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ABSTRACT To fully mine the relationship between temporal features in load data, improve the accuracy
and efficiency of short-term load forecasting and overcome the difficulties caused by load nonlinearity and
volatility in accurate load forecasting. In this paper, a hybrid neural network short-term load forecasting
model based on temporal convolutional network (TCN) and gated recurrent unit (GRU) is proposed.
Firstly, the correlation between meteorological features and load is measured with the distance correlation
coefficient, and the fixed-length sliding time window method is used to reconstruct the features. Next,
temporal convolutional network is adopted to extract the hidden historical information and time relationship
including meteorological features, electricity price, etc., and a better-performing gated recurrent unit is
utilized for perdition. Furthermore, the state-of-the-art AdaBelief optimizer and Attention mechanism are
utilized to enhance the prediction accuracy and efficiency. The effectiveness and superiority of the proposed
model are verified by load and weather data from Spain and PJM power system data. Short-term load
forecasting results in different periods and comprehensive comparisons with the performance of different
models show that the proposed model can provide accurate load forecasting results rather quickly. The
highlights of this paper are that temporal convolutional network and gated recurrent unit are combined
for load forecasting for the first time, and the forecasting performance is improved by the novel optimizer
AdaBelief and feature selection based on distance correlation coefficient.

INDEX TERMS Short-term load forecasting, distance correlation coefficient, adabelief, temporal convolu-
tion network, gated recurrent unit, attention mechanism.

I. INTRODUCTION
Accurate and fast short-term load forecasting has become an
essential task throughout the development of the market and
smart grid. It can effectively ensure the safe operation of the
power grid, reduce the cost of power generation and improve
socioeconomic benefits [1]. However, the fluctuation of
short-term power load sequence has obvious randomness and
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nonlinearity, and the influencing factors are diversified and
complex (weather, electricity price, holidays, etc.), which
bring huge challenges to accurate forecasting [2].

In response to these difficulties, there are numerous stud-
ies on short-term load forecasting currently. The invention
of various forecasting technologies promotes the progress
of short-term load forecasting. These methods are mainly
divided into statistical methods, time series prediction meth-
ods, and machine learning methods. The statistical method is
represented by Kalman filter [3], Shaima et al. [4] proposed
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a blind Kalman filter method for short-term load forecasting.
The experimental results showed that the method is superior
to the state-of-the-art technology in load profile estimation
and peak load forecasting through the improvement of the tra-
ditional Kalman filter. Time series prediction method mainly
include linear regression method [5], exponential smoothing
method [6] and autoregressive integrated moving average
(ARIMA)method [7]. Arima is themost commonly used time
series analysis method among these. Cao et al. [8] used the
ARIMA model and similar day method to forecast the load
within one day. By grouping meteorological similar days and
target days, the load was predicted according to the average
demand of the target day. It was proved that the ARIMA
model performs better on ordinary days while a similar day
method outperforms on special days.

However, all of the above methods have higher require-
ments for the stationarity of time series. Their data regres-
sion capabilities are all weak. Machine learning methods
which are widely applied short-term load forecasting meth-
ods at present, have good nonlinear data fitting ability and
parameter learning ability. Jiang et al. [9] proposed a hybrid
prediction model based on support vector regression (SVR)
and hybrid parameter optimization algorithms. After SVR
is optimized by a two-step hybrid optimization algorithm,
this model can deal with nonlinear problems better, and it
wins upon other models in short-term load forecasting tasks.
Shi et al. [10] introduced a continuous multi-day peak load
forecasting method based on series-parallel ensemble learn-
ing. This method adopts XGBoost [11] serial ensemble algo-
rithm and Bagging parallel ensemble algorithm to forecast
peak load, and uses particle swarm optimization algorithm
to tune parameters. It was demonstrated that the ensemble
algorithmmakes full use of the advantages of the twomodels,
which maintain small bias and small variance respectively,
thus improving the prediction accuracy.

In addition to the above-mentioned traditional methods
and tree-based methods for machine learning methods, deep
learning algorithms have also been continuously developed
and have received extensive attention in recent years. In the
existing literature, the work of Kong et al. [12] introduced
a long short-term memory neural network (LSTM) into the
short-term residential load forecasting with high volatility
and uncertainty. Meanwhile, the method of aggregating indi-
vidual forecasts was adopted. The proposed LSTM frame-
work achieved the best prediction performance in the data set.
Jiao et al. [13] proposed an LSTM-based method to predict
the load of non-residential consumers by using multiple cor-
related sequence information. The daily load curve of non-
residential consumers was analyzed by K-means, which was
also superior to other load forecasting methods in experimen-
tal results. Nevertheless, considering that a large number of
relevant features and historical information cannot be ignored
in load forecasting. Single RNN algorithms such as LSTM
or GRU [14] could consider the historical information of
temporal data, but it needs to construct the feature relation-
ship manually [15]. Convolution neural network also has the

ability to process time information, and the feature extraction
ability of CNN is higher than that of RNN [16]. Combined
with CNN, the RNN model can get better prediction results
in power load forecasting [17].

