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ABSTRACT Community detection is a crucial challenge in social network analysis. This task is important
because it gives leads to study emerging phenomena. Indeed, it makes it possible to identify the different
communities representing individuals with common interests and/or strong connections between them.
In addition, it allows tracking the transformation of these communities over time. In this work, we propose
a dynamic community detection approach called Attributes, Structure, and Messages distribution-based
approach (ASMsg). In addition to the node attributes and the topological structure of the network, we use
the rate of transferred messages as the key concept of this approach. Therefore, we obtain communities
with similar members that are strongly connected and also frequently interacting. Furthermore, the proposed
approach is able to detect all possible communities’ transformations even if the communities are overlapped.
To demonstrate its efficiency, we widely test ASMsg on artificial and real-world dynamic networks and
compare it with representative methods. The results show the superiority of our approach in terms of detected
communities.

INDEX TERMS Community detection, dynamic social networks, attributed networks, community evolution,
overlapping communities.

I. INTRODUCTION
Social networks such as Twitter, Facebook, and Instagram
have attracted millions of users, therefore they get a great
deal of attention from researchers. Generally, social network
actors are divided into groups called ‘‘communities’’. Con-
ventionally, a community is described as a set of members
densely interconnected relatively to the rest of the network,
and they have a similar interest in topics and properties, for
example, may live in the same county, study in the same
university or work at the same company [11], [21].

Therefore, the social networks are usually represented
by graphs such as the social members are represented by
nodes, and the relationships between them are represented
by edges. These graphs consist of sets of communities
C = {C1,C2, · · · ,Ck}, where the community Ci is a dense
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group of nodes that have common properties. These nodes
are usually strongly connected to each other and loosely
connected to the remaining nodes in the network [5].

Due to the individual’s tendency to change, the join-
ing and leaving of the network is continuously happening.
For instance, new users can register on the social network
every moment and, at the same time, many others may
delete their accounts. That’s led to the evolution of the com-
munities as shown in Figure.1. For this reason, detected
communities must be updated according to the dynamic
of the network, and this represents one of the challenges
related to community detection [36]. The first problem in
the community detection process is related to the concept
of community structure. In fact, there is no exact defini-
tion of the ‘‘community’’ concept. In addition, dividing a
graph into subsets of nodes is an NP-hard problem [11],
so this problem needs to be approached with approximate
methods.
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FIGURE 1. Community transformations in evolutionary networks [25].

An additional problem is the lack of an agreed-upon defini-
tion for a dynamic community [12], [13]. A simple approach
defines it as a succession of static communities, but it is also
more realistic to model a dynamic community as a single
community with a set of events.

Themain goal of this work is to propose an approach for the
identification of overlapping communities in dynamic social
networks. This approach allows to track the evolution of the
communities over time. Our aim is to identify communities
with strongly connected members who are homogeneous and
daily interacted. For this reason, we use the network structure
and also the properties of social members. In addition, we use
the rate of transferred messages between the members as an
important parameter for our purpose.Moreover, our approach
is incremental: it consists of updating existing communities
according to the network’s evolution rather than recalculating
a new partition after each event seen in the network. By this
way, the communities in the current time step are detected
based on the communities of the past time frame. Therefore,
the detection of communities is done by only minor and
successive local modifications. In addition, our model is able
to allow all transformations on the communities: birth, death,
growth, retraction, as well as more complex events such as
split and merge. That is another contribution of our model
compared to many existing methods that are unable to detect
complex events.

The remainder of the paper is organized as follows.
Section 2 is dedicated to presenting some known approaches.
Section 3 outlines the proposed model. In Section 4, a series
of experimental results are given. Section 5 presents a sum-
mary and our suggestions for future work.

II. RELATED WORK
The detection of communities has attracted many researchers
and many algorithms have been proposed. Historically,
the first proposed methods were considered only a simple
capture of the network at a given moment, i.e., they view
the social network as a static structure in which neither

members nor relationships evolve over time [9], [10], [17],
[23], [28], [34]. Otherwise, real-world social networks are
dynamic. For this reason, nowadays a lot of attention has
focused on the question of detecting dynamic communities.
We can distinguish two categories of algorithms dealing with
dynamic communities: non-incremental and incremental.

A. NON-INCREMENTAL APPROACHES
Non-incremental approaches are based on the idea of dividing
the social network into several snapshots; each one is a static
network. Thereafter, an algorithm for detecting static commu-
nities is applied to each snapshot. Finally, amatching between
the detected partitions is applied to track the communities’
evaluation [4], [14].

