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ABSTRACT Although the hyperspectral image (HSI) classification has adopted deep neural
networks (DNNs) and shown remarkable performances, there is a lack of studies of the adversarial vul-
nerability for the HSI classifications. In this paper, we propose a novel HSI classification framework robust
to adversarial attacks. To this end, we focus on the unique spectral characteristic of HSIs (i.e., distinctive
spectral patterns of materials). With the spectral characteristic, we present the random spectral sampling and
spectral shape feature encoding for the robust HSI classification. For the random spectral sampling, spectral
bands are randomly sampled from the entire spectrum for each pixel of the input HSI. Also, the overall
spectral shape information, which is robust to adversarial attacks, is fed into the shape feature extractor to
acquire the spectral shape feature. Then, the proposed framework can provide the adversarial robustness of
HSI classifiers via randomization effects and spectral shape feature encoding. To the best of our knowledge,
the proposed framework is the first work dealing with the adversarial robustness in the HSI classification.
In experiments, we verify that our framework improves the adversarial robustness considerably under diverse
adversarial attack scenarios, and outperforms the existing adversarial defense methods.

INDEX TERMS Adversarial robustness, hyperspectral image classification, random spectral sampling,
spectral shape encoding.

I. INTRODUCTION
Hyperspectral images (HSIs) capture hundreds of abundant
spectral information of materials with narrow wavelength
band intervals (e.g., 5-10 nm). Therefore, HSIs contain a
discriminative spectral characteristic across the wavelength
for each material [1]–[3]. Such an advantage of rich spectral
information can help the HSI classification to identify every
pixel of HSI (i.e., ground objects in HSI), and it has been
applied into various applications, such as environment man-
agement, medical diagnosis, and ground surveillance [4]–[8].

Due to the usefulness of HSIs, the HSI classification has
been studied broadly, and deep neural networks (DNNs) have
accelerated its improvement [2], [9]–[16]. For the first HSI
classification framework adopting DNNs, Chen et al. [14]
combined principal component analysis (PCA) with DNNs to
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extract deep features of HSIs. They merged both spatial and
spectral features together to leverage each feature. Li et al. [2]
utilized fully convolutional neural networks (CNNs) with
deconvolutional and pooling layers to achieve a hyperspectral
feature enhancement. Also, they proposed an optimization
method to boost the classification performance. Furthermore,
in the recent days, 2D and 3D CNNs have been adopted
to exploit neighboring spatial and spectral features together,
focusing on improving the performances [9], [12], [13], [17].
Moreover, Hong et al. [18] presented an augmented lin-
ear mixing model (ALMM) to deal with the HSI unmixing
problem. Hong et al. modeled the main spectral variabil-
ity, scaling factors, by the endmember dictionary, and other
spectral variabilities which come from environmental effects.
A prior knowledge for the spectral variability is also designed
for effective data-driven learning. In [19], minibatch graph
convolutional network (miniGCN) is developed by exploring
the relations between each sample. Hong et al. [19] also
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investigated CNN and GCN feature fusion with various
strategies (i.e., additive, elementwise multiplicative, and con-
catenation fusion). Yao et al. [20] explored the non-local
smoothness property of HSIs and proposed non-local HSI
total variation (NLHTV) regularizer, enabling the spatial dis-
tribution of different endmembers to be diverse.

Although the HSI classification has achieved remarkable
improvements with DNNs, DNNs have a serious weakness.
It has been widely known that DNNs are vulnerable to
adversarial examples [21]–[24]. Adversarial examples are
the data perturbed by imperceptible noise, while they are
indistinguishable from clean data. Such examples induce
DNNs to perform incorrect predictions. To deal with the
problem, various defense methods have been studied, (e.g.,
adversarial training [22], [25], randomization [26], [27], and
ensemblemodel training [28], etc.). Adversarial training [22],
[25] is one of the well-known defense strategies. Adver-
sarial training uses adversarial examples for training DNNs
and improves the adversarial robustness. Lee et al. [26]
trained several ensemble networks, and randomly sampled
each layer from different networks for randomization effects.
Pang et al. [28] trained ensemble networks to promote diver-
sity of predictions achieving the adversarial robustness.

Most of aforementioned adversarial defensemethods focus
on DNN classifiers of the general image domains (e.g., RGB
domain). Although the threat of adversarial examples on HSI
has been raised [29], there is a lack of research to develop
the robust HSI classifier against adversarial attacks. Since
the HSI classification is used in safety and security-critical
applications such as artwork authentication [30], [31], med-
ical diagnosis [32]–[34], and homeland securities [35], [36],
defending against adversarial attacks is necessary to adopt
DNNs in the real-world. For example, in the case of homeland
security application, attackers could conceal petards, panzers,
or submarines.

Even though the existing defense methods can be applied
into HSI classifiers [22], [25], [26], [28], they cannot fully
exploit the advantage of HSIs (i.e., unique spectral infor-
mation). Moreover, when applying the existing adversarial
defense methods to the HSI classification frameworks, they
have the limitations: large increase in training time and net-
work parameters. In order to alleviate such limitations and
improve adversarial robustness at the same time, leverag-
ing the spectral characteristic of HSIs could be one of the
effective approaches.

