sin(ηxy), (19)

where I := e1e2e3, with I2 = −1, is the standard trivector,
ηxy is the angle between x and y, xy is the geometric product
between x and y, x ∧ y is the wedge product between x and
y, and J(r) is identified with x∧y

||x∧y|| . Comparing (11) and
(19), we recognize that the rotation angle ψ of the quaternion
is twice the angle between the vectors x and y:

ψ = 2ηxy. (20)

As a result, the characteristic spinorial sign changes exhibited
by the quaternions constituting the S3 can be expressed as

q(ηxy+κπ, r)=(−1)κq(ηxy, r) for κ=0, 1, 2, 3, . . . (21)

This equation expresses a key relation that reduces the singlet
correlations we observe in Nature to Dr. Bertlmann’s socks
type classical correlations [22], because, as we shall soon
see, it forces the product A B of the measurement results
A = ± andB = ± observed, respectively, by Alice and Bob
to fluctuate between the values A B = −1 and A B = +1
and vice versa. It thereby allows all four combinations of the
results,A B = ++,+−,−+, and−−, necessary to produce
the observed strong correlations between them.

Incidentally, in the algebra Cl(3,0) of a three-dimensional
space the four-dimensional object I ∧ v is necessarily zero
by definition. The vectors v in Cl(3,0) are thus defined as
the solutions of the equation I ∧ v = 0. Therefore, we can
write

Iv = I · v + I ∧ v = I · v. (22)

This choice is explained in Question 8 of Appendix B in [5].
Next, let us recall that the measurement results A and B

observed by Alice and Bob are events in spacetime. Within
the spacetime defined by the line element (12), they are thus
events in IR× Σ. Now, traditionally, in Bell-test experiments
Σ is implicitly identified with IR3. In other words, the three-
dimensional physical space is implicitly modeled as IR3.
Thus, traditionally, the results A and B observed by Alice
and Bob are assumed to be events in IR× IR3. But in my
model IR3 in IR× IR3 is replaced with S3, and thus S3 is
taken to be a spacelike hypersurface in spacetime, and hence
a surface of simultaneity. In other words, the results A and
B are viewed as events in IR× S3. But in the EPR-Bohm
type experiments the observed results are necessarily equal-
time events, otherwise called ‘‘coincidence counts.’’ Thus,
in my model they are points in S3 at the time of simultane-
ous measurements by Alice and Bob. These considerations,
thanks to the decomposition (14), lead us to the following
theorem.
Theorem 1: The quantummechanical correlation predicted

by the entangled singlet state can be understood as a clas-
sical, local, realistic, and deterministic correlation among
the pairs of limiting scalar points of a quaternionic 3-sphere

defined in (11), with the limiting scalar points defined by the
functions

S3 3 A (a, λk) := lim
s1→a

{+q(ηas1 , r1)}

≡ lim
s1→a

{
−D(a)L(s1, λ

k)
}

−−−−→
s1→a

{
+1 if λk = +1
−1 if λk = −1

}
(23)

and

S3 3 B(b, λk) := lim
s2→b

{
−q(ηs2b, r2)

}
≡ lim

s2→b

{
+L(s2, λ

k)D(b)
}

−−−−→
s2→b

{
−1 if λk = +1
+1 if λk = −1

}
, (24)

where the bivectors−L(s1, λk) and+L(s2, λk) represent the
two fermionic spins emerging from a common source that
are subsequently detected (possibly at a space-like distance
from each other) by two detector bivectors D(a) = I · a
and D(b) = I · b, freely chosen by Alice and Bob. I have
also assumed the handedness λk of S3 to be a fair coin
with 50/50 chance of being +1 or −1 at the moment of
pair-creation, making the spinning bivector L(n, λk) a ran-
dom variable relative to any given detector bivector such as
D(n) = I · n,

L(n, λk) = λkD(n)⇐⇒ D(n) = λkL(n, λk). (25)

The next question is: What will be the value of the product
A B of these results within S3? In other words, what will be
the value of the product A B when the results A and B are
observed by Alice and Bob separately but simultaneously in
‘‘coincidence counts’’ [4]? We can work out the value of the
productA B within S3 from the definitions (23) and (24) and
the ‘‘product of limits equal to limits of product’’ rule:

S3 3 A B(a,b, λk) = A (a, λk)B(b, λk) (26)

=
[

lim
s1→a

{+q(ηas1 , r1)}
] [

lim
s2→b

{
−q(ηs2b, r2)

}]
(27)

= lims1→a
s2→b

{
−q(ηas1 , r1)q(ηs2b, r2)

}
(28)

= lims1→a
s2→b

{−q(ηuv, r0)} (29)

= −1, (30)

where, for the moment, I have assumed that s1 6= s2, giving

ηuv := cos−1 {(a · s1)(s2 · b)
− (a · s2)(s1 · b) + (a · b)(s1 · s2)

}
(31)

and

r0 = (a·s1)(s2×b)+(s2 ·b)(a×s1)−(a×s1)×(s2×b)
||(a·s1)(s2×b)+(s2 ·b)(a×s1)−(a×s1)×(s2×b)|| .