To study the evolution of a community C belonging to a
partition P(t), Hopcroft et al. proposed in [15] to look for
the community C ′ of the partition P(t + 1) which has the
largest nodes’ number in common with C and which has
the size closest to it. Thereby, the authors defined the match
measure as the intersection between a community C of the
partition P(t) and a community C ′ of the partition P(t + 1).
This measure is defined as follows:

match
(
C,C ′

)
= min

(∣∣C ∩ C ′∣∣
|C|

,

∣∣C ∩ C ′∣∣
|C ′|

)
(1)

Louvain-OR-Attribute (LOA) and Louvain-AND-Attribute
(LAA) are two approaches that are proposed in [3]. The
authors combined the gain in modularity with the similarity
of users’ attributes to detect the communities. The authors
used Louvain approach [6] in which each node is considered
as an embryo community. By comparing each node with
its neighbors, the communities with the greatest possible
modularity gain are merged. This gain is defined by:

Gain− modularity = [
Sin + Li,C

2w
− (

St + Li
2w

)2]

− [
Sin
2w
− (

St
2w

)2 − (
Li
2w

)2] (2)

where Sin is the sum of edges weights inside the
community C , St is the sum of weights of edges connecting
the different nodes in community C , Li is the sum of edges
weights of the node i, Li,C is the sum of the weights of the
edges connecting the node i by C , and w denotes the sum
of the weights of all the edges in the network. Afterward,
the authors find the common attributes by the intersection of
both communities’ attributes. The limit of these methods is
that their outputs depend on the order in which the nodes are
considered.

Hoseini et al. [16] proposed an algorithm that uses the
amount of the exchanged data between the users of the net-
work. Besides this parameter, this algorithm is implemented
with two other parameters: 1) Betweenness centrality of edge
and 2) Similarity of the two nodes. A weight is allocated to
each parameter that represents the relative importance of each
one compared to the other. Thus, a cut parameter is defined
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as follows:

cut (s, t) =
α1 (CB (s, t))

α2 (RM (s, t)) .α3 (S (s, t))
(3)

where CB(s, t) is the betweenness centrality of the edge
connecting the nodes s and t , RM (s, t) is defined as the rate of
the sent messages, and S(s, t) represents the level of similarity
between s and t .
The major limit of non-incremental community detection

approaches is that are very time-consuming on a quickly
growing network. Moreover, community detection algo-
rithms are unstable because they can provide very differ-
ent results for two similar networks with minor differences.
Consequently, a modification between two partitions can be
explained as a real structural evolution of the communities or
is simply due to the used static algorithm.

B. INCREMENTAL APPROACHES
Unlike non-incremental approaches, the incremental
approaches maintain a partition having good quality and
update it on the basis of the networks evolution in order to
avoid repetitive computations [1]. In this case, the detected
partition will depend on the previous ones. Moreover,
the algorithms of incremental community detection are usu-
ally based on the checking of the changed nodes and edges.
Since the number of nodes to be updated is reduced, the time
efficiency of community detection will be increased [26].
The studies of the incremental approaches can be classified
into two subsections: (1) studies dealing with the topological
structure but ignoring the nodes’ attributes and (2) studies
considering the nodes’ attributes with the topological struc-
ture of the network.

1) COMMUNITY DETECTION IN NON-ATTRIBUTED
NETWORKS
Most existing incremental approaches consider only the
structure of the networks. This section provides a brief
overview of these approaches.

In [32], the authors proposed a filtering technique called
δ-screening which can be combined with any community
detection algorithm that uses modularity as an objective func-
tion. δ-Screening allows to speedily locate the parts of the
network that are probably affected by the latest events in the
network. At first, this technique detects a subset of nodes then
evaluates them at the start of every time step. This is to dis-
cover all those nodes that their community could potentially
change during δt; the rest of the nodes retain their previous
communities. The authors applied their proposed method on
two widely-used community detection algorithm: Louvain
algorithm [6], and smart local moving (SLM) algorithm [27].
This method is limited to be used only with an incremental
algorithm that uses modularity. In addition, it is not able
to detect overlapping communities. But in real-world social
networks, communities can always overlap since each node
may be a member of multiple communities. More recently,

this feature has attracted interest from many researchers who
proposed approaches to detect overlapping communities.

In [26], Shang et al. proposed amachine learning classifier,
called learning-based targeted revision approach (LBTR) that
is used to predict the nodes to be checked for revision of
community assignment. The authors used two classification
models: Logistic Regression and Support Vector Machines
(SVM). This approach is based on three bases: 1) Local mod-
ularity maximization, 2) Learning-based targeted revision to
reduce the computations for local modularity maximization,
and 3) Small community merging to increase community
detection quality. LBTR merges communities when their
sizes are smaller than a threshold compared to their neigh-
bor communities. To extract the initial partition, the authors
applied Louvain algorithm. Subsequently, they applied their
proposed approach and the baseline methods on the dynamic
networks every month.

Likewise, in [7], Cazabet et al. have developed the incre-
mental iLCD (intrinsic Longitudinal Community Detection)
model to detect overlapping communities. This approach
constructs the network edge by edge. As soon as there is a
clique 1 (having 3 or 4 members), a new community will be
created. Subsequently, iLCD updates existing communities
by integrating new nodes such that a node n is added to a
community C if the number of neighbors of n belonging to
communityC is greater than a given limit. The algorithm then
calculates the overlap of the communities based on the ratio of
nodes that they have in common. If this overlap is high, then
the two communities are merged together. The main limit of
this model is that the nodes and the links can only be added.
As a result, it does not allow the division and the death of the
communities.

