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ABSTRACT Skin cancer is one of the most deadly cancer types with considerable number of patients.
Image analysis has largely improved the automated diagnosis accuracy for malignant melanoma and other
pigmented skin lesions, compared to unaided visual examination. Recent popular solution for automated skin
lesion classification is using deep neural networks, trained from large amounts of professional annotated
data, but that largely limits the model’s scalability. This paper exploits transfer learning for skin lesion
classification task with the help of labeled data from another domain (source), and proposes a multi-view
filtered transfer learning network to strongly represent discriminative information from different image views
with reasonable weighing strategy. This method also evaluates the importance for each source images, which
can learn useful knowledge with neglecting negative samples from source domain. The extensive skin lesion
classification experiments demonstrate ourmethod can effectively solveMelanoma and Seborrheic Keratosis
classification tasks with outstanding extensibility, and the discussion of the major components also testifies
the improvements of our proposed multi-view filtered transfer learning approach.

INDEX TERMS Skin lesion classification, transfer learning, multi-view, filtered domain adaptation.

I. INTRODUCTION
Skin cancer expresses its severe harm to human health,
where the malignancy leads to high fatality rate with fre-
quently diagnosed around the world [1]. One of the most
complicated types is malignant melanoma with consider-
able motality rates. Taken American as example, current
estimates are that one in five Americans will develop skin
cancer in their lifetime, and it is estimated that approximately
9,500 people in the U.S. are diagnosed with skin cancer
everyday [2]–[4]. Besides, research estimates that non-
melanoma skin cancer (NMSC), including basal cell carci-
noma (BCC) and squamous cell carcinoma (SCC), affects
more than 3 million Americans per year, and the overall inci-
dence of BCC increased by 145% between 1976-1984 and
2000-2010, while the overall incidence of SCC increased
263% over that same period [2], [5]. The major risk factor
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of skin cancer for all types of melanoma and deadliest form
is the exposure to natural/artificial ultraviolet light [3], and
the detection of skin cancer can be implemented by derma-
tologists with observing skin changes in size, shape, or color
of a mole or other skin lesion, the appearance of a new growth
on the skin, or a sore that doesn’t heal.

According to morphological signs mentioned above,
the expertized skin cancer recognition requires intricate
knowledge training in long-term period. However, sev-
eral early symptoms are unconspicuous to confuse clinical
examiner because of different training levels among der-
matologists. To handle this intractable issue and release
the labor-expensive workload, automated image recogni-
tion technology is integrated into intelligent skin lesion
diagnosis [6]–[8] with the development of deep learning.
Representatively, Pereira et al. [6] exploited the border-line
characteristics of the lesion segmentation and enhanced
the performance of skin lesion classification algorithms;
Jin et al. [7] utilized the neglected knowledge to propose

66052 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-3734-2632
https://orcid.org/0000-0002-7639-0696


J. Bian et al.: Skin Lesion Classification by Multi-View Filtered Transfer Learning

a cascade knowledge diffusion network for accurate skin
cancer classification task; Ghalejoogh et al. [8] proposed
an optimized neural and fuzzy approach for skin cancer
classification.

Notwithstanding automated skin lesion recognition
achieves performable diagnosis, it requires large amounts
of annotated data from specific scenario, which indicates
it is unable to correctly recognize skin cancer on another
scenario due to the large distribution-gap between them.
This disadvantage severely limits the scalability of auto-
mated skin cancer diagnosis models. Here, domain adap-
tation provides an efficient solution to overcome this lim-
itation, such as Li et al. [9] transferred knowledge from a
well-labeled source domain to an unlabeled target domain
by proposing adversarial tight match method and another
method [10] jointly exploited feature adaptation with dis-
tribution matching and sample adaptation with landmark
selection. To strengthen the adaptive capability of diagnosing
models, some attempts firstly introduce domain adaptation
into bridging distribution-gap among different skin disease
datasets [11]–[14]. They simply pre-train a classification
model on another skin disease dataset and fine-tune it on the
target data. But an effective domain adaptationmethod should
further distill useful knowledge from the source domain
and transfer the information into target domain. Thus, these
existing works [11]–[14] only reached poor performance
compared to completely supervised skin cancer recognition
models. The main reason of this phenomenon is that they
adopt universal source data into domain adaptation by global
feature learning. However, each source sample contains
unique relationship to target, and different views of each skin
image express various identical information for diagnosis.
Therefore, this paper mainly addresses two problems of how
to calculate correlations between source samples to target
domain and how to extract various information from different
views to further develop the cross-domain automated skin
lesion recognition task.