In this paper, we introduce a novel HSI classification
framework robust to adversarial attacks. In the proposed
method, we exploit the spectral characteristic of HSIs,
to tackle the aforementioned limitations (i.e., more training
time and parameters) at the same time. The key idea of the
proposed framework is to make adversaries not being aware
of which spectral bands to be used during test time. Also,
we focus on exploiting overall shape of spectral bands to
improve the adversarial robustness. To this end, we propose
novel random spectral sampling and spectral shape feature
encoding. The proposed framework consists of two feature

FIGURE 1. The examples of spectral bands from university of pavia HSI
dataset. (a) Describes how the proposed random sampling works.
(b) Shows that the overall shapes of spectrum are not changed largely
under adversarial attack.

encoding paths; patch feature and spectral shape feature
encoding paths. The patch feature encoding path takes the
input patch cube (i.e., H×W×# of bands) including a target
center pixel with its neighboring pixels. Here, we propose the
random spectral sampling to sample random spectral bands,
not encoding the entire input patch directly. It is designed to
improve the adversarial robustness via randomization effects.
For each pixel, we first decompose the entire spectrum
(e.g., 100 bands) into several sub-spectrum (e.g., 5 bands
for each sub-spectrum). Then, one spectral band is sampled
categorically from each sub-spectrum, preserving the overall
shape of entire spectrum. After that, random sampled HSI
patch is fed into the patch feature extractor.With the proposed
random spectral sampling, as shown in Figure 1(a), some
sampled spectral bands (indicated by red dots) are perturbed
during adversarial attack generation. However, other sampled
spectral bands (indicated by blue dots) could secure the adver-
sarial robustness of the HSI classifiers. Also, even though we
sample spectral bands, we could preserve the overall pattern
of spectral bands.

Furthermore, we propose the spectral shape feature encod-
ing to leverage overall shape of spectral bands. Since the
adversarial attacks perturb the input data by adding small
noise, the perturbed noise could not change the overall
(increasing/decreasing) shape of the entire spectrum. For
example, as shown in Figure 1(b), the attacked spectra (right)
are not deformed from each original spectrum (left). To lever-
age the overall shape of spectrum, we extract the overall
shape information of the target pixel’s spectral bands from
the differences between the spectral bands. Then, we feed it
into the spectral shape feature extractor. Since we employ the
overall shape information of the spectral bands, which is not
changed largely even with adversarial attacks, the proposed
spectral shape feature encoding helps the HSI classifiers to
be robust against adversarial attacks.

In the experiments, we verify the effectiveness of the
proposed approach with various HSI classification networks
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(2D- and 3D-CNNs). The experiments demonstrate that
the proposed framework improves the adversarial robust-
ness significantly for the HSI classification, outperforming
the existing adversarial defense methods on public datasets
(University of Pavia and Salinas), under various adversarial
attack scenarios (FGSM, PGD, CW, Adaptive attack, Expec-
tation over transformation, and black-box attack). Moreover,
the proposed approach can be applied into the existing HSI
classification frameworks with small modifications.

Our contributions can be summarized as follows:
• To the best of our knowledge, it is the first work dealing
with the adversarial robustness for HSI classification,
exploiting the unique characteristic of spectral informa-
tion in HSIs.

• We present 1) random spectral sampling and 2) spectral
shape feature encoding to improve adversarial robust-
ness of the HSI classifiers considerably without large
increase of training time and parameters.

• We demonstrate the effectiveness of the proposed frame-
work with the general HSI classification networks and
public HSI datasets under various adversarial attack
scenarios.

II. RELATED WORK
A. ADVERSARIAL ATTACKS
It has been widely known that DNNs are highly vulnerable
to adversarial attacks making the networks conduct incor-
rect predictions. Adversaries generate adversarial examples
by maximizing the loss values to fool the networks. Fast
Gradient Sign Method (FGSM) [37] is a simple and fast
attack method. It generates adversarial examples by perturb-
ing the intensity of the pixel without any iteration. As an
extension of FGSM, Projected Gradient Descent (PGD) [22]
is proposed. It conducts FGSM iteratively with a small step
size. Carlini & Wagner (C&W) [38] attack is optimiza-
tion based adversarial attack method optimized with the
attack objective function to generate adversarial perturba-
tions. It generates adversarial perturbations that changes the
logit values with a minimal perturbation. Burnel et al. [23]
propose a natural hyperspectral adversarial example genera-
tion method with Wasserstein GAN [39]. It randomly gen-
erates adversarial examples by pre-trained generator for the
specific class. In the experiment, we verify the effectiveness
of the proposed method with widely used adversarial attack
benchmark methods (FGSM, PGD, and C&W). Through the
experiment, we verify that existing adversarial attack meth-
ods could sufficiently fool the existing HSI classification
network while the proposed method effectively defends such
attacks.

B. ADVERSARIAL ATTACK DEFENSE
To tackle the vulnerability against adversarial attacks, various
research have been studied, such as adversarial training (AT)
[22], [25], [37], ensemble model training [28], [40], and
randomization [26], [41]. As the early adversarial training
approach, [37] generates adversarial examples generated by

FGSM attacks, and trains the networks with them to improve
the adversarial robustness. However, it has the problem,
not effective with iterative attacks (e.g., PGD). Therefore,
Madry et al. [22] proposed another adversarial training using
the PGD attack. Such PGD-based adversarial training meth-
ods show great robustness performances, even if the network
is exposed to other types of attack. Another way to improve
the adversarial robustness is the ensemble model training
methods [28]. While training several networks, adaptive
diversity promoting (ADP) regularization [28] is proposed
to make non-maximal values of each network prediction to
be orthogonal. Also, Lee et al. [26] use the randomization
method, and present a random layer sampling (RLS) which
selects network layers from several trained networks during
testing. By generating different networks with RLS, it makes
the attacker could not effectively generate adversarial exam-
ples. However, when applying these defense methods into
the HSI classification frameworks, they have the limitations.
The adversarial training methods require very large training
time, because it generates adversarial examples consistently
during the network training. The other methods need to train
more than one network, so that, it should cause much increase
of network parameters. In this paper, we present a novel
HSI classification framework which is robust to adversarial
attacks. Moreover, it is so efficient that it alleviates the lim-
itations of previous works by leveraging the spectral charac-
teristic of HSIs effectively.