(32)
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That the product of the two remote quaternions q(ηas1 , r1)
and q(ηs2b, r2) is yet another quaternion q(ηuv, r0) is not
surprising, because the set S3 defined in (11) is known to
remain closed under multiplication. A product of any number
of quaternions will result in yet another quaternion belong-
ing to S3. More importantly for our hypothesis, the product
A B(a,b, λk) is again a limiting scalar point,−1 in this case,
of the quaternion −q(ηuv, r0) that also belongs to S3.

The result (30), namely A B = −1, suggests that if Alice
finds spin to be ‘‘up’’ at her station, then Bob is guaranteed
to find spin to be ‘‘down’’ at his station, precisely mimicking
the perfect anti-correlation observed in Dr. Bertlmann’s socks
type correlations. This may give the wrong impression that
the product A B of the results observed by Alice and Bob
will always remain at the fixed value of −1. But because
of the spinorial sign changes described in (21), which any
quaternion in S3 — including the quaternion −q(ηuv, r0)
appearing in Eq. (29) as well as those appearing in the def-
initions (23) and (24) of the individual measurement results
A and B —must respect, the value of the product A B will
be altered. Moreover, variations in the detector directions a
and b will induce variations in the angle ηuv defined in (31),
which can be expressed as ηuv → ηuv + δ. For variation
δ = κπ, the quaternion −q(ηuv, r0) appearing in Eq. (29)
will then change its sign from −q(ηuv, r0) to +q(ηuv, r0)
for odd κ. As a result, the value of the product A B will
change from −1 to +1 for odd κ. We would thus have our
cake (i.e., Dr. Bertlmann’s socks type local-realistic interpre-
tation of the correlations) and eat it too — i.e., have the value
of the product A B fluctuate between −1 and +1:

A B ∈ {−1,+1}. (33)

In other words, all four possible combinations of outcomes,
++, +−, −+, and −−, will be observed by Alice and Bob
despite the correlations being Dr. Bertlmann’s socks type.

But that is only a necessary part of the singlet correlations.
In deriving the value −1 of the product A B in (30) we have
assumed s1 6= s2. That assumption, however, violates the
conservation of zero spin angular momentum of the singlet,

−L(s1, λ
k) + L(s2, λ

k) = 0⇐⇒ L(s1, λ
k) = L(s2, λ

k)
⇐⇒ s1 = s2 ≡ s, (34)

which necessarily holds during the free evolution of the spins
−L(s1, λk) and +L(s2, λk) from the source π0 until their
detections by D(a) and D(b), as specified in (23) and (24).
This condition, in the light of the analog (48) of the Pauli
identity discussed below, is also equivalent to the condition

L(s1, λ
k)L(s2, λ

k)=
{

L(s, λk)
}2

=L2(s, λk)=−1. (35)

As proved in Section VIII of [5] and Appendix A of [6], in the
context of EPR-Bohm experiments this algebraic condition
for the conservation spin angular momentum is equivalent
to the Möbius-like twists in the fiber geometry of S3. Thus,
the condition s1 = s2 is a part of the very geometry of the
physical space S3 within which we are inescapably confined

to perform our experiments. Therefore, the result (30), which
can be valid within the physical space modeled as IR3, cannot
possibly be valid within the physical space modeled as S3.

It is important to note that, even though the conservation of
zero spin angular momentum of the singlet implies s1 = s2,
the physical sense of s1 proceeding towards Alice’s detection
process (or measurement interaction) defined in (23) and s2
proceeding towards Bob’s detection process (or measurement
interaction) defined in (24) remain unchanged. Moreover, for
s1 = s2 the angle ηuv defined in (31) reduces to the angle
ηab between the detector directions a and b. As a result, for
s1 = s2 the product of the measurement results reduces to

A (a, λk)B(b, λk)
−→ lims1→a

s2→b

{−q(ηab, r0)}

= lims1→a
s2→b

{
− cos(ηab)− L(r0, λ

k) sin(ηab)
}
. (36)

Note that, so far, we have not taken the limits s1 → a and
s2 → b. But for s1 = s2 the only quantity in (36) that still
depends on the spin directions s1 and s2 is the rotation axis
vector r0, which, for s1 = s2, using (32), works out to be

r0 = (a·s1)(s2×b)+(s2 ·b)(a×s1)−(a×s1)×(s2×b)
sin
(
ηab
) .