2) COMMUNITY DETECTION IN ATTRIBUTED NETWORKS
When the nodes are described with a set of attributes, the net-
work is said attributed. In this case, it is crucial to consider
both the network structure and the members’ properties to
have densely connected members within the communities,
which share common attributes [35], [37]. A few recent
studies have considered attributed networks. In this section,
we present some well-known methods.

In [18], Guo et al. proposed an incremental algorithm
based on Improved Modularity (ICIM). Their proposed algo-
rithm divides the network into nodes and edges attributes.
First, the nodes that are affected by the network’s evolution
are detected, and the node’s edges are marked. Then, the com-
munity structure is updated based on the evolution of these
edges. One of the limits of this algorithm is that it runs slowly
in the process to find the neighbors of nodes.

Xia and Tuo [31] proposed an incremental community
detection method in dynamic weighted networks called
ICDW. This method associates the attributes with the topo-
logical graph to form weighted nodes and edges. The authors

1A clique is a subset of nodes, such that every two distinct nodes in the
clique are adjacent
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give a weight to each attribute. In addition, they use a thresh-
old ε, which denotes an average change rate of edge weight,
to decide whether an attribute’s weight changes significantly
or not. The edge is added to the increments only if the
change rate of its weight is greater than the threshold. This
algorithm limited to be used only with social networks that
change negligibly in adjacent network snapshots such as a
mail network.

More recently, SmaCDmodel is proposed by Zardi in [33].
It is a Multi-Agent system for the detection of dynamic com-
munities that employ the structural similarity, the topological
structure of the network, and the communication between the
social members to detect overlapping and dynamic commu-
nities. The authors used two types of agents: agent-node and
agent-community. The agents-nodes are loaded by observing
the network and updating the graph. In the case of a signif-
icant change in the network, the agents-nodes announce to
the agents-communities entities the observation of events that
can distort the existing communities. As a result, the agents-
communities react and update the community structure. The
drawback of this model is that the overlap is not considered.

Based on our review of existing approaches, we can con-
clude that the incremental approaches have great advantages
over other alternatives. Indeed, the adaptation of a partition
according to the evolution of the network (rather than recal-
culating a new partition at each step) ensures the stability of
obtained partitions and reduces the calculation time of the
communities. In addition, it can be concluded that the consid-
eration of the members’ attributes is very helpful to achieve
high-quality community detection and also to understand the
characteristics of communities very well.

III. MESSAGE DISTRIBUTION AND STRUCTURAL/
ATTRIBUTE SIMILARITIES BASED METHOD
Our proposedmodel called ASMsg is an incremental method;
it consists of finding an initial partition and then adapt-
ing existing communities according to the evolution of the
dynamic network. ASMsg integrates node attributes with the
topological structure of the graph in order to obtain similar
and strongly connectedmembers within the same community.
In addition, it uses the rate of transferred messages between
the social members in order to obtain communities members
who are often interacting with each other by exchanging
messages.

A. PROBLEM SPECIFICATION
In this work, we design the social network by an attributed
graph G = (V ,E,A) that is a single graph with a set of
modifications on nodes, edges, and the number of trans-
ferred messages, such that V = {v1, v2, . . . , vn} is the set of
nodes representing the members of the social network, E =
{e1, e2, . . . , em} is the set of edges representing the relation-
ships between the social members, and A = {a1, a2, . . . , ak}
is the set of attributes that are associated with each node
and that represent the properties associated with the social
members. The node vi has a vector {ai1, ai2, . . . , aik}

where its value on attribute aj is aij. Finally, the partition
P = {C1,C2, . . . ,Ck} is defined as the set of detected
communities where members within communities are closely
connected, having the same properties and they communi-
cate regularly by exchanging messages. The dynamic of the
network can be regarded as one of these possible events
(1) a new node added, (2) an existing node deleted, (3) a
new edge added, and (4) an existing edge deleted. We also
consider an extra important dynamic event in the network
which is the message exchange.

B. SIMILARITY FUNCTION
In this section, we present a new similarity measure that we
use to define the node’s attachment to a community. Based
on this measure, we carry out the partition of the nodes. This
measure is based on the different aspects of the network:
the topological structure of the graph, the nodes’ attributes,
and the rate of transferred message. Thus this measure is
composed of three parts as we present as follows.

1) SIMILARITY BASED ON MESSAGE DISTRIBUTION
In this work, we define the rate of exchanged messages
between a node n and a community C as the average number
ofmessages exchanged by n and its neighbors belonging toC .
It is defined as follow:

rate_msgt (n,C) =
∑

∀n′∈Nt (n,C)

msgt
(
n, n′

)
nbt (n,C)

(4)

where msgt
(
n, n′

)
is the number of messages transferred

between the node n and its neighbor n′ belonging to the
community C at time t , nbt (n,C) is the neighbors’ number
of n in the community C at time t , and Nt (n,C) is the set of
neighbors of n belonging to C .
When two members don’t exchange message between the

two successive time steps, it is important to consider the
communication previously carried out. So a node must still
close to its community and does not abruptly abandon it as
soon as it sends messages to another community. This is why
we define the message distribution between a node n and a
community C at time t as:

msg_distt (n,C) = rate_msgt (n,C)

+ (1− β)msg_distt−1 (n,C) (5)

where β is a parameter that models the forgetfulness and it is
between [0..1].