The primary motivations and contributions are briefly con-
cluded as follows.

A. MOTIVATION
(1) Existing skin lesion classification methods are either
supervised models with poor expansibility to new scenario,
or simply conduct transfer learning by distilling knowledge
from all source samples. Therefore, they involve many wrong
samples, which have extreme large domain gap to target data,
into transfer learning step.

(2) Most skin cancer recognition methods only conduct
feature learning on original skin images. That makes some
specific information from different views (such as morphol-
ogy, and texture) may be interfered by some noisy character-
istics (such as Gaussian noise) in feature learning procedure.
These specific information contribute most discriminative
features contained important category-cues for the skin can-
cer recognition task. Thus, the feature extraction should be
conducted from various image views.

(3) Compared to supervised models, existing domain adap-
tation methods for skin lesion classification achieved unsat-
isfactory recognition accuracy. That motivates us to develop
a novel domain adaptation framework named multi-view fil-
tered transfer learning approach with considerable improve-
ments both on scalability and performance.

B. CONTRIBUTION
(1) We propose a Multi-view Filtered Transfer Learn-
ing (MFTL) method for cross-domain skin lesion classifica-
tion to distill valuable source samples into adversarial domain
adaptation and learn various informations from different
image views. It can strengthen the representation capability
for skin lesion images.

(2) This work designs a source-sample-correlation mining
algorithm in deep neural network, and it measures the contri-
butions of each source sample to target domain according to
Wasserstein distance.

(3) MFTL employs several feature extractors and
classifiers for each view of skin images, leveraging
view-information according to their contributions to skin
lesion classification. Besides, the validating experiments
achieve average AUC of 91.8% on ISIC 2017 dataset [15].

II. RELATED WORKS
This section summarizes the researches on automated skin
lesion classification proposed in recent years, including
supervised and transfer learning models.

A. SUPERVISED METHODS IN SKIN LESION
CLASSIFICATION
Several researches about computer vision algorithms attempt
to address challenges in skin cancer diagnosis. In early
stage, Binder et al. [16] developed an artificial neural net-
work (ANN) for classifying benign and cancerous lesions
by dermatologic images with 100 images for training and
testing, achieving 88% specificity compared with 90% in
human diagnosis. Inspired by ANN model, machine learn-
ing methods such as support vector machine [17], K-nearest
neighbor [18], Naive Bayesian [19] are utilized into compu-
tational skin image analysis. The main drawbacks of these
methods are causing computational workloads in pre-process,
feature and pattern computation.

In recent years, convolutional neural networks play an
important role in skin lesion classification [20]–[23]. This
innovative application has achieved excellent classifica-
tion performance over conventional intelligent methods
[24]–[26]. Esteva et al. [24] demonstrated classification
of skin lesions using a single convolutional neural net-
work (CNN), trained end-to-end from images directly, using
only pixels and disease labels as inputs, and it achieved
performance on identification of the deadliest skin cancer
and most common cancers; Gessert et al. [25] proposed
a patch-based attention architecture that provides global
context between small and high-resolution patches with a
novel diagnosis guided loss weighting method, outperformed
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TABLE 1. The summary of symbols in this paper.

previous methods and improves the mean sensitivity by
7%; Harangi et al. [26] designed a deep convolutional neu-
ral network framework to classify dermoscopy images into
seven classes, using GoogLeNet Inception-v3 and achieving
remarkable improvement of 7%; Hosny et al. [23] integrated
deep convolutional neural network architectures (Alex-Net,
ResNet-101, and GoogLeNet) on augmented region of inter-
est skin images, with 99.29%, 99.15%, and 98.14% for
MED-NODE, DermIS&DermQuest, and ISIC 2017 datasets
respectively.