(37)

Consequently, in the simultaneous limits s1 → a and s2 → b
characterising the measurement interactions defined in (23)
and (24) (during which spin angular momentum is no longer
conserved and therefore the condition s1 = s2 does not hold),
the rotation axis vector r0 in (36) reduces to a null vector:

lims1→a
s2→b

{r0} =
→
0 . (38)

As a result, the bivector in (36) also reduces to a null bivector:

lims1→a
s2→b

{
L(r0, λ

k) sin(ηab)
}

= L(
→
0, λk) sin(ηab)

= (J ·
→
0) sin(ηab), (39)

where J is a trivector representing the volume form on S3.
Consequently, the product A B in (36) tends to − cos(ηab):

A (a, λk)B(b, λk)
−→ lims1→a

s2→b

{−q(ηab, r0)}

= lims1→a
s2→b

{
− cos(ηab)− L(r0, λ

k) sin(ηab)
}
,

= − cos(ηab)− L(
→
0, λk) sin(ηab),

= − cos(ηab)− 0. (40)

Evidently, this tendency of A B holds for each run of the
experiment. Consequently, using the universally accepted
definition of the correlations function used in the Bell-test
experiments, the correlation between the results A (a, λk)
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and B(b, λk) observed by Alice and Bob work out to
give

EL.R.(a,b)

= lim
n�1

[
1
n

n∑
k=1

A (a, λk) B(b, λk)
]

(41a)

= lim
n�1

1
n

n∑
k=1

lims1→a
s2→b

{−q(ηab, r0)}

 (41b)

= lim
n�1

[
1
n

n∑
k=1
{− cos(ηab)− L(

→
0, λk) sin(ηab)}

]
(41c)

= − cos(ηab)− lim
n�1

[
1
n

n∑
k=1

L(
→
0, λk) sin(ηab)

]
(41d)

= − cos(ηab)− 0. (41e)

This corroborates my hypothesis that the observed singlet
correlations are correlations among the limiting scalar points
A (a, λ) = ±1 and B(b, λ)± 1 of a quaternionic 3-sphere.
It is also worth noting that the above derivation of (41e) is just
one of several different ways Theorem 1 is proved in [2]–[6].

Despite this inevitable result, replacing the global topology
of the physical space from IR3 to S3 may seem pointless,
because locally, in the topological sense, S3 is isomorphic to
IR3, similarly to how Earth (S2) is isomorphic to IR2. At each
point of S3 the tangent space is simply IR3. Consequently,
in local experiments the normalized directions such as a and
b can certainly be taken to be from S2 ∈ IR3. But that does
not rule out the possibility that they are, in fact, embedded in
a quaternionic 3-sphere, as I have proposed in [6]. An a priori
denial of the possibility of a global S3 nature of space would
be analogous to a denial of the spherical nature of Earth.

IV. POINT-BY-POINT RESPONSE TO THE CRITIQUE
Unfortunately, the critique in [1] ignores the above 3-sphere
model and its physical significance entirely. Instead of appre-
ciating that the model is based on the orientation λ = ±1 of
a closed and compact physical space S3, it insists on rein-
terpreting it as a hidden variable model based on a detached
binary number ±1 within a flat and non-compact space IR3.
While there are too many incorrect claims throughout the

critique, in this Section I focus on those that are significant.

A. CONCERNING ONE OF BELL’s ASSUMPTIONS
Ironically, the critique itself makes one of the implicit and
unjustifiable assumptions of Bell’s theorem quite explicit in
its statement of the theorem [1]:

In the language of probability theory, the mathe-
matical core of Bell’s original proof of his theorem
is the assertion that one cannot find a single proba-
bility space on which are defined random variables
Xa and Yb taking values in the set {−1,+1}, for
all a, b, unit vectors in R3, and such that

E(XaYb) = − a · b (1)

for all a, b. Moreover, the expectation values of Xa
and Yb are all zero.

But why must we assume unit vectors a, b to be in IR3? As
I have summarized in Section III, there are both theoretical
and observational reasons that compel us to model physical
space as a closed and compact quaternionic 3-sphere, or S3,
instead of a flat Euclidean space IR3, both being admissible
spatial parts of one of the most well-known cosmological
solutions of Einstein’s field equations of general relativity.
Moreover, as explained in several of my papers since 2007
[2]–[6], the correct language to model S3 as physical space
is Geometric Algebra, not vector ‘‘algebra.’’ This implies,
in particular, that the directions a and b freely chosen by
Alice and Bob to perform their experiments must be solutions
of the equation