2) SIMILARITY OF ATTRIBUTES
In this work, we define the similarity of attributes of a node n
with the members of the community C as the average of the
similarities of n to its neighbors in C :

Simatt (n,C) =
∑

∀n′∈Nt (n,C)

simatt
(
n, n′

)
|A|.nbt (n,C)

(6)

where simatt (n, n′) is the number of common attributes’ val-
ues between n and its neighbor n′ belonging to C , nbt (n,C)
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FIGURE 2. Similarity of attributes of a node to two communities.

is the number of neighbors of n in the community C at a
time t , Nt (n,C) is the set of neighbors of n belonging to C
at a time t , and |A| is the number of attributes.

In Figure.2, we present an example of calculation of the
similarity of attributes of a nodeG to two communities. In this
example, we assign to each node four attributes: degree,
research area, location and affiliation. Based on the similarity
of attributes presented in Equation.6, G is seen more similar
to C1.

3) SIMILARITY BASED ON TOPOLOGICAL STRUCTURE
In order to maximize the number of inter-community edges,
we define the similarity based on topological structure of
a node n to a community C as the rate of the neighbors
of n belonging to C compared to the total number of the
neighbors of n:

Simstr (n,C) =
nbt (n,C)
nbt (n)

(7)

where nbt (n,C) is the number of neighbors of n in C at
time t , and nbt (n) is the total number of neighbors of n at
time t .

To define the attachment of a node to a community, we con-
sider the three defined similarities. Since the significance of
each aspect varies from one social network to another, to each
aspect is given a weight that measures the relative importance
of that aspect compared to the others.

The similarity of a node n to a communityC is then defined
as follows:

Sim (n,C) = α1.msgdistt (n,C)

+α2.Simatt (n,C)+ α3.Simstr (n,C) , (8)

where α1, α2, and α3 are the weights used for controlling the
relative importance of each aspect. These parameters can be
fixed depending on the importance and the availability of the
data in the studied network.

C. ALGORITHM
Our algorithm starts with an initial partition that can be
found by any community detection algorithm for a static
graph. In this work, we use Louvain method [6] due to its
good definition of a community structure that is based on
modularity. In addition, this method outperforms many other
modularity methods in terms of computation time [6] and it
can handle large network datasets (see section II-A). In the
next step, we update the graph by adding and removing the
nodes and the edges according to the observed dynamic of
the network seen between the time steps t − 1 and t . Then,
we select the nodes and the communities affected by the last
network’s transformations. Thereafter, we update the existing
communities. In the end, wemerge the communities that have
an important number of overlapping nodes.

Figure.3 illustrates the rationale of the proposed method,
which consists of two parts. First, the initial partition P0
is obtained by using the Louvain model at time t0. Next,
a specific process for detecting dynamic communities is
introduced.
Initial Community Detection: We employ the Louvain

model to detect the partition at the initial time t0.
Incremental Community Detection: After the detection of

the initial partition, an incremental community discovery
method is adopted at each time step. The process of incre-
mental community detection mainly involves the following
steps:
Step 1: Updating the graph according to the events seen

in the network between the time steps t − 1 and t by adding
and/or removing nodes and/or edges, and selecting the nodes
and the communities, affected by the last events, to be updated
in the next step.

• New Node: when a new member joins the social net-
work, a new node is added to the graph. All the new
nodes are selected to be handled in the next step, i.e. they
will be integrated into existing communities or they will
create new communities.
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FIGURE 3. The framework of the proposed community detection ASMsg.

• Remove of a Node: when a member belonging to a
community C disappears from the network, the node
corresponding to this member in the graph and all its
relationships (edges) are removed. The community C is
selected to be updated (as it can be divided or removed).

• New Edge: when a new relationship is created between
two members, a new edge is added to the graph between
the nodes representing these members. If these nodes
belonging to two different communities, these nodes are
selected to be updated afterward.

• New Message Between Two Nodes Belonging to Two
Different Communities: if two members belonging to
two different communities exchange new messages,
these nodes are also selected to be updated afterward.

• Remove of an Edge: when a relationship between two
members is broken, we remove the edge connecting the
two corresponding nodes. These nodes are selected to be
updated if they belong to the same community. In this
case, this community is also selected to be updated.

Step 2: Updating the selected nodes and selecting the com-
munities affected by the last updates,
• Handling the New Nodes: In this work, we suppose
that each new node n has at least a relationship with
an existing member or with at least one new node.
So in the first case, i.e. if n has some relationships
with existing communities, then it is added to the most
similar community using the similarity measure defined
in Equation.8. But, if it is related to a set S of new nodes
more than it is related to existing communities, a new
community is created containing n and S.

• Updating the Existing Nodes: For each selected node n
belonging to a community C , we check the possibility
to move n to a neighboring community (with which it
has new relationships and/or messages) using the simi-
larity measure presented in Equation.8. n migrate to the
community C ′ if its similarity to C ′ is greater than its

similarity to C and all the neighboring communities.
In this case, the community C is selected to be updated
in the next step. We note that the node n can also be an
overlapping node between two or more communities if
it has the same similarity to them.