C. HYPERSPECTRAL IMAGE CLASSIFICATION
Hyperspectral image (HSI) classification is one of the most
active fields in remote sensing community, and it has shown a
great success with the advancement of DNNs. Chen et al. [42]
proposed deep CNN architectures to extract spectral-spatial
HSI features. By combining both spectral-spatial features,
they achieved great performance in HSI classification.
Haut et al. [17] presented a 2D-CNN residual-attention net-
work to characterize spectral-spatial information effectively.
Through the residual-attention network, they solved an over-
fitting problem and achieved high classification accuracy.
Also, Wang et al. [13] adopted 3D-CNN to construct a fast
and dense convolution network composed of spectral and spa-
tial encoding modules. Furthermore, generative adversarial
networks (GANs) have been adopted for HSI classification.
Zhu et al. [43] explored the usefulness of GANs for HSI
classification and designed 1D and 3D GANs as spectral
and spectral-spatial classifiers. The synthetic HSI samples
are used for data augmentation to improve classification
accuracy. Zhong et al. [44] proposed GAN and conditional
random field (GAN-CRF) based framework to integrate a
deep learning and a probabilistic graphical model for HSI
classification. In [44], dense CRFs are designed to give graph
constraints to achieve the classification accuracy improve-
ment. However, most of the aforementioned methods focused
on developing high accuracy networks or learning methods.
There is a lack of research to improve the adversarial robust-
ness for the HSI classification. Since HSIs are widely used in
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FIGURE 2. Overall architecture of the proposed framework. It is composed of the two feature encoding paths; patch feature
encoding path and spectral shape feature encoding path. The patch feature encoding path promotes randomization effects via
random spectral extraction, and the spectral shape feature encoding path extracts the shape feature of target pixel’s spectrum.
Both paths are designed to improve the adversarial robustness of the HSI classifiers.

many important applications such as artwork authentication
[30], [31], and homeland securities [35], [36], and medical
diagnosis [32]–[34], the robust and reliable HSI classification
framework needs to be considered. In this paper, we reveal the
problem of adversarial vulnerability on the HSI classifiers,
and propose a novel HSI classification framework to achieve
the adversarial robustness using the spectral information.

III. PROPOSED METHOD
A. PRELIMINARIES
Before we introduce the proposed framework, we provide a
brief description of adversarial attacks. Let x be the input
of the network, y be the target label corresponding to the
input x, θ the network parameters, and L(θ, x + r, y) be the
loss function used to train the network. The main goal of
the adversarial attack is to generate perturbation r that maxi-
mizes the loss L(θ, x+ r, y). At the same time, we anticipate
xadv(= x + r) to be indistinguishable from the clean input x
by giving the constraint ‖r‖ ≤ ε.
For fast gradient sign method (FGSM) [37], it generates

adversarial examples using the gradient of the loss function
with a single step. It generates adversarial examples that
increase the gradient of loss function. The equation can be
described as follows,

xadv = x+ ε sign(∇xL(θ, x, y)), (1)

where ε is the hyperparameter to manipulate the magnitude
of perturbations. It increases the loss function linearly.

Projected gradient descent (PGD) [22] is another attack
algorithm similar to FGSM, but it is a more powerful attack.
It generates adversarial perturbations with multi-steps (itera-
tive) as follows,

xadvt+1 = 5x+S[xt + α sign(∇xL(θ, x, y))], (2)

where 5x+S is to project perturbations within bounded
region x + S, t means iteration step, and α is the step size
to control the magnitude of perturbations for each step. PGD
also holds the constraint, ‖r‖ ≤ ε, to limit the maximum size
of perturbations, where S = [−ε, ε]D.

Carlini & Wagner (CW) [38] attack algorithm optimizes
the below equations to generate adversarial perturbations,

minimize ‖xadv − x‖ + c · l(xadv), (3)

l(xadv) = max[max{Z (xadv)c̃ : c̃ 6= yt }

−Z (xadv)yt ,−κ], (4)

where c denotes a constant chosen by a binary search, Z is a
logit value, c̃ is one of the classes except target class, yt , and
−κ is a fixed parameter to limit the maximum. It generates
adversarial examples that changes the logit values with a
minimal perturbation.

The above attacks can be categorized into white-box attack
methods that the adversary has the whole information about
the network, (e.g., network architecture, network’s weights,
loss functions used in network training, etc.). Since white-box
attack methods know the whole information about the net-
work, it is crucial for DNNs. In the experiment, we verify the
effectiveness of the proposed method with these white-box
attack benchmarks.

B. OVERALL PROPOSED FRAMEWORK
The overall architecture of the proposed framework is shown
in Figure 2. As the general HSI classification framework does
[17], [42], [45], the proposed framework takes HSI patch, x,
for the input. The input patch is encoded through two paths
(i.e., patch feature encoding path and spectral shape feature
encoding path). For the patch feature encoding, we gener-
ate random sampled HSI patch, xr, through the proposed
random spectral sampling. xr is fed into the patch feature
extractor and fully connected (FC) layers to acquire the patch
feature, fp. The patch feature extractor is composed of 2D
or 3D convolution and pooling layers, which are usually
used for the general HSI classifiers. Also, for the spectral
shape feature encoding, we extract the spectral shape vector,
sc, of the (target) center pixel from the input HSI patch x.
The spectral shape feature, fs, is obtained by feeding sc into
the shape feature extractor and FC layers. Then, we acquire
two features, fp and fs. The patch feature, fp, contains target
and neighboring pixels’ information for classification, and
it is robust to adversarial attacks via randomization effects.
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FIGURE 3. (a) Shows the overall flow of the random spectral extraction,
how to extract random spectral bands. We first decompose the input HSI
patch, x, and then, conduct random spectral sampling as shown in (b).
A single spectral channel is selected from C ′ number of channels, per
each pixel. After that, random sampled HSI patch, xr, is acquired by
combining random sampled HSI maps, m.