B. TRANSFER LEARNING IN SKIN LESION CLASSIFICATION
Even though deep learning achieves considerable improve-
ments for skin lesion classification compared to hand-crafted
feature representation, it requires large amounts of annotated
data from target application scenarios. That makes challeng-
ing obstacles for the model’s expansibility and efficiency,
because it is necessary to convene professional doctors with
costing much time to generate massive annotations. For the
sake of relaxing this inconvenience, many exploitations [13],
[14], [27]–[30] have been investigated to apply transfer learn-
ing into skin lesion classification. Specifically, transfer learn-
ing can distill useful knowledge from a source dataset to an
unlabeled target domain, which means that it is unnecessary
to mark cost-expensive annotations for target data only need-
ing another existing dataset. Kessem et al. [27] utilized a
pre-trained GoogLeNet to conduct transfer learning on ISIC
2019, and it successfully classified the eight different classes
of skin lesions; Hosny et al. [28] presented an automatic skin
lesion classification system with higher classification accu-
racy using the theory of transfer learning and the pre-trained
deep neural network; Le et al. [13] developed a deep learning
system that can effectively and automatically classify skin
lesions with an end-to-end deep learning process, transfer
learning technique, utilizing multiple pre-trained models and
novel class-weighted and focal loss, achieved top-1 classifi-
cation accuracy of 93%; Mahbod et al. [14] investigated and

exploited the transfer learning-based skin lesion classification
by a fusion approach with three-level ensemble strategy that
exploits multiple fine-tuned networks; Alqudah et al. [29]
employed GoogleNet and AlexNet with transfer learning
and gradient descent adaptive momentum learning rate for
classification of skin lesion images; Hosny et al. [30] pro-
posed a highly accurate method utilized transfer learning
with pre-trained AlexNet, and it achieved 98.70%, 95.60%,
99.27%, and 95.06% for accuracy, sensitivity, specificity, and
precision, respectively.

Though several transfer learning-based models have been
integrated into skin lesion classification, they are restricted
into fine-tuning pre-trained models and applying them into
target data. This transfer learning strategy is severely limited
in classification performance because they did not involve the
correlations between source and target samples, which can be
solved by novel transfer learning technologies.

III. OUR PROPOSED MFTL FRAMEWORK
A. PROBLEM DEFINITION
In our Multi-view Filtered Transfer Learning (MFTL)
framework for skin lesion classification, there contains
two skin image datasets of S and T . In detail, S =

{xs1, . . . , x
s
i , . . . , x

s
Ns} is treated as a completely anno-

tated source domain with its annotation set Y =

{y1, . . . , yi, . . . , yNs}; T = {x
t
1, . . . , x

t
j , . . . , x

t
Nt } denotes the

completely unlabeled target dataset. Ns and Nt represent
the numbers of source and target skin images, separately.
Here, the goal of MFTL is to distill knowledge about skin
lesion classification from filtered source samples into the
unlabeled target domain. To generate multiple views of
each skin image, we employ several view-generators V =
{V1(·), . . . ,Vm(·), . . . ,VM (·)} on both of source and target
data, andM is the number of skin image views.
In this study, we divide the proposed MFTL framework

into multi-view weighing representation and filtered domain
adaptation modules to investigate the transfer learning-based
skin lesion classification method.