Step 3: Updating the selected communities
For each selected community, firstly we check its size. If it

lost all its members, this community dies. If not, we check
if this community has to be divided. For that, we compare
the number of its internal edges by a threshold γ that we
have chosen to be the half of the maximum number of edges
expected inside the community. Indeed, the maximum num-
ber of internal edges expected in a community containing n
nodes is:

Max = n(n− 1)/2 (9)

The threshold γ that we use in this model is the half of the
maximum number of edges expected inside the community,
that is:

γ = Max/2 (10)

= n(n− 1)/4 (11)

So, if the number of the internal edges of a community C is
less than γ , then the community C has to be divided. To this
end, we apply the Louvain model to this community to detect
the sub-communities.
Step 4:Merging overlapping communities
At the last step, we check the overlap between the detected

communities and we merge those who have important num-
bers of overlapping nodes. In fact, we choose to merge the
community C with the community C ′ if the number of over-
lapping nodes shared by C and C ′ exceeds a threshold δ.
In this work, we have chosen that this threshold δ be 75%
of the size of C . So if (|overlap(C,C ′)| > δ.size(C)), then
we merge C with C ′.
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D. COMPLEXITY ANALYSIS
The time complexity of the ASMsg is composed of the time
complexity of the detection of the initial partition, and the
time complexity of the incremental community detection.

1) INITIAL COMMUNITY PARTITION
The initial partition is detected using the Louvain method
with the time complexityO(nlog(n)) such that n is the number
of the nodes in the initial capture of the network.

2) INCREMENTAL COMMUNITY DETECTION
The incremental community detection includes the update of
the graph, the selection of the nodes and the communities to
be updated, the update of the nodes and the communities, and
finally the merge of very overlapping communities.

The update of the graph consists of adding and deleting
nodes and edges. The time complexity of adding and deleting
nodes is O(|1Vt |.kt ), where 1Vt is the set of added and
deleted nodes and kt is the average degree of these nodes at
time step t . The time complexity of adding and deleting edges
is O(|1Et |) where1Et is the set of added and deleted edges.
The next step requires updating the selected nodes. Let’s

1V ′t be the set of the selected nodes and k ′t be the average
degree of these nodes. In this step, the similarity measure of
Equation.8 is calculated for each node in1V ′t . The time com-
plexity to calculate the message distribution is O(k ′t .|1V

′
t |).

The time complexity to calculate the similarity of attributes
is O(k ′t .|A|.|1V

′
t |), where |A| is the number of the attributes.

The time complexity to calculate the similarity based on the
topological structure isO(k ′t .|1V

′
t |). Thus, the time complex-

ity of this step is O(|A|.k ′t .|1V
′
t |).

In the next step, we verify if the selected communities will
be divided, that is done on time complexity O(din.R), such
thatR is the number of the communities to verify and din is the
average number of internal edges of these communities. The
detection of the sub-communities is performed using Louvain
model with a complexity equals O(nC lognC ) where nC is the
size of the community to be divided. Thus, the detection of
the sub-communities is done on O((n′C .log.n

′
C ).R) such that

n′C is the average size of the communities to be divided and R
denotes their number. Thus, the time complexity of this step
is O((din + (n′C logn

′
C )).R)

Finally, the verification of the overlap and the merge of the
communities is done on O(n′′C .M ) such that n′′C is the average
size of the communities to be merged andM their number.
For conclusion, the time complexity of the ASMsg algo-

rithm is divided into the complexity O(((nlogn) at the time
step t0 and the time complexity O((|1Vt |.kt ) + |1Et | +
(k ′t .|A|.|1V

′
t |)+((din+(n

′
C .log.n

′
C )).R)+(n

′′
C .M )) at the time

step t . In general, kt , k ′t , |A|, R and M are small. In addition,
|1Et | and din are negligible compared to the total number of
edges existing at a time step t , as to |1Vt |, n′C and n′′C are
negligible compared to the total number of nodes existing at
a time step t . So the time complexity at each time step is
relatively low. Therefore, the ASMsg method can be

performed to identify the dynamic communities of large-scale
networks.

IV. EXPERIMENTAL EVALUATION OF PERFORMANCES
We wanted to evaluate the performance of ASMsg using both
real-world and artificial datasets. To extensively research the
performance of ASMsg, we compared it with several state-
of-the-art community detection algorithms. Before giving the
results of this comparison, we briefly introduce the competing
methods.
• NMF [20] method based on nonnegative matrix factor-
ization (NMF) for discovering overlapping communities
using the node features. First, the authors use the tensor’s
frontal slices in order to depict the adjacency matrix at
each snapshot. Then, they apply a bayesian approach for
ranking.

• Agents [19] is a multi-agent and incremental method for
the detection of overlapping and dynamic communities.
This method uses agents to observe the network’s evo-
lution and consequently update their communities. The
update is performed using a similarity measure based on
the topological structure of the network and the similar-
ity of the attributes.