I ∧ v = 0, (42)

where I is a volume form on the physical space S3 and v is
any vector built from the orthogonal directions {ex , ey, ez}
that characterize the Clifford algebra Cl(3,0). Once the phys-
ical space is modeled as S3 instead of IR3 in the manner
explained in Section III and characterized using the powerful
language of Geometric Algebra, the correlations between the
measurement results Aa and Bb observed by Alice and Bob
inevitably turn out to be E(AaBb) = −a ·b as proven in [6].
On the other hand, the standard interpretation of Bell’s

theorem adhered to in [1] is recovered in the flat geometry
of IR3. The S3 model becomes conducive to the traditional
interpretation of the theorem when the algebraic, geometri-
cal and topological properties of the compactified physical
space S3 are ignored. In that case the upper bound of 2 on
the Bell-CHSH inequalities is respected. Thus, the results
presented in [2]–[6] do not conflict with the standard inter-
pretation of Bell’s theorem outright but rather reproduces that
interpretation as a special case in the flat geometry IR3 of the
physical space. This is discussed in more detail in Section X
of [5].

B. CONCERNING A DENIAL OF BELL’s ASSUMPTION
In the last sentence of Introduction the critique [1] claims that

Bell does not take account of the geometry of space
because his argument, on the side of local realism,
does not depend on it in any way whatsoever.

But this claim is immediately contradicted in the critique in
the very paragraph that follows the sentence quoted above.
As I just discussed in the previous subsection, the critique
explicitly assumes the geometry of physical space to be IR3

in its statement of Bell’s theorem. Indeed, it is not possible for
us to escape the geometry of physical space while performing
our experiments. For this reason, nowhere in his writings
has Bell stated that his theorem holds independently of the
geometry of physical space. In fact, Bell’s proposed local-
realistic framework does assume implicitly that physical
space in which we are confined to perform our experiments is
modeled as IR3, as the critique does in the first paragraph of
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its Section II. It is unfortunate that this assumption is usually
not made explicit in the literature on the subject. A deeper
reflection on how the physical space is modeled in analyzing
the Bell-test experiments is necessary to uncover this implicit
assumption. In the analyses of such experiments ordinary
vector algebra (which does not, in fact, form an algebra at
all) within IR3 is implicitly assumed. On the other hand, I
have modeled the physical space as a quaternionic 3-sphere
using Geometric Algebra [18]. The fact that I have been able
to reproduce the strong singlet correlations by modeling the
physical space as a quaternionic 3-sphere is a confirmatory
evidence that the strategy to relax the unwarranted implicit
assumption built-in Bell’s theorem has been successful.

C. CONCERNING LOCAL CAUSALITY OF THE MODEL
In its Introduction, the critique [1] claims that ‘‘Christian’s
idea that quantum correlations are explained by the geometry
of space might seem appealing, but . . . such an explanation
would not be ‘‘local’’ in any meaningful sense.’’ However,
we are not at liberty to guess what is or is not a meaningful
sense of locality. Einstein and Bell have given us a very pre-
cise notion of local causality and I have strictly adhered to that
notion throughout my work on the subject. As is well known,
a violation of relativistic local causality can be separated into
two distinct parts: (1) a signalling non-locality incompatible
with general relativity, and (2) a non-signalling non-locality
compatible with general relativity. These two distinct parts
are captured by Bell in his definitions A (a, λ) and B(b, λ)
of local measurement functions for any given initial state λ
of a given physical system. This separates relativistic local
causality into independence of the parameter a from b (and
vice versa) preserving signalling locality, and independence
of the outcome A from B (and vice versa) preserving non-
signalling locality, in any EPR-Bohm type experiment.

In the model presented in [2]–[6] and the previous
section the question of signalling non-locality does not arise
because the quaternionic 3-sphere on which it is based is a
part of the solution of Einstein’s field equations of general rel-
ativity. And the question of non-signalling non-locality is also
implicitly addressed within the model by recognizing that
the measurement functions (23) and (24) define manifestly
local-realistic functions. Apart from the hidden variable λ,
the result A = ±1 depends only on the measurement direc-
tion a, chosen freely by Alice, regardless of Bob’s actions.
And similarly, apart from the hidden variable λ, the result
B = ±1 depends only on the measurement direction b, cho-
sen freely by Bob, regardless of Alice’s actions. In particular,
the function A (a, λ) does not depend on b or B and the
function B(b, λ) does not depend on a or A . Moreover,
the hidden variableλ does not depend on eithera,b,A , orB.

Unimpressed by this, the critique [1] continues its claim:
Christian seems to see the local spatial coordinate
system of Alice being the mirror image of Bob’s,
the two orientations being determined completely
at random, again and again! However, in modern
accounts of Bell’s theorem, angles and orientations

play no role whatsoever. The new generation of
loophole-free Bell experiments . . .measure corre-
lations between four binary variables: two binary
inputs and two binary outputs; one input and output
at each of two distant locations.