B. MULTI-VIEW WEIGHING REPRESENTATION
This subsection introduces the preliminary feature rep-
resentation procedure with weighing each view for the
final class prediction. MFTL extracts feature representa-
tions for each image view by individual Convolutional
Neural Network (CNN) and classifies each view through
specific classifiers. Given a source skin image xsi , its
m-th view can be obtained by Vm(xsi ). Thus, M views
of xsi are generated by {V1(xsi ), . . . ,Vm(x

s
i ), . . . ,VM (xsi )},

through the view-generator sequence V . Corresponding to
each view, MFTL designs M CNN feature extractors F =
{F1(·), . . . ,Fm(·), . . . ,FM (·)} with capability of learning
appearance feature vectors from each view. To achieve the
class prediction for skin lesion images, a sequence of clas-
sifiers C = {C1, . . . , Cm, . . . , CM } are deployed after each
feature extractors. Besides, a novel weighing strategy is
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FIGURE 1. The proposed multi-view filtered transfer learning (MFTL) framework. Multi-view weighing representation module contains M CNN
feature extractors Fm|Mm=1 and classifiers Cm|Mm=1, which involve the view-weights wm|Mm=1 into the final prediction; Filtered domain adaptation
module chooses useful source samples to transfer valuable knowledge into target domain with the help of source annotations.

integrated after learning CNN feature vectors for each view.
This strategy can calculate their weight on the final prediction
task.

Mathematically, the feature extractor Fm and classifier Cm
form-th view are firstly optimized through cross-entropy loss
function,

Lcls(Fm, Cm) = −E(xsi ,y
s
i )∈S

Ns∑
i=1

yi log(σ (Cm(Fm(Vm(xsi )))))

(1)

where σ indicates the softmax function. In contrast to
employing a shared CNN feature extractor for learning
each view appearance representations, the individual Fm can
exploit more specific characteristics from each view and
provide more accurate information for each classifier Cm.

However, the contributions of each view are different to
the skin lesion class prediction task in target domain. Here,
we deploy a multi-view weighing component to estimate the
importance of each view (2), as shown at the bottom of the
next page, where wm is the weight of m-th view, and m′

denotes m′-th view in target domain. Besides, this form of
calculation ensures,

M∑
m=1

wm = 1,wm ≥ 0 (3)

In the prediction stage, we involve the view-weight into the
final classification given a target skin image x tj ,

Result(x tj ) =
M∑
m=1

wmCm(Fm(Vm(x ti ))) (4)

Here, this prediction function considers more discriminative
information from different views of skin image by the esti-
mated view-weights.

C. FILTERED DOMAIN ADAPTATION
1) DOMAIN ADAPTATION
As for the skin images in target domain, a sequence of sepa-
rate feature extractors F t

= {F t
1(·), . . . ,F

t
m(·), . . . ,F t

M (·)}
are deployed to encode target data into source feature
space. Here, we employ the adversarial learning strategy to
boost target features following source distribution, which
is achieved by a group of adversarial discriminators D =
{D1(·), . . . ,Dm(·), . . . ,DM (·)}. Specifically, the discrimina-
tor Dm and feature extractor F t

m for m-th view are opti-
mized adversarially. It maximizes the Wasserstein distance
of correctly classified target representations from F t

m and the
encoded source features from pre-trained Fm (charged by
discriminator Dm). In detail, F t

m attempts to maximize the
probability of Dm making a mistake, that is, minimizing the
Wasserstein distance. According to Generative Adversarial
Network [31] and Domain Adaptation [32], we assume each
discriminatorDm follows 1-Lipschitz, which is optimized by
maximizing the Wasserstein distance,

LD(Dm) = Exsi ∈SDm(Fm(Vm(xsi )))
−Ext∈T [Dm(F t

m(Vm(xt )))] (5)

Meanwhile, F t is optimized through minimizing,

LF t (F t
m) = −Ext∈T [Dm(F t

m(Vm(xt )))] (6)

Following this adversarial training algorithm, the target
feature extractorF t

m attempts to confuse the discriminatorDm
byminimizing theWasserstein distance between target image
features as the source ones. Besides, a gradient penalty for
trainable parameters in each discriminator Dm is deployed in
our method, following [31], [32],