• SmaCD [33] is also a multi-agent and incremental
method that is based on the similarity of attributes,
the number of transferred messages, and the topological
structure of the network. It uses two types of agents to
observe the network’s events and update the detected
communities (see section II-B2).

• iLCD [7] is a dynamic clique-basedmethod for detecting
community structure (see section II-B1). This model is
one of the well-known approaches that detect communi-
ties in dynamic networks. Several models of community
detection have been compared with iLCD, we cite for
example [8], [30] and [29].

• DyPerm [2] is also an incremental dynamic community
detection method. It maximizes the permanence that is a
local community-centric measure to detect the dynamic
communities.

• LBTR [26] is an incremental method that is based on a
machine learning. In this approach, the Louvain method
is employed to obtain the initial partition. To update
the existing communities, a machine learning method is
implemented (see section II-B1).

A. DATASETS DESCRIPTION
1) REAL-WORLD DATASETS
To examine the effect of ASMsg, we selected a number of
benchmark real-world dataset. Table 1 shows the description
and the statistical properties of EIES network,2 fb-forum net-
work2, fb-msg network2, and ia-yahoo-msg network,3 such
that |V | and |E| denote the number of nodes and edges, and
|msg| denotes the number of messages.

2https://toreopsahl.com/datasets/
3http://networkrepository.com/dynamic.php

67034 VOLUME 9, 2021



H. Zardi et al.: Detection of Community Structures in Dynamic Social Networks

TABLE 1. Real-world networks characteristics.

2) ARTIFICIAL DATASETS
To get a related evaluation, it is important to know the
expected dynamic nature, and to have the exact partitionswith
which we can compare our results. Since exact partitions are
not always available for real-world graphs, we used artificial
networks. Accordingly, we used the extended LFR model
called LFRDA [24] in order to obtain artificial networks
that are similar to real-world networks. Many parameters,
such as the number of time steps, community size, mixing
parameters, and several events that cause the network struc-
ture transformation, can easily monitor the extended LFR
benchmark. In Table 2, we present a summary of LFRDA
generator parameters. One of the most important parameters
of this generator is the parameter for mixing communities that
is defined by:

µ(n ∈ C) =

∑
∀C ′∈P,C ′ 6=C comp(n,C

′)

d(n)
(12)

such that:
• d(n): the degree of n (number of its neighbors).
• comp(n,C’): the number of neighbors of n in C ′.
To check the validity of a community detection model on

an artificial network, a comparison is performed between the
obtained partition and the reference partition provided by
the generator. The more the partition is closer to the refer-
ence partition, the more efficient is the community detection
model. In the next section, we present the measure used to
perform this comparison.

B. EVALUATION MEASURES
There are several measures used in the literature to deter-
mine the distance between two partitions, but the most used
one is the Normalized Mutual Information (NMI) [11]. The
mutual information of two random variables (X ,Y ) defined
in probability theory and information theory as a quantity that
measures the statistical dependence of these variables. In the
probabilistic sense, the mutual information of a couple (X ,Y )
of variables represents their degree of dependence. The NMI
is defined as:

NMI (A,B) =
−2

∑
a∈A

∑
b∈B |a ∩ b| log(

|a∩b|n
|a||b| )∑

a∈A |a| log(
|a|
n )+

∑
b∈B |b| log(

|b|
n )
, (13)

such that A and B are two distinct partitions of the same
graph.

TABLE 2. Summary of LFRDA generator parameters.

For real-world networks, the obtained results are validated
by the weighted modularity that assesses the quality of the
obtained partition according to the internal and external edges
of its communities. It is the extension of the modularity for
weighted graphs, and it is defined as [22]:

Qw(P) =
1
2m

∑
ij

[Aij −
kikj
2m

]δ(Ci,Cj) (14)

where Aij represents the weight of the edge between i and
j, m = 1

2

∑
ij Aij, ki is the degree of i (it is the sum of the

weights of the edges of the node i), kj is the degree of j, Ci is
the community to which the node i is assigned, Cj that of j,
and δ(x, y) equals one if x = y and zero otherwise. Since the
modularity is based on the edges of a network, the higher the
number of edges inter-communities, the lower the modularity
becomes.

The second measure used for evaluation of the competing
methods in real-world networks is the performance, which
counts the number of correctly ‘‘interpreted’’ pairs of nodes,
i.e. two nodes that belong to the same community and that are
connected by an edge, or two nodes that belong to different
communities and are not connected by an edge. The definition
of performance, for a partition P, is [11]:

Performance(P) =
|{(i, j) ∈ E,Ci = Cj}| + |{(i, j) /∈ E,Ci 6= Cj}|

n(n− 1)/2
(15)

By definition, 0 ≤ Performance(P) ≤ 1.
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FIGURE 4. Performances of the competing methods on the ‘‘weighted modularity metric’’ for real-world networks.

C. EXPERIMENTAL SETUP
These experiments were performed on Intel Core i5 at
2.5 GHz and 8 GB of RAM under Windows 7 operating
system. We used JAVA as the programming language to
implement and execute the program codes and NetBeans Java
Integrated Development Environment as our standard IDE.