These comments provide a clear evidence that the critique
in [1] is based on a mistaken understanding of what is meant
by the orientation λ of the 3-sphere. The orientation λ of
S3 does not concern the local spatial coordinate systems of
Alice and Bob. It describes the handedness of the physical
space S3 itself. It specifies whether the 3-sphere is inside-
out or outside-out1 with respect to the detectors in a given
run of the experiment, with 50/50 chance. The value of λ
is fixed for the detectors D(a) = I · a and D(b) = I · b,
chosen freely byAlice and Bob, for all runs of the experiment.
But it is not fixed for the spins −L(s1, λ) and +L(s2, λ)
emerging from the source. Thus, λ plays a role of a hidden
variable, or an initial state of the system, relative to the fixed
handedness of the detectors. Since it plays the role of a hidden
variable, Alice and Bob need not be concerned about it at all.
All they need to worry about are four binary variables: two
binary inputs ‘‘a’’ and ‘‘b’’, and two binary outputs ‘‘A ’’
and ‘‘B’’; one input and one output at each of the two distant
locations.

D. CONCERNING EQUATIONS (32) AND (33) OF [6]
In Section III of the critique, in the paragraph before the one
containing equation (4), it is stated, incorrectly, that in [6] the
bivectors L(a, λ), L(b, λ), D(a), and D(b) are introduced
by equations (32) and (33). This incorrect starting point is the
reason behind much of the confusion manifest in the critique.

In fact, the spin bivectors L(s, λ) in [6] are introduced by
the bivector subalgebra (28), and the detector bivectors D(n)
are introduced by the bivector subalgebra (31); namely, by

Li(λ)Lj(λ) = −δij −
∑
k

εijkLk(λ) (43)

and

DiDj = −δij −
∑
k

εijkDk , (44)

respectively. In other words, the spin bivectors L(s, λ) and
the detector bivectors D(n) are introduced using two differ-
ent basis vectors, because of the experimental prerequisite
that the detectors are located at remote stations at spacelike
distance from each other, whereas the spins originate at the
central source, independently of the detectors. Indeed, it is
explicitly stated in [6] that the basis bivectors for the spins,

Li(λ) = J · e′i, (45)

are defined in terms of the basis vectors {e′1, e′2, e′3} and the
corresponding trivector J = e′1e′2e′3; and the basis bivectors
for the detectors,

Di = I · ei, (46)

1A good analogy of this is an ordinary hand-glove. If the outside
of a hand-glove is right-handed, then pulling it inside out will make it
left-handed.
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are defined in terms of the basis vectors {e1, e2, e3} and the
corresponding trivector I = e1e2e3. It is surprising that these
explicit definitions of Li(λ) and Di are missed in [1]. It is
not easy to notice relations (32) and (33) in [6] but miss the
explicit definitions (28) and (31) written in the same column.

In any case, once the above definitions (45) and (46) of
Li(λ) and Di specifying two different bivector basis are not
missed, with λ being the orientation of S3, then, as elaborated
in Question 13 of Appendix B in [6] leading up to Eq. (74),
the basis bivectors Li(λ) and Di are clearly related by λ as

Li(λ) = λDi ⇐⇒ Di = λLi(λ). (47)

Contracting on both sides of (47) with the components ni of
an arbitrary unit vector n then gives the relation (25) stated
above, and contracting the bivector subalgebra defined in (43)
above on both sides with the components ai and bj of arbitrary
unit vectors a and b gives the Pauli identity,

L(a, λ)L(b, λ) = −a · b− L(a × b, λ), (48)

with unit L(a, λ) := aiLi(λ) and unit L(b, λ) := bjLj(λ).
The above definitions allow the spin bivectors L(a, λ) and

L(b, λ) to relate to the detector bivectors D(a) and D(b)
by the orientation λ of S3 at the time of their measure-
ments, as specified by equations (32) and (33) of [6]. The
critique, however, ignores these definitions and insists on
interpreting the contingent relations (32) and (33) between
the spin bivectors and detector bivectors as the definition of
the spin bivectors. Moreover, the critique’s interpretation is
also physically incorrect. For when they emerge from the
common source the spins would be spinning about the direc-
tion s that would have no prior relation to what directions
a and b Alice and Bob may have chosen to perform their
measurements. And even if we go along with the critique’s
insistence on focusing on the contingent relations (32) and
(33) as a piece of mathematics, the internal consistency of
the 3-sphere model is robust enough to prevent the critique’s
strategy from succeeding, as I now demonstrate.