Lgrad (Dm) = (‖∇F̂mDm(F̂m)‖2 − 1)2 (7)
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where F̂m represents the feature collection, containing both of
source and target skin image features from F and F t . Here,
the discriminator Dm is jointly trained by minimizing,

LDm = −LD(Dm)− λLgrad (Dm) (8)

where λ denotes a balance parameter with pre-defined value.
To train excellent feature encoders F t for target domain,

we also develop a multi-view adaptation loss inspired by
Deep Transfer Metric learning [33],

LF (F ,F t ) =
1
M

M∑
m=1

‖
1
Ns

Ns∑
i=1

Fm(Vm(xsi ))

−
1
Nt

Nt∑
j=1

F t
m(Vm(x tj ))‖

2 (9)

This multi-view adaptation loss conducts maximum mean
discrepancy constraint on each view from skin images, and it
simultaneously optimizes the parameters in Fm and F t

m.

2) SOURCE SAMPLES FILTERING
Considering the samples reveal individual correlations to
target domain, this paper proposes a source sample distill-
ing strategy to select more valuable source samples, which
can provide positive impacts on domain adaptation between
source and target domains. According to the definition of
Wasserstein distance, the model chooses more relevant sam-
ples with closer distance to target domain. It further improves
the target prediction taskwith the help of selected source sam-
ples. The multi-view correlation between source sample xsi to
target domain can be calculated by the following formula,

γi =
1
M

M∑
m=1

‖Dm(Fm(Vm(xsi )))−
1
Nt

Nt∑
j=1

Dm(Fm(Vm(x tj )))‖

(10)

According to multi-view correlation calculation, γi shows
its Wasserstein distance to the target domain. If xsi has closer
distance to target, it will have a smaller value of γi. Here,
we select half of source images (Ns2 ) with smaller γi, and

obtain the filtered source domain Ŝ = {xsk , yk}|
Ns
2
k=1. With

the filtered source samples, we develop the optimization of
classifiers in every views from Eq. 1 as,

Lfiltered (Cm) = −E(xsk ,yk )∈Ŝ

Ns
2∑

k=1

yk log(σ (Cm(Fm(Vm(xsk )))))

(11)

Therefore, the final prediction of the given target skin
image x tj can be obtained by Eq.4, owing to the joint training
of above analyzed network architecture and loss functions.

D. EVALUATION
1) DATASETS
We evaluate the proposed MFTL network on a popular
skin lesion dataset (ISIC2017) [15] to measure our perfor-
mance. Otherwise, this paper employs HAM10000 [43]) as
source dataset. In detail, ISIC2017 [15] dataset is released
in 2017 International Symposium on Biomedical Imaging
with a task of ternary classification for Malignant Melanoma
(MM), Seborrheic Keratosis (SK), and Benign Nevi (BN).
Specifically, ISIC 2017 challenge for skin lesion classifi-
cation provides MM with 374 training, 30 validation, and
117 test images, SK with 254, 42, 90 images, and BN with
1372, 78, 393 images. Here, we utilize the 600 testing images
to conduct experiments following [14]; HAM10000 [43] is
a large collection of multi-source dermatoscopic images of
common pigmented skin lesions, released in ISIC 2018 chal-
lenge (task 3). It contains 10,015 skin lesion images of 7
different categories including Actinic Keratosis, Basal Cell
Carcinoma, Benign Keratosis, Dermatofibroma, Melanocytic
nevi, Melanoma, Vascular Skin Lesion. Compared to ISIC
2017 with three categories, HAM10000 have seven skin
lesion classes. To keep class consistency in transfer learn-
ing between them, we select Melanoma and Basal Cell
Carcinoma (equal to Seborrheic Keratosis) images from
HAM10000 in our experiments, which plays the role of
source domain and ISIC 2017 is the unlabeled target domain.
As for data preprocessing, each skin image is reshaped into
224 × 224 pixels, and training images are augmented by
rotating, flipping, and crop operations in model optimization.