In these experiments, we chose to give the same impor-
tance value for each aspect in the defined similarity measure,
i.e., (0.33, 0.33, 0.33) for (α1, α2, α3) in Equation.8. However,
if the attributes or the number of exchanged messages are
not provided in the dataset, we gave the same weight (0.5)
for the remaining aspects. For the parameter β in Equation.5,
we have varied its value during these experiments, and the
best results were given when it equals 0.05.

D. RESULTS AND DISCUSSION
1) REAL-WORLD NETWORKS RESULTS
In these experiments, we tested the performances of the
different methods on real-world dynamic networks. The
weighted modularity and the performance are used to eval-
uate the efficacy of these algorithms. The evaluation results
can be seen in Figures.4 and 5.

In terms of weighted modularity, ASMsg, DyPerm and
SmaCD achieved the highest community detection efficiency
and obtained weighted modularity values of approximately
0.6 for EIES network and Fb-forum network, 0.5 for Fb-msg
network and ia-yahoo-msg network, with a minor superiority
for ASMsg. However, Agents and iLCD obtained reasonable
efficiency, and the weighted modularity values were better
than those of the NMF and LBTR methods for Fb-forum net-
work, Fb-msg network and ia-yahoo-messages network. For
EIES network, the results of Agents, iLCD, NMF and LBTR
were very close. For LBTR, initially, it introduced the same

weighted modularity value as ASMsg since this algorithm
uses the Louvain method to detect the initial partition. But
its results declined gradually over time.

In terms of performance index, as shown in Figure.5,
ASMsg performed very well for EIES and ia-yahoo-msg
networks, where it obtained the highest performance values.
SmaCD, Agents, Dyperm and iLCD achieved good quality,
and the detected partitions were better than those of LBTR
and NMF .

For fb-msg and fb-forum networks, ASMsg performed
nearly the same as SmaCD with the highest performance.
Moreover Agents, Dyperm, and iLCD performed similarly as
the performance values at each time steps were almost the
same. In contrast, LBTR declined rapidly. In regards to NMF ,
it did not perform well in these networks and it obtained the
lowest values of performance.

2) ARTIFICIAL NETWORKS RESULTS
To assess the efficiency of ASMsg, we used the dynamic
LFRDA benchmark model to create several synthetic net-
works with distinct features. We analyzed multiple states of
community structures to cover all possible transformation
of the communities: node switch, birth and death of the
community, extension and contraction of the community,
merge and division of the community, and the variation of
the complexity of the networks (the rate of inter-communities
edges compared to the total number of edges). The common
parameters of these networks were set as follows, without loss
of generality: time steps s= 10, number of nodes in each time
step n = 5000, average degree k = [10− 20], the parameter
for mixing communitiesµ= 0.4, and max degreemax = 40.
Node Switch: It refers to a node migration from one

community to another in a dynamic network in various
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FIGURE 5. Performances of the competing methods on the ‘‘performance metric’’ for real-world networks.

FIGURE 6. NMI of the competing methods on artificial networks with
different switch probability p.

time steps. The parameter p reflects the probability that a node
migrates from its community to another. The value of p has

been varied from 0.1 to 0.8 and we have fixed the parameters
k = [10 − 20], and µ = 0.4. We only give the results
when p is 0.1, 0.4, 0.6 and 0.8, because of the limitation of
space.

Figure.6 shows the NMI values of the different approaches
for networks with different switch probability p. The best
effect was acquired by the ASMsg method and the NMI
values obtained on each time step were approximately 0.97.
This shows that its effect was relatively constant over time.
Dyperm and SmaCD also performed well, reaching 0.90 in
the NMI values. The performance of Agents was also stable,
and the NMI values were effectively held at approximately
0.85. For iLCD, the NMI values were successfullymaintained
at 0.75. For LBTR, initially, very high NMI values were
introduced, but its results were gradually declined over time.
By contrast, NMF did not perform well and obtained the
lowest values of NMI.
Community Birth and Death: In order to examine the

efficiency of the different competing methods in the case of
community birth and death, we varied birth (B) and death
(D) parameters from 2 to 8 (knowing that the maximum
value that can be given to them is limited by the generator
at 8). We only give the results when (B) and (D) parameters
are 4, 6, and 8.

Figure.7 reveals the performance of competing methods
on NMI metric with different numbers of community birth
and death. From these results, we can conclude that ASMsg
was very stable. It obtained the highest values of NMI and
it reached 0.96 in these graphs. DyPerm and SmaCD also
performed well with the NMI values stable at approximately
0.85. Agents achieved acceptable results, and it obtained an
NMI value equals 0.75. LBTR started with very good quality,
but this performance degraded rapidly over time. In contrast,
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FIGURE 7. NMI of the competing methods on artificial networks with
different community birth (B) and death (D) values.

NMF did not perform well and obtained NMI values that
did not exceed 0.45 when B and D were less than 6 and
0.4 for the rest of the networks. iLCD obtained the lowest
values of NMI because this model did not allow the death of
communities.
Community Expansion and Contraction: To investigate the

efficiency of the competing methods on the expansion and
contraction events, the number of expansion (E) and contrac-
tion (C) were varied from 5 to 40. We only give the results
when these parameters are 5, 20, and 40.