The spectral shape feature, fs, holds the overall shape infor-
mation of target pixel’s spectrum, which is not deformed
largely under adversarial attacks, so that, fs could have robust
property against the attacks. Finally, both robust features, fp
and fs, are combined to predict the class of (target) center
pixel. Note that, since the patch feature extractor is con-
structed as the general HSI classifiers, the proposed approach
can be applied into the existing frameworks. The details of the
proposed framework are described in the following sections.

C. RANDOM SPECTRAL SAMPLING
In the general HSI classification frameworks, the network
takes HSI patch for its input to classify the center pixel.
In this setting, since each pixel has a unique spectral pattern
of material, we focus on two points: 1) preserving its spectral
pattern to classify HSIs correctly, and 2) taking random-
ization effects to improve the adversarial robustness at the
same time. To this end, we present random spectral sampling
to extract random spectral bands. Figure 3(a) describes the
overall flow of the random spectral extraction. As shown
in Figure 3(a), we decompose the entire input HSI patch,
x ∈ RH×W×C , into the C ′′ number of small patches across
the spectral direction (sub-spectrum). Each of them can be
expressed as d ∈ RH×W×C ′ , where C ′ = bC/C ′′c. Then,
for each decomposed HSI patch, d , we conduct the proposed
random spectral sampling, as described in Figure 3(b). Given
each pixel, a single spectral channel is selected from C ′

number of channels by random spectral sampling. Each d is
composed of the C ′ number of spatial maps, p, that is, d =
p1⊕· · ·⊕pc′ , where⊕means a concatenation in the spectral
direction, pk ∈ RH×W×1, and k ∈ {1, 2, · · · ,C ′}. From each

decomposed HSI patch, d , we create a random sampled HSI
map, m ∈ RH×W×1. Regarding the spatial coordinate (i, j)
for each random sampled HSI map m, we randomly sample
a single value from the C ′ number of spatial maps p at the
corresponding pixel of (i, j). In other words, for each pixel,
we sample a single spectral bands out of the C ′ number of
spectral bands as follows,

mi,j ∼ categorical(p1,(i,j), p2,(i,j), · · · , pc′,(i,j);

q1,(i,j), q2,(i,j), · · · , qc′,(i,j)), (5)

where q represents the probability of each spectral band to
be sampled, and each q is fixed as 1/C ′ to have the uniform
distribution. From Equation (5), mi,j is sampled from the
set of {p1,(i,j), p2,(i,j), · · · , pc′,(i,j)} with the same probability.
Note that, the random spectral sampling of each pixel value
is conducted independently, so that, the created HSI map, m,
is expected to contain varied spectral information from differ-
ent spectral bands. Then, the whole set ofm is concatenated to
acquire random sampled HSI patch, xr ∈ RH×W×C ′′ , which
is fed into the patch feature extractor.

The proposed random spectral sampling preserves the dis-
tinctive spectral patterns, and makes adversaries not being
aware of which spectral bands to be used during the inference
time. In other words, since the random sampled patch, xr,
is acquired with the different set ofm in every inference time,
the adversarial examples, generated with some specific set
of m, would not be effective that they could not affect the
network performance. As a result, the adversarial robustness
of the HSI classification network can be achieved. Also,
we use the patch feature extractor as the general HSI clas-
sifiers (2D or 3D-CNNs). Therefore, the proposed random
spectral sampling can be applied into the existing HSI classi-
fiers by considering the modification of the patch’s spectral
dimension only (because it reduces the spectral dimension by
random spectral sampling). Note that the proposed random
spectral sampling is conducted during both network train-
ing and inference times. Therefore, the network could take
various channel combinations for the same spectral sample
during the network training, which could avoid the overfitting
issue.

D. SPECTRAL SHAPE FEATURE ENCODING
Adversarial attacks generate adversarial examples which are
indistinguishable from the clean data. Therefore, adversaries
apply the small size of attack perturbations within ε. In this
point of view, we focus on the overall (increasing/decreasing)
shape information of spectral bands, which is not changed
largely by adversarial attacks. Note that, the shape represents
the overall spectral shape as shown in Figure 1, given a
single pixel from the input hyperspectral patch. To exploit the
overall shape of (target) center pixel’s spectrum, we extract
the overall shape information by acquiring the differences
between its spectral bands. Before extracting the overall
shape information, we apply Gaussian kernel function G(·)
to the spectral vector of the center pixel xc ∈ R1×1×C in
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Algorithm 1 Training of the Proposed Framework
Input HSI patch : x Predictions : ŷ
Total # of training iterations : N
The set of the decomposed HSI patches, D : D =