2) NETWORK ARCHITECTURE
In experiments, ResNet-50 [34] is employed as the archi-
tecture of feature extractors F and F t (before last fully
connected layer), and its last fully connected layer with
softmax is deployed as the framework of classifiers C. The
networks are firstly pre-trained on source domain and then
further trained on the proposed multi-view filtered transfer
learning framework, which converges in 25 epochs. As the
setting of multi-view, this paper integrates three image views,
including raw image view, texture view (LBP algorithm [44]),
and shape view (wavelet transformation [45]). Compared to
raw image with whole information, the texture-view only
contains texture features and shape-view has more concise
shape representations.

3) EVALUATION METRICS
To quantitatively evaluate the performance of our proposed
MFTL network, this paper adopts the accuracy, sensitivity,
specificity, and area under the receiver operating characteris-
tic curve (AUC) as evaluation metrics. These measurements

wm =
exp( 1

Ns

∑Ns
i=1 Fm(Vm(xsi ))−

1
M

∑M
m′=1

1
Nt

∑Nt
j=1 Fm′ (Vm′ (x tj )))∑M

m=1 exp(
1
Ns

∑Ns
i=1 Fm(Vm(xsi ))−

1
M

∑M
m′=1

1
Nt

∑Nt
j=1 Fm′ (Vm′ (x tj )))

(2)
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TABLE 2. Results (%) of our MFTL method and related models on skin lesion classification dataset (ISIC 2017). ‘−’ denotes no result reported in original
paper, and the number near the method denotes its reference.

are calculated by,

accuracy =
TP+ TN

TP+ FN + TN + FP
(12)

sensitivity =
TP

TP+ FN
, specificity =

TN
TN + FP

(13)

AUC =
∫ 1

0
tpr
(
fpr
)
dfpr = P(X1 > X0) (14)

where TP,FN , TN andFP denote the number of true positive,
false negative, true negative, and false positive, separately, tpr
and fpr represent the true positive rate and false positive rate,
X0 andX1 are the confidence scores for a negative and positive
sample, separately. The AUC value shows the probability that
a prediction model ranks a randomly chosen positive sample
higher than a randomly chosen negative one. Because ISIC
2017 utilized the AUC value as a gold indicator [15], this
work also integrates AUC as a major evaluating criterion.

IV. RESULTS
A. COMPARED WITH BASELINES
To demonstrate the superiority of our proposed multi-view
filtered transfer learning approach, we adopts three types
of methods to compare, including popular networks
(ResNet50 [34], RAN50 [35], and SEnet50 [36]), the top
three records in ISIC2017 challenge (#1 [37], #2 [38], and
#3 [39]), and recently proposed researches on skin lesion clas-
sification (ARLCNN [40], MCRes [41], FusingDeep [42],
TransferFusion [14]). Here, we briefly introduce recent
skin lesion classification methods. ARLCNN [40] pro-
posed an attention residual learning convolutional neural
network for dermoscopy images, composing multiple ARL
blocks, a global average pooling layer, and a classification
layer; MCRes [41] developed a feasible multi-channel-resnet
to assemble multiple residual neural networks for skin
lesion analysis, pre-treating the training data with different
methods; FusingDeep [42] combined intra-architecture and
inter-architecture network fusion for skin lesion images,
consisting of multiple sets of different CNN architectures

TABLE 3. Confusion matrix for skin cancer classification tasks.
MM denotes Melanoma and SK is Seborrheic Keratosis.

that represent different feature abstraction levels; Trans-
ferFusion [14] proposed a novel fusion approach based
on a three-level ensemble strategy that exploits multiple
fine-tuned networks trained with dermoscopic images at
various sizes. Their results of aforementioned methods and
our MFTL are summarized in Table 2, and the unreported
evaluation metrics in original papers are annotated by ‘−’.