The critique begins by identifying L(a, λ) with λI · a and
L(b, λ) with λI · b, but neglects to make the identification

L(a × b, λ) = λI · (a × b), (49)

which is demanded by the geometrical consistency of vectors
within S2 ⊂ IR3. The critique [1] then claims:

It follows directly from Christian’s (32) and (33)
that

L(a, λ)L(b, λ) = λ2 I2ab = −ab, (4)

which does not depend on λ at all.
But that is not correct. The RHS of the critique’s Eq. (4) is
not independent of λ. In fact, λ is implicit in the product
−ab = −a · b− a ∧ b, not absent from it. It would be a
meaningless equation if its LHS ‘‘depended’’ on λ while its
RHS did not. Moreover, to begin with, Eqs. (32) and (33)
of [6] do not specify what the geometric product of L(a, λ)
with L(b, λ) is. Eq. (29) of [6] does. Thus, Eq. (4) of [1] is

rather presumptuous. And why must we stop at the first step
in Eq. (4)? Why not continue the derivation of the product by
recalling from the definition (45) above that, by definition,
L(a, λ) = J · a and therefore J · a = λI · a if we follow the
critique’s absolute identification, or, equivalently,

J = λI ⇐⇒ I = λJ , (50)

which then gives

L(a, λ)L(b, λ) = −ab (51)
= −a · b− a ∧ b (52)
= −a · b− J · (a × b) (53)
= −a · b− λI · (a × b) (54)
= −a · b− L(a × b, λ). (55)

But this is precisely Eq. (29) of [6] or (48) above, and its RHS
does ‘‘depend’’ on λ, contrary to the critique’s claim. In other
words, Eqs. (32) and (33) of [6] do not contradict its Eq. (29),
and consequently the critique’s argument and strategy fail.

Unfortunately, the critique’s conceptual mistake here is
even more serious. It treats the orientation λ of S3 as if it were
an argument of the spin bivector L(s, λ) by itself without
reference to the detector bivector D(n). But λ is not just a
number or an argument of L(s, λ) by itself. It represents the
handedness of the spin bivector L(n, λ) relative to that of
the detector bivector D(n), and vice versa, as specified in
Eq. (25) above. Thus, between L(s, λ) and D(n), λ has only
relative significance, and λ for the spin L(s, λ) is meaning-
ful only with respect to the detector D(n), and vice versa.
Consequently, using the identity (48) and the relations (25),
the products of two spin bivectors can be evaluated as

L(a, λ = +1) L(b, λ = +1)
= −a · b− L(a × b, λ = +1)
= −a · b−D(a × b)
= D(a) D(b) (56)

and

L(a, λ = −1) L(b, λ = −1)
= −a · b− L(a × b, λ = −1)
= −a · b + D(a × b)
= −b · a −D(b× a)
= D(b) D(a). (57)

It is now evident from the above equations that, once the
relevant products are correctly evaluated, the ordering rela-
tion between the spin bivectors L(a, λ) and L(b, λ) and
the detector bivectors D(a) and D(b) is equivalent to the
hypothesis that the orientation λ = ±1 of the 3-sphere is a
fair coin. This disproves the conjecture in the critique [1] that
equations (34) and (35) of [6] could not both be correct.

The rest of the argument in the critique pertaining to the
validity of the identity (48) is now moot. But it is instructive
to unpack it to appreciate the mistake in it. In fact, it is an
elementary mistake in ordinary vector algebra, as pointed
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out in Appendix C of [7]. The critique considers both right-
handed and left-handed cross products. But there is no such
suggestion in [2]–[6]. Contrary to what the critique considers,
namely, two cross products ×λ with λ = ±1 and the rules

a ×+1b = a × b and a ×−1b = b× a, (58)

the correct versions of these equations in vector algebra are

a ×+1b = a × b and a ×−1b = a × b. (59)

As pointed out in Appendix C of [7], in vector algebra the
cross product between vectors a and b remains the same in
both right-handed and left-handed coordinates. But by using
the incorrect equations (58), the critique arrives at its Eq. (7),

L(a, λ)L(b, λ) = − a · b− L(a ×λb, λ), (60)

which, according to its definition of a ×λb, is equivalent to

L(a, λ)L(b, λ) = − a · b− λ L(a × b, λ). (61)

Note that there is now a redundant λ on the right-hand side
of this equation in the second term, in contrast to the identity
(48) above. In terms of the basis, the equation takes the form

Li(λ)Lj(λ) = −δij − λ
∑
k

εijkLk(λ), (62)

with the extra λ appearing just before the summation. The
critique now claims that, with this equation, it has ‘‘restored
consistency.’’ But, in fact, what it has done is to introduce
inconsistency. For the above equation does not represent the
bivector subalgebra of Cl(3,0), and therefore it cannot consti-
tute a quaternionic 3-sphere. The correct bivector subalgebra
of Cl(3,0) is given by (43) discussed above, without the extra
λ. Thus, unlike Eq. (28) of [6], the critique’s Eq. (7) with the
extra λ is both conceptually and mathematically incorrect.