{d1, · · · , dc′′}
for n = 1, 2, · · · ,N do

Random Spectral Extraction
D← Decompose x
for each d ∈ D do

for each pixel (i, j) do
mi,j ∼ categorical(p1,(i,j), · · · , pc′,(i,j);
q1,(i,j), q2,(i,j), · · · , qc′,(i,j))

end for
end for
xr← m1 ⊕m2 ⊕ · · ·⊕mc′′

Spectral Shape Extraction
xc← Extract center pixel vector from x
xsc← G(xc)
slc← xl+1sc − x

l
sc

After the extraction process
fp← FC(PatchFeatureExtractor(xr))
fs← FC(ShapeFeatureExtractor(sc))
ŷ← FC(fp ⊕ fs)
Minimize CrossEntropyLoss

end for

order tomitigate noise effects (including attack perturbations)
via smoothing. After applying Gaussian function, we acquire
the smoothed center pixel xsc ∈ R1×1×C . Then, we extract
the overall shape information by calculating the differences
between each spectral elements of the smoothed center pixel.
In other words, the l-th element of shape vector is obtained
by slc = xl+1sc − xlsc, where l ∈ {1, · · · ,C − 1} is the
index of spectral bands. Finally, we acquire the spectral shape
vector sc ∈ R1×1×(C−1). The spectral shape vector sc can
capture and represent the overall shape of the spectral bands.
Then, sc is fed into the shape feature extractor to acquire the
spectral shape feature, fs. Since the proposed method is to
employ the overall shape of the spectral bands, which is rarely
changed even with adversarial perturbations, it can improve
the adversarial robustness. Also, the proposed spectral shape
feature encoding can be applied into the other existing other
HSI classification frameworks easily.

The overall training procedure is described in Algorithm 1.
The testing follows same procedure except for mini-batch
iterations and minimization of the loss function.

IV. EXPERIMENTS
A. EXPERIMENT SETUP
1) DATASETS
We conduct experiments to verify the proposed framework
with two public HSI datasets: Salinas andUniversity of Pavia

TABLE 1. 2D-CNN patch feature extractor architecture and following fully
connected layers. The bracket represents the size for salinas dataset.

TABLE 2. 3D-CNN Patch feature extractor architecture and following fully
connected layers. The bracket represents the size for salinas dataset.

datasets. Salinas dataset consists of 16 classes, and it has
512× 217 resolutions with 204 spectral bands ranging from
400 nm to 2,500 nm. It is composed of 54,086 pixels used
for classification without backgrounds. Among them, we use
15% of pixels for training, and the residues for testing. Uni-
versity of Pavia dataset (we call it Pavia dataset) consists of
9 categories, and it has 610×340 resolutionswith 103 spectral
bands ranging from 430 nm to 860 nm. Pavia dataset is com-
posed of total 42,776 pixels except for backgrounds. We also
use 15% of pixels for training, and the rest of them for testing.
Following the validation protocol in [46], we separate training
and testing sets of both datasets without any overlap region.

2) NETWORK DETAILS
The proposed framework consists of the spectral shape and
patch feature encoding paths. The shape feature extractor
consists of 1D convolution layers, and there are two kinds of
the patch feature extractor. Each version of the patch feature
extractor is composed of 2D or 3D convolution layers. These
kinds of architectures are used for the general HSI classifi-
cation networks [42], [45]. We evaluate two versions of the
patch feature extractor for the generalization of the proposed
framework. Also, to verify the effectiveness of the proposed
approach, we construct baseline models for comparisons. The
baseline model has the same architecture of the patch feature
extractor (2D-CNN or 3D-CNN). In other words, the baseline
model takes full input patch without random spectral sam-
pling, and encoding them through patch feature extractor.

For the network details, TABLE 1, 2, and 3 illustrate the
network architectures of the patch feature extractor and shape
feature extractor. The first two tables, TABLE 1 and 2, show
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TABLE 3. The Shape feature extractor architecture and following fully
connected layers. The bracket represents the size for salinas dataset.

the 2D and 3D-CNN patch feature extractors, respectively.
The 2D-CNN patch extractor is composed of 7 2D convolu-
tional layers and, 3D version consists of 6 3D convolutional
layers. In the tables, the output size is described mainly with
respect to Pavia dataset, and the bracket represents the size
for Salinas dataset. Also, TABLE 3 illustrates the network
architecture of the shape feature extractor and following fully
connected layers. It includes 3 convolutional layers, where
each of them contains 1D convolution, batch normalization,
and hyperbolic tangent non-linear functions. Following the
tables, the sizes of shape feature, fs, and patch feature, fp, are
the same as 256 dimension. Since both features are concate-
nated in the channel direction, the last fully connected layer
for the final classification takes the feature of 512 dimension
as an input.

3) IMPLEMENTATION DETAILS
We adopt Pytorch 1.2 [47] and CUDA 9.2 with a single
GEFORCE GTX 1080Ti GPU for every implementation in
this paper. We set spatial resolution of the input HSI patch
as H = 11 and W = 11. The spectral dimensions, C ,
of Pavia and Salinas datasets, are 103 and 204, respectively.
We set the size of gaussian kernel as 7 empirically [48]. For
the random spectral sampling, we set C ′ = 5, where C ′′

becomes 20 and 40, while the unused spectral dimensions
(remaining 3 and 4 spectral bands) for each dataset are not
considered.

For both datasets, we train 2D-CNN frameworks with
Adam optimizer with 0.001 learning rate, 0.00005 learning
rate decay, and 300 epochs. Also, 3D-CNN frameworks are
trained with SGD optimizer with 0.1 learning rate, 0.00005
learning rate decay, and 300 epochs.