As demonstrated in Table 2, the proposed MFTL method
obtains results (AUC, Accuracy, Sensitivity, Specificity) of
(87.9, 86.2, 62.4, 91.9)% on Melanoma Classification task
and (95.8, 88.0, 88.9, 87.8, 91.8)% for Seborrheic Keratosis
classification. The ranks of each metric are marked next to
the results. In detail, there are four metrics ranked in the sec-
ond best results and others are within top four performance.
Besides, we also visualize the ROC curve of our approach
on two tasks in Figure 2 and 3, which appears satisfactory
visualization on both of Melanoma and Seborrheic Keratosis
classification tasks. The confusion matrix is also specified
in Table 3, where represents MFTL obtains excellent execu-
tion on both classification tasks. Here, it is emphasized that
our MFTL only utilizes professional annotations from source
domain to predict unlabeled target images, which is benefit
from transfer learning and it can economize annotating cost
in practical new scenario.

1) COMPARING WITH POPULAR NETWORKS
The first comparison is between MFTL and several popular
networks (ResNet50, RAN50, and SEnet50), which can be
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FIGURE 2. Receiver operating characteristic curve of Melanoma
classification.

FIGURE 3. Receiver operating characteristic curve of Seborrheic Keratosis
classification.

initialized by transferring the pre-trained ResNet50 param-
eters. As reported in Table 2, the best average AUC
among them is achieved by our MFTL with promotion
of 1.1%(91.8-90.7)%. These three networks utilize all labels
of target dataset, and our method achieves absolute advan-
tages over them. This comparison reveals that our MFTL can
not only save the annotating cost, but also perform better
results compared to conventional neural networks.

2) COMPARING WITH ISIC CHALLENGE RECORDS
The experimental target dataset is released from 2017 Inter-
national Symposium on Biomedical Imaging, which is hosted
by the International Skin Imaging Collaboration challenge.
Here, we select top three records [37]–[39] of ISIC2017 chal-
lenge to compare with our method. Especially, Mene-
gola et al. [39] trained the deep neural network with up to

TABLE 4. AUC results of ablation study. MM denotes Melanoma and SK is
Seborrheic Keratosis.

7500 external images. Different from these records, MFTL
only utilizes external data (source) with labels, and trans-
fers knowledge into target domain. Virtually, these works
cannot be compared directly with each other due to the
differences in training dataset regardless of whether it is an
ensemble or not. Nevertheless, these reported results on ISIC
2017 challenge dataset can, to some extent, reflect the state-
of-the-art performance in the skin lesion classification task.
As shown in Table 2, ISIC #3 achieves the best accuracies
both on Melanoma and Seborrheic Keartosis classification
tasks; ISIC #2 performs the best specificity on both tasks;
and ISIC #1 also obtains the best sensitivity. As for our
MFTL, it achieves best AUC, second best accuracy and sen-
sitivity, and third best specificity on Melanoma classifica-
tion. Besides, it also performs second best AUC, accuracy,
and sensitivity on Seborrheic Keratosis classification task.
Besides, the average AUC of MFTL is larger than all of
these three winners, that reflects our transfer learning strat-
egy contributes a considerable improvement on skin lesion
classification task from 2017.

3) COMPARING WITH RECENT WORKS
From ISIC 2017, much research attention [13], [14], [29],
[40]–[42] has been paid on skin lesion classification prob-
lem. Here, we choose four recently proposed methods [14],
[40]–[42] as baselines to validate our performance, with
same experiments on the ISIC 2017 dataset. Considering
these state-of-the-art methods, our MFTL method achieves
the second and third best AUCs onMelanoma and Seborrheic
Keratosis classification tasks, separately, while other evalu-
ation metrics also plays satisfactory results over them. This
comparison reveals that exploiting transfer learning strategy
with multi-view and filtered domain adaptation can further
improve the classification performance on skin lesion clas-
sification task, while it can save much more professional
cost-expensive annotating works in practice.