As shown in Figure.8, ASMsg acquired the best qual-
ity of partitions. Its NMI values varied between 0.94 and
0.98. SmaCD also yielded good results, and its NMI val-
ues were stable at approximately 0.9. For DyPerm, iLCD,
and Agents methods, they achieved stable NMI values at
approximately 0.8. Contrariwise, the effectiveness of NMF
and LBTR methods decreased gradually over time.
Community Merge and Split: To more evaluate of the effi-

ciency of each model, we varied the number of merge (M)
and split (S) from 5 to 40.We only give the results when these
parameters are 5, 20, and 40.

Figure.9 describes the efficacy of the competing methods
in these experiments. It can be concluded that ASMsg per-
formed better than the other methods, and the NMI values

FIGURE 8. NMI of the competing methods on artificial networks with
different community expansion (E) and contraction (C) values.

were maintained between 0.9 and 0.95. SmaCD also yielded
good results, and its NMI values were between 0.80 and
0.87. Agents and DyPerm achieved acceptable results, and
their NMI values were between 0.7 and 0.8. The results of
iLCD decreased when the number of merged and divided
communities increased. The performance of NMF and LBTR
also decreased gradually over time.
NetworksWithDifferentMixing Parameter Values: In these

experiments, we varied the mixing parameter µ from 0.1
to 0.8. For the rest of the parameters, the default values were
considered.

Figure.10 shows the performance of the competing meth-
ods with different µ on NMI metric. We only give the
results when µ equals 0.1, 0.6, and 0.8. The best effects
were acquired by the ASMsg, Dyperm and SmaCD methods
and the obtained NMI values varied between 0.9 and 0.98,
when µ was less than 0.5. However, the effectiveness of
Dyperm and SmaCD methods decreased gradually when µ
exceeds 0.5, opposite to ASMsg that successfully maintained
the NMI values at 0.95. This indicates thatASMsgwas consis-
tent in producing exact partition across different complexity
of networks. Agents also performed well, reaching 0.80 in
the NMI values and its performance was also stable when
µ increased. For iLCD, the NMI values were successfully
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FIGURE 9. NMI of the competing methods on artificial networks with
different community merge (M) and split (S) values.

maintained at 0.70. By contrast, LBTR and NMF did not
perform well and obtained the lowest values especially when
µ exceeds 0.4.

3) EVALUATION OF SCALABILITY AND RUNTIME
To examine the scalability and the runtime of ASMsg,
we employed LFRDA to generate dynamic networks with
different scales. The number of nodes was varied from 1K to
1M and we fixed the parameters k = [10− 20], maxk = 40,
p = 0.4, µ = 0.4, and s = 10. Figure.11 shows the
running time of the competing methods in ten time steps.
We noticed thatDyPerm, Agents and SmaCD algorithms used
the highest runtime. In fact, the DyPerm runtime took three
days when the number of nodes exceeds 400k nodes. The
same runtime was reached by Agents and SmaCD when the
number of nodes exceeded 500k nodes. TheASMsg algorithm
was faster than these methods. This advantage maintained
as the size of the network increased. Therefore, ASMsg can
handle large-scale dynamic networks. For NMF , when the
number of nodes reaches 300K, it indicated that the available
memory space to run was insufficient. Moreover, although
iLCD and LBTR were faster than ASMsg, all the previous
experiments prove that its quality was better than these
approaches.

FIGURE 10. Performance, in terms NMI, of the competing methods on
artificial networks with different mixing parameter values.

FIGURE 11. The runtimes of the competing methods on the dynamic
LFRDA benchmark with nodes ranging from 1K to 1M.

V. CONCLUSION
In this work, we propose a new method for the identification
of overlapping communities in dynamic social networks. This
model allows to track the evolution of the communities over
time. To do so, we started by the definition of a similarity
measure to evaluate the node relationship to a community.
For this measure, we considered three important aspects: the
message distribution, the similarity of attributes, and the topo-
logical structure of the network. As a result, the members of
each community are similar, they have good communications
between them, and structurally they are well related. We have
put no restrictions either on social members’ dynamics or on
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the dynamics of their relationships: members join and leave
the network; relationships are created and broken. The results
of the experiments on both real-world and artificial networks
show that we were able to detect the real-world evolution
of the communities whatever the nature of the confronted
dynamic.

Throughout this study, we have assumed, like most of the
proposed research for the community detection, that individu-
als are related only by ‘‘positive relationships’’ (i.e., generally
relationships with friendships). Additionally, we measured
the communication between users in terms of the number of
exchanged messages. But, in online social networks, users
can also communicate by exchanging comments. Thus, each
user may be identified according to the semantic content of
the data that he creates or manipulates. Therefore, we can
be able to define users’ communities that share the same
semantic connections. Since it is not common to have a single
opinion on all topics, users can be negatively linked in the
case of disagreement of opinions between users, and that will
be our objective in further works.
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