4) ADVERSARIAL ROBUSTNESS EVALUATION PRINCIPLES
Calini et al. [49] suggested guidelines regarding how to eval-
uate adversarial robustness. They established four adversarial
robustness evaluation principles: 1) applying a diverse set
of adversarial attacks, 2) comparing with previous works,
3) performing black-box attacks using similar networks, and
4) attacking the randomness adaptively for those utilizing
randomness effects. According to robustness evaluation prin-
ciples, we demonstrate the effectiveness of the proposed
approach as follows:
• Regarding adversarial attacks, we apply diverse adver-
sarial attacks (FGSM [37], PGD [22], and CW [38]) to
evaluate the adversarial robustness on different datasets.
To verify the effectiveness of the proposed framework,

we conduct the experiments with the various size of ε.
(Evaluation Principle (1))

• We compare the adversarial robustness of our approach
with other defense methods (i.e., adversarial training
(AT) [22], ADP [28], RLS [26]). For AT, we train
the baseline model (2D-CNN and 3D-CNN) with PGD
(ε = 0.01) attacked examples. For the ADP, we con-
struct three ensemble models. Each model has architec-
ture of baseline models (2D-CNN and 3D-CNN). Then,
they are optimized by the ADP loss function proposed
in [28]. For the RLS, we construct ensemble model
set with two ensemble models. Each model has archi-
tecture of baseline models (2D-CNN and 3D-CNN).
Then, the ensemble model set is optimized by random
layer sampling method proposed in [26]. (Evaluation
Principle (2))

• To verify the robustness of the proposed method,
we conduct experiment under various adversarial attack
scenarios such black-box attack and adaptive attack
scenario. Detailed attack settings are described in
Section IV-C and IV-D (Evaluation Principle 3 and 4)

B. ADVERSARIAL ROBUSTNESS EVALUATION
TABLE 4 shows the classification accuracy under adversarial
attack settings along with the two different datasets and two
kinds of baseline networks (2D-CNN and 3D-CNN). In the
case of Pavia dataset, as shown in the table, the baseline
model tends to be vulnerable to adversarial attacks. With the
clean image (‘NoAttack’), the accuracy of baseline is 92.38%
and 90.92% on 2D-CNN and 3D-CNN, respectively. How-
ever, when the adversarial perturbation is added, the accu-
racy drops to 8.04%, 4.92%, and 7.84% under the FGSM,
PGD, and CW attacks on 2D-CNN model. Also, in the
case of 3D-CNN, the accuracy drop to 12.72%, 6.29%, and
28.79% under the FGSM, PGD, and CW attacks respectively.

In the case of our proposed method, the accuracy on clean
image shows 87.82% and 87.96% on 2D-CNN and 3D-CNN
respectively. When the adversarial perturbation is added, our
proposed method shows better performance than the base-
line method. Furthermore, we compare our approach with
the other defense methods. Even though previous defense
method shows better robustness than the baseline model, our
proposed method shows superior performances against most
of the attack scenarios. Especially, for the case of CW attack,
the proposed framework secures the adversarial robustness
with large margins from the other methods. Also, in the case
of Salinas dataset, our results show superior robustness than
the baseline model and other defense methods.

As mentioned before, the existing adversarial defense
methods have the limitations when applying them into the
HSI classification frameworks; large increase of training
time and network parameters. For the proposed framework,
we consider the spectral characteristic of HSIs to improve
the adversarial robustness, alleviating the limitations as well.
As described in TABLE 4, ADP [28] and RLS [26] require
2-3 times more network parameters, compared with the
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TABLE 4. Classification accuracy (%) on adversarial examples of two datasets (Pavia and Salinas). We compare the adversarial robustness with the
Baseline, Adversarial Training (AT), Adaptive Diversity Promoting (ADP), and Random Layer Sampling (RLS) methods. 2D- and 3D-CNN indicate the type
convolution operation of the baseline and the patch feature extractor. Also, we compare the number of network parameters, consuming time for each
iteration during the training, and the prediction time for the inference.

baselinemodel. On the contrary, the proposed approach needs
only 1.2-1.5 times increase of network parameters. Also,
the table shows the consuming time per iteration with the
same batch size during training. Especially, AT [22] demands
15-25 timesmore network training time, while our framework
requires only 2-3 times longer training time. RLS [26] seem-
ingly increases a little training time, but it needs more training
iterations following training procedure in [26], because they
optimize more than two models. Also, in TABLE 4, the pre-
diction time is the time consumed to estimate a single sample
during the inference phase. As shown in the table, the pro-
posed frameworks requires a small amount of time increase,
while achieving the adversarial robustness via the random
spectral sampling and spectral shape feature encoding. Note
that the process of generating adversarial examples are not
considered in measuring the prediction time of AT [28].
The experiment corroborates that the proposed approach
improves the adversarial robustness, and reduces the increase
in training time and network parameters, by employing the
spectral characteristic of HSIs.

C. ROBUSTNESS EVALUATION UNDER BLACK-BOX
ATTACK SETTING
The black-box attacks mean that adversaries do not know
the whole information of target networks. Therefore, the

TABLE 5. Classification accuracy (%) under black-box attack scenarios.
The adversarial examples generated from 3D-CNN baseline model. Then,
we evaluate on 2D-CNN baseline model and Ours (2D-CNN).

black-box attacks usually generate the adversarial exam-
ples from the other similar networks. Such black-box attack
scenarios are necessary to prove the adversarial robust-
ness against general and more realistic attacks, since get-
ting full information of real-world application is hardly
possible. TABLE 5 and 6 describe the experiment results
to show adversarial robustness under black-box attack set-
tings. In TABLE 5, we generate adversarial examples
from 3D-CNN baseline model, and they are fed into the
2D-CNN baseline model and proposed framework for com-
parison. As illustrated in TABLE 5, our framework shows
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TABLE 6. Classification accuracy (%) under black-box attack scenario.
The adversarial examples generated from 2D-CNN baseline model. Then,
we evaluate on 3D-CNN baseline model and ours (3D-CNN).

better adversarial robustness than the baseline model under
black-box attack scenarios. In TABLE 6, we generate adver-
sarial examples from 2D-CNN baseline model, and they are
fed into the 2D-CNN baseline model and proposed frame-
work for comparison. As shown in the table, our framework
also shows better robustness than the baseline model. From
the experiment, the proposed approach is also robust to more
general and realistic black-box attacks.