B. DISCUSSION
The proposed MFTL network contains two major modules
of multi-view weighing representation and filtered domain
adaptation. Here, we evaluate them to observe their contri-
butions by learning representations from different views, and
transferring knowledge from all source samples without any
filtering operation. Otherwise, we also evaluate the influence
from different distance measurements in Eq.10 to calculate
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source-sample-to-target-contribution, and show the conver-
gence of our MFTLmodel. The evaluated results are reported
in Table 4.

1) EVALUATION OF MULTI-VIEW WEIGHING
REPRESENTATION
The multi-view weighing representation module considers
that different views express more discriminative information
from various aspects. Thus, we only learn CNN represen-
tations from original image without any other view, which
achieves AUC of 85.6% and 91.3% on MM and SK clas-
sification tasks. The distances of 2.3(87.9-85.6)% on MM
and 4.5(95.8-91.3)% on SK appear the contribution of this
module, and it proves that our proposed multi-view weighing
representation module plays an important role in our method.
Besides, we also evaluate the performance when the proposed
method employ single view in addition to utilizing original
image. In detail, we iteratively change the adopted single view
and calculate the average results as in Table 4. This evaluation
improves the average AUC by 1.1(89.6-88.5)% compared
to only utilizing original image, while it still expresses a
weaker recognizing capability (reducing 2.2% average accu-
racy) compared to multi-view setting. This modified experi-
ment elaborates that it is a necessary to utilize multiple image
views in skin lesion classification task.

2) EVALUATION OF FILTERED DOMAIN ADAPTATION
To evaluate the filtered domain adaptation module, we trans-
fer discriminative ability from all source samples without
neglecting any data, which obtains AUCs of 83.2% and
90.4% on MM and SK classification tasks. The considerable
improvements of 4.7(87.9-83.2)% and 4.4(95.8-90.4)% on
MM and SK classification tasks elaborate that the negative
samples has weaken the effectiveness of transfer learning and
filtered domain adaptation provides more information than
the multi-view weighing representation module.

3) EVALUATION OF DIFFERENT DISTANCE MEASURES IN
MULTI-VIEW CORRELATION γi
To reveal the influence of different distance measures, which
are used to measure the contribution γi of each source sample
to the target domain in Eq. 10, we integrate Cosine similarity
into γi, and it obtains 86.8% and 94.0% on Melanoma and
Seborrheic Keratosis classification, with reduction of 1.4% in
average accuracy. That demonstrates the utilized Euclidean
distance is more suitable in the measurement of multi-view
correlations among source samples to the target domain,
because it is the absolute difference between two high dimen-
sional data but the Cosine similarity is more sensitive to
directional data.

4) CONVERGENCE OF MFTL ALGORITHM
To discuss the algorithm convergence of our method, we paint
the loss variations along with the training epochs on
Melanoma classification experiments. The training and test-
ing losses can be seen in Figure 4, which expresses the

FIGURE 4. Losses of Melanoma classification on training and testing sets.

training converges in 25 epochs and both of training and
testing losses are lower than 0.04. Here, this experimental val-
idation proves that our MFTL model can be rapidly converge
and optimized within 25 epochs.

V. CONCLUSION
In this study, we attempt to solve the problem that exist-
ing skin lesion classification works have poor scalability
to new scenario, and several transfer learning researches
ignore the negative impact caused from source samples. Thus,
we propose a multi-view filtered transfer learning network,
which exploits information from different image views by
a novel multi-view weighing representation module, and
chooses useful source samples without negative effect from
source domain by a filtered domain adaptation module. The
experimental results of skin lesion classification perform our
excellent classification capability on ISIC 2017 dataset with
average AUC 91.8% on Melanoma and Seborrheic Kerato-
sis classification tasks. Besides, the evaluation of those two
major modules also prove their necessary contributions for
our method.
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