E. CONCERNING EQUATIONS (39) AND (40) OF [6]
The critique’s second incorrect claim concerns the definitions
(39) and (40) in [6] of measurement functions, which I have
reproduced in (23) and (24) above. The critique claims that
the functions (39) and (40) predict perfect anti-correlation

E(a,b) = −1 (63)

for all choices of measurement directions a and b, instead
of the cosine correlations derived in (41e) for a 6= b. This
claim is refuted in Appendix C of [7] and in [9], as well as in
Answers 9 and 14 in Appendix B of [5] and Answers 6 and
7 in Appendix B of [6]. But the claim is made again in this
critique, in Eq. (3) near the end of its Section II, and repeated
in the paragraph that includes Eqs. (9) and (10), which read

A (a, λ) = +λ, (64)
B(b, λ) = −λ. (65)

In other words, the critique identifies the measurement results
A and B observed at the space-like separated stations with
the initial state λ of the spins that originates from the source
located in the overlap of the backward light-cones of Alice

and Bob. But no such identification is made in the definitions
(39) and (40) of the measurement functions in [6]. What is
encapsulated by these functions are the measurement inter-
actions. Alice chooses her detector D(a) about a measure-
ment direction a and Bob chooses his detector D(b) about
a measurement direction b, at a space-like distance from
each other. The spins −L(s1, λ) and +L(s2, λ), on the other
hand, originate from the source located in the overlap of
the backward light-cones of Alice and Bob. And the results
A (a, λ) and B(b, λ) defined in (39) and (40) do not come
about until the time of measurements, and even then only via
two different quaternions within S3. The identifications (64)
and (65), however, allow the critique to write their product as

A (a, λ)B(b, λ) = (+λ)(−λ) = −λ2 = −1, (66)

for all choices of a and b. But for a 6= b, Eqs. (64) and (65)
are valid only for s1 6= s2. They ignore the conservation of
zero spin angular momentum, which, as we saw in Eq. (34),
amounts to setting s1 = s2 = s. In other word, the critique’s
equations (9) and (10) hold in general for all choices of a and
b if and only if the conservation of spin angular momentum
is violated, or, equivalently, the Möbius-like twists in the
Hopf bundle of S3 are ignored. That is to say, for a 6= b,
equations (64) and (65) hold if and only if the 3-sphere model
is abandoned and one stoops back to the flat geometry of IR3.

For convenience, I have reproduced one of the correct
derivations of the singlet correlations above in the paragraphs
containing equations (26) to (41e). This derivation preserves
the geometrical properties of the 3-sphere, without relapsing
back to the flat geometry of IR3 as the critique tends to do. It is
also worth noting that the derivation in (26) to (41e) above is
just one of several different ways it is demonstrated in [5]
and [6] that within a quaternionic 3-sphere, taken as a physi-
cal space, the correlations are inevitably E(a,b) = −a · b.
There is also a related conceptual issue that is important to

address here. Recall that there are, in fact, three different sets
of experiments involved in any EPR-Bohm type experiments.
Alice and Bob can independently detect spins of the particles
they receive at their respective observation stations, obtaining
the results ±1, with 50/50 chance, so that both 〈A 〉 = 0
and 〈B〉 = 0. These are two separate sets of experiments,
because Alice can perform her experiments and obtain the
same results regardless of Bob’s existence, and vice versa.
Their separate and independent results, A = ±1, 〈A 〉 = 0
and B = ±1, 〈B〉 = 0, respectively, are exactly what the
measurement functions (39) and (40) defined in [6] predict.

Then, in a third set of experiments, Alice and Bob jointly
and simultaneously, but again independently, detect spins at
their respective stations, regardless of which spin result the
other party has observed. Their recorded results are then
compared later by a third party, say Charlie, and calculated
to exhibit the correlation 〈A B = ±1〉 = − cos(ηab)
between the results A = ±1 and B = ±1. In actual
experiments this can be done only by ‘‘coincidence counts’’
of joint and simultaneous detections of spins by Alice and
Bob (cf. Section 4.1 of [4]). It is therefore a mistake to
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FIGURE 1. The results A and B are simultaneous points of a
quaternionic 3-sphere, or S3. Since S3 remains closed under
multiplication, the product A B is also a point of S3, with its binary value
±1 dictated by the geometry.

confuse the first two sets of experiments with the third set
of experiments.