D. ADVERSARIAL ROBUSTNESS UNDER ADAPTIVE ATTACK
1) EXPECTATION OVER TRANSFORMATION (EOT)
Athalye et al. [50] proposed Expectation Over Transforma-
tion (EOT) to consider expectation of many possible trans-
formations of input data for generating adversarial examples.
Since our framework involves the spectral randomness which
transforms the input of patch feature extractor, it is required to
evaluate the adversarial robustness using EOT attack. To this
end, we conduct 10 forward iterations (different random
sampled HSI patch for each iteration), and average them to
acquire final classification results during adversarial example
generation, considering many possible input transformations.
TABLE 7 illustrates the robustness performance with EOT
attack. In the experiment, the proposed framework is still
robust under EOT attack scenarios. Since our method exploits
the overall shape of spectral robust to adversarial attack,
we still maintain the robustness under EOT attack. Figure 4
showsmore detail experiment results according to the number
of iteration for EOT attack. As shown in the figure, although
the performance is degraded with increasing number of itera-
tions, the extent of the performance drop is saturated. There-
fore, the figure corroborates that the proposed framework
still shows the adversarial robustness under the EOT attack
scenarios.

2) RANDOMNESS EXPOSURE SCENARIO
The adversarial defense methods which take randomness
effects would be vulnerable, when the randomness is fully
exposed to the adversaries. For example, if the adversaries
are aware of which spectral bands are sampled during adver-
sarial example generation, it could be crucial to our frame-
work. To verify the adversarial robustness with this scenario,

TABLE 7. Classification accuracy (%) evaluated with adversarial examples
from Expectation Over Transform (EOT) attack scenarios.

TABLE 8. Classification accuracy (%) when sampled spectral bands are
exposed to adversaries.

we predetermine which spectral bands are sampled for test-
ing, and generate adversarial examples with those prede-
termined spectral bands. TABLE 8 shows the classification
accuracy evaluated on the adversarial examples generated by
using the predetermined spectral band sampling. Although it
is exposed to one of the worst cases, our approach still shows
much better adversarial robustness than the baseline. It can
be interpreted that encoding the spectral shape feature can
be helpful to improve adversarial robustness. To verify this,
in the following section, we verify the effects of the spectral
shape feature encoding.

E. ABLATION STUDIES
In the ablation study section, we verify the effects of the
spectral shape feature encoding and random spectral extrac-
tion. To verify that, we conduct three experiment settings.
1) Only using spectral shape feature encoding without ran-
dom spectral extraction, 2) encoding the spectral value itself
instead of shape of spectral, and 3) only using random spectral
extraction. Followings are the experiment results.

1) ONLY USING SPECTRAL SHAPE FEATURE ENCODER
We aremotivated from that the adversarial attacks using small
perturbations do not deform the overall shape of spectrum
largely. Therefore, we extract the overall shape information of
the (target) center pixel’s spectrum, and acquire the spectral
shape feature following the section III-D. To corroborate the
effects of the spectral shape feature encoding, we construct
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FIGURE 4. Classification accuracy (%) under EOT FGSM and PGD attacks. Although the performance is degraded with increasing number of iterations,
the extent of the performance drop is saturated.

FIGURE 5. Effectiveness of the proposed spectral shape feature encoding.
Even though the random spectral sampling is not applied, with the
spectral shape feature encoding improves the adversarial robustness of
the 2D-CNN baseline model.

the networks without the random spectral extraction (sam-
pling). In other words, the patch feature extractor takes the
original input HSI patch that is not processed by the ran-
dom spectral sampling. In Figure 5, the blue bars represent
the classification accuracy (%) acquired from the 2D-CNN
baseline model. The orange bars represent the accuracy from

TABLE 9. Robustness comparison along with the input types: the spectral
value (xsc ) and the shape of spectral (sc ).

the network trained by applying the spectral shape feature
encoding on the baseline model. As shown in the figure,
it shows better adversarial robustness against FGSMand PGD
attacks. From the experiment, we verify that leveraging the
overall shape of the spectrum could be effective to mitigate
the adversarial vulnerability.
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TABLE 10. Ablation studies for verifying the effectiveness of random spectral extraction and spectral shape encoding.

2) ENCODING SPECTRAL VALUE ITSELF
Since adversarial attacks craft adversarial examples with
small and indistinguishable noise, the overall (increas-
ing/decreasing) shape information of spectral bands is not
deformed largely even with adversarial attacks. Therefore,
to leverage the overall shape of the target pixel’s spectrum,
we extract the shape vector, sc, rather than encoding the value
itself of center pixel’s spectral vector, xc or smoothed one, xsc.
Accordingly, we conduct the comparison experiments, tak-
ing xsc or sc as an input of the shape feature extractor.
TABLE 9 describes the experimental results. As illustrated
in the table, taking sc as an input shows better classification
accuracy performances under almost attack scenarios. The
table demonstrates that taking the shape guided input would
be more helpful to encode the overall shape information.

3) ONLY USING RANDOM SPECTRAL EXTRACTION
One of the main reason that our proposed method is robust
against adversarial attack is the random spectral extraction.
Through the random spectral extraction, we could hide the
spectral information used for inference. In other words,
it makes adversaries not being aware of which spectral bands
to be used during inference time. Therefore, only using
the random spectral extraction could improve the adversar-
ial robustness. TABLE 10 shows the ablation study results
on Pavia dataset. As shown in the table, without random
spectral extraction and spectral shape encoding (baseline
in TABLE 4), the accuracy drops significantly. However,
when applying the random spectral extraction, the accuracy
increases dramatically. When applying spectral shape encod-
ing, the robustness further improves under FGSM and PGD
attacks. Especially, under adaptive attack scenarios (same as
Section IV-D2, PGD attack), applying spectral shape encod-
ing makes model more robust. It could be interpreted that the
spectral shape encoding plays a key role when randomness is
exposed.

F. QUALITATIVE RESULTS
In this section, we visualize how adversarial attacks affect
the classification performances qualitatively, to corroborate
the effectiveness of the proposed method. The experiment is
conducted on Pavia dataset, and Figure 6 shows the HSI map
estimated by the 2D-CNN baseline and our framework. In the
figure, the upper row represents the estimated HSI map of

2D-CNN baseline, and the bottom row contains the estimated
HSI map, when the proposed method is applied. The ground
truth HSI map is shown in the rightmost. As described in
the estimated HSI maps of the baseline network (top row),
adversarial attacks could lead the network to conduct misclas-
sification. However, when the proposed method is applied to
the network (bottom row), the less changes observed in the
HSI maps, compared to corresponding HSI maps of baseline
model. It means that the prediction results are not easy to
be changed by the adversarial attacks. From the qualitative
visualization results, it could demonstrate the effectiveness
of the proposed method, achieving the robustness against
adversarial attacks.

V. DISCUSSION
A. MEAN AND STANDARD DEVIATION OF CLASSIFICATION
ACCURACY
Since the proposed random spectral sampling selects the
different (spectral) channel combinations at every prediction,
the classification accuracy could be fluctuated for each pre-
diction time. However, the fluctuation would be insignificant,
because the proposed framework is also trained with various
channel combination during the training time. To verify it,
we conduct the experiment repeating 10 evaluation times and
obtain the mean and standard deviation of classification accu-
racy. TABLE 11 shows the experimental results (i.e., mean
and standard deviation) under various attacks including no
attack scenario. As shown in TABLE 11, while achieving the
adversarial robustness against various attacks, the standard
deviation of classification accuracy is small enough to be
ignored, ranging from 0.008 to 0.080. Although the proposed
random spectral sampling could lead to the accuracy fluctua-
tion by different channel selection, its impact is insignificant
to the overall classification accuracy.

B. GENERALIZABILITY
In this section, we discuss the generalizability of the proposed
method to the more recent hyperspectral classification frame-
works [51]–[54]. Since SSRN and SSAN [51], [52] are based
on 3D-CNNwith residual connections and attentionmodules,
we expect that the proposed method could be applied to
SSRN and SSAN. Furthermore, RNN-based models have
been introduced recently [53], [54]. In general, RNN-based
models encode each spectral value of HSI pixel vector as an
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FIGURE 6. The visualization results showing the estimated HSI map from the 2D-CNN baseline (top row) and proposed framework (bottom row). With
the clean input, both models could obtain the estimated HSI maps, which are similar with the ground truth HSI map. However, with the input perturbed
by adversarial attacks, the estimated HSI maps of the baseline model are deteriorated, while the proposed framework shows the adversarial robustness
(that is, less changes are observed in estimated HSI maps).

TABLE 11. The mean and standard deviation (std) of classification
accuracy (%) obtained by 10 evaluation tests. The standard deviation
ranges from 0.008 to 0.080, which is insignificant, compared to the
overall classification accuracy.

input for each step. Since RNN-based models have different
network architectures with 2D and 3D CNNs, we construct
RNN-based model using gated recurrent unit (GRU) follow-
ing [53] and apply the proposed method. With the RNN base-
line, TABLE 12 shows the experimental results regarding the

TABLE 12. The classification accuracy (%) under various adversarial
attacks with RNN-based network using GRU. Pavia dataset is used for this
experiment. As shown in the table, the RNN baseline becomes
adversarially robust with the proposed method.

robustness against adversarial attacks (i.e., FGSM and PGD)
on University of Pavia dataset. As described in the table,
the RNN baseline seems vulnerable to adversarial attacks.
However, the proposed method could improve the robust-
ness against adversarial attacks, verifying that the proposed
method could be performed with RNN-based model.

C. CONSISTENT NUMBER OF CONVOLUTION LAYERS AND
FILTERS
In this section, we conduct the experiment using the 2D-CNN
which is modified to have same number of convolution layers
and filters with 3D-CNN model (please refer to TABLE 1
and 2). For 2D-CNN shown in TABLE 1, we remove the 6-th
convolution layers and adjust the number of filters for each
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TABLE 13. The classification accuracy (%) under various adversarial
attacks on pavia dataset. The modified 2D-CNN is adopted, which has
same number of convolution layers and filters.

convolution operator as same as 3D-CNN model. TABLE 13
shows the experimental results using the modified 2D-CNN
on Pavia dataset. In this experiment, the proposed frame-
work achieves the adversarial robustness against the various
attacks.

VI. CONCLUSION
In this paper, we present a robust HSI classification frame-
work, which shows the improved adversarial robustness
under various adversarial attack scenarios. The proposed
framework benefits from the unique spectral characteristic
of HSIs by the spectral random sampling and the spectral
shape feature encoding. The spectral random sampling selects
spectral bands randomly in every testing time. Therefore,
the proposed method make adversaries could not aware of
which spectral bands to be used during each inference time.
Also, we extract and encode the overall spectral shape of
spectrum to acquire the shape feature, which is robust to
adversarial attacks. To the best of our knowledge, it is the
first work dealing with the adversarial attack scenarios, mit-
igating the adversarial vulnerability of the HSI classification
framework, and alleviating the problems caused by applying
the existing defense methods. Through comprehensive exper-
iments, we demonstrate the effectiveness of the proposed
approach, which can be applied into the other existing HSI
classification frameworks.
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