Now recall that the results A and B observed simulta-
neously but independently by Alice and Bob are necessarily
events in spacetime. Within the spacetime defined by the line
element (12) together with Σ = S3 and a(t) = 1, they
are thus events in IR× S3. Thus, recalling that S3 — which,
as defined in (11), is a set of unit quaternions — remains
closed under multiplication (cf. Fig. 1), the correct question
to ask here is the one I have posed just before Eq. (26) in
Section III: What will be the average of the product A B
of the results A and B within the space-like hypersurface
S3? In other words, what will be the average of the product
A B when the results A and B are observed by Alice and
Bob separately but simultaneously, in ‘‘coincidence counts’’,
within S3? We can only work out the correct average of A B
within S3 from the quaternionic definitions (39) and (40), not
from their travesties (64) and (65), and that answer, contrary
to the claim in [1], works out to be E(a,b) = −a · b.

F. CONCERNING A PAIR OF BINARY VARIABLES
In the paragraph before last in its Section II, the critique [1]
claims:

For a =/ ± b, the probability distribution of the
pair of binary variables (Xa,Yb) predicted by quan-
tum mechanics gives positive probability to each
of four distinct joint outcomes (±1,±1). There
is no way one can simulate a single draw from a
probability distribution over four outcomes, each
of positive probability, as a deterministic function
of the outcome of one fair coin toss. Christian’s
hidden variable λ, which one may identify with
the elementary outcome ω of the alleged proba-
bility model on which all those random variables
are defined, is a fair coin toss, and in his model,
the results of measurement of spin of the two

particles in any two directions are functions only
of λ and of the relevant direction.

This argument is again based on a mistaken reading of what
the hidden variable λ is in the S3 model. In the S3 model λ
is not a detached fair coin toss in the flat space IR3. Instead,
it represents an orientation or handedness of the closed and
compact space S3 itself. The alternatives are thus between an
inside-out 3-sphere and outside-out1 3-sphere, with respect to
the detectors D(a) and D(b). This again illustrates that the
critique has misinterpreted what the 3-sphere model actually
is and how it predicts the correlations E(a,b) = −a · b.

G. CONCERNING THE COMPUTER CODE IN [6]
Next, the critique [1] turns to the computer code presented
in [6] and claims that it contains the following ‘‘revealing
line’’:

if(lambda == 1){q = A B;} else {q = B A;},

‘‘which serves to switch between the geometric product and
its transpose according to the sign of λ’’ [1]. But it is easy
to see that the above line is a faithful representation of the
analytical equations (34) and (35) in [6] that switch the order
of the detectors with respect to that of the spins (as annotated
in the code), thereby shuffling the alternative orientations of
S3, exactly as required by those equations. In other words,
the line in question is necessitated by the model itself. In fact,
the line in question is the very essence of the 3-sphere model.
Moreover, by now the code has been independently translated
by several professional programmers into different computer
languages, such as Python,Maple, R, andMathematica [23].
It is worth stressing here that the computer code included

in [6], by itself, is not the model, or even a proof of the model.
Its purpose is to demonstrate how the model works. It is thus
a pedagogical tool that verifies the analytical computations
presented in [6]. Needless to say, the analytical computations
stand on their own and do not require a numerical simulation
for their validity. On the other hand, the computer code for
an event-by-event simulation of the singlet correlations does
provide additional support to the analytical computations, for
it is both pedagogically and statistically illuminating.

By contrast, in the paragraph before last in its Section II,
and then at the end of its Section III, the critique [1] claims:

Christian’s computer simulation program uses a
fair coin toss to average Geometric Algebra prod-
ucts using the fundamental GA formula a · b =
1
2ab + 1

2ba. . . .About half the time, the ‘‘product
of the measurements’’ is defined by the code as the
quaternion −ab, the other half of the time it is the
quaternion −ba.

But these claims are not correct. According to the correct
algorithm, which is annotated in the code, the orientation λ of
the 3-sphere plays the role of a fair coin quite independently
of the definition of the geometric product. Moreover, contrary
to the claim in [1], the values of the scalar part of the product
ab are not ‘‘grouped into bins.’’ Instead, what is being plotted
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is the scalar part of the correlation directly with respect to its
associated angle ηab. The purpose of the code is to verify the
analytical calculations, which it does quite successfully.

V. CONCLUDING REMARKS
After summarizing the local-realistic 3-sphere model for the
singlet correlations presented in [6], I have demonstrated that
none of the claims made against the model in the critique [1]
are correct. In particular, contrary to its claim, the critique
has not identified any mistakes in [6], either in the analytical
model of the singlet correlations or in its event-by-event
numerical simulation. The critique begins with an incorrect
version of the 3-spheremodel bywriting some of its equations
incorrectly. It then derives a constant value for the singlet
correlations by failing to respect the geometrical properties
of the 3-sphere such as the spinorial sign changes in the
quaternions, criticizes this incorrect value, and concludes that
it has thereby criticized the 3-sphere model. This strategy also
violates the conservation of spin angular momentum. In this
paper I have addressed the claims in the critique [1] point by
point and shown that they are neither proven nor justified.
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