Facing the problem, feature extraction techniques are con-
sidered to be practicable methods. There are gradually some
researches dedicated to combining feature extraction tech-
nologies with forecasting models to form a hybrid model for
short-term load forecasting. Alhussein et al. [18] proposed
a deep learning framework based on the combination of
convolutional neural networks (CNN) and LSTM. The hybrid
CNN-LSTMmodel utilizes the CNN layer to extract features
from input data with LSTM layers for time series learning.
It proved that the model is preferable to other deep learning
models. Yao et al. [19] and Xu et al. [20] also used CNN to
extract features, combined with GRU and LightGBM [21] to
complete short-term load forecasting tasks, and both achieved
good accuracy.

Based on the above analysis, temporal convolutional net-
work (TCN) [22] is an improved one-dimensional CNN for
time series problems. Experiments testify that TCN is supe-
rior to RNNs such as LSTM and GRU in certain application
scenarios. Zhang et al. [23] introduced a quantile Huber func-
tion guided TCN for load probability forecasting to quantify
the variability and uncertainty of consumer side load forecast-
ing. And it achieved better performance than other models in
residential and industrial users. Wang [24] proposed a hybrid
algorithm combining TCN and LightGBM, then conducted
experiments on three different types of industrial user load
data sets. It was established that the method has the best
feature extraction ability and the highest accuracy among all
contrast models.

At present, there are fewer researches on TCN or hybrid
algorithm of TCN and neural networks in the field of the
power system. At the same time, a large number of studies
have adopted grid search as parameters adjustment method
and applied Adam optimizer to train the neural networks.
In Table 1, we list some references to indicate the state-of-the-
art development of load forecasting based on hybrid models.
Therefore, based on the hybrid model of TCN with GRU,
in this work, we firstly analyze the correlation of weather
features, electricity price, and date features in load data. Then
we use Tree-structured Parzen Estimator (TPE [25]), which is
an optimized approach based on Bayesian optimization algo-
rithm [26] to tune parameters. Finally, we use an improved
optimizer AdaBelief and Attention mechanism to further
improve the accuracy and efficiency of short-term load fore-
casting. Our proposed method uses the hourly power load
series from 2015 to 2018 in Spain and PJM power system
load data for load forecasting. The resolution of both datasets
is 1 hour.

Lastly, about STLF models, there is a very important
point that can not be ignored. Nowadays, more and more
power grids perform an optimal operation considering day-
ahead STLF [27]. In many studies about day-ahead STLF,
direct multistep-ahead forecasting [28] is better than iterative
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TABLE 1. Studies for load forecasting based on hybrid models.

one-step-ahead forecasting when the data resolution is 1 hour
[29], [30]. In our article, all models will be designed for day-
ahead load forecasting.

The main contributions of this paper are presented as
follows:

1. A relatively novel data preprocessingmethod: we use the
distance correlation coefficient to analyze the non-linear cor-
relation between various meteorological features and short-
term load, comprehensively consider the features (weather,
electricity price, holidays, working hours, etc.). After feature
engineering, the difficulty of prediction is effectively reduced
and the prediction efficiency is improved.

2. A new hybrid algorithm: due to the lack of convolution,
traditional single RNN model cannot well extract the hidden
information [24], which limits the prediction accuracy of the
model [15], [16]. Thus, a TCN-GRU algorithm with strong
feature extraction capability is proposed to improve the per-
formance of short-term load forecasting while avoiding gra-
dient disappearance problem. TPE algorithm is also applied
to select the optimal parameters of model.

3. Improved optimizer and Attention mechanism: we com-
pare the learning performance of different optimizers on the
training set and validation set. The state-of-the-art AdaBelief
optimizer based on Adam is adopted to greatly improve the
accuracy and efficiency of model operation. The Attention
layer is also introduced into the neural network structure to
avoid the problem of long-distance information weakening
and improve the prediction accuracy of the model.

4. A comprehensive evaluation of the predictive perfor-
mance of the proposed model: by comparing other single
models and hybrid models, combined with multiple statisti-
cal parameter evaluation indicators (MAPE, RMSE, MAE,
Training Time), in-depth analysis of the pros and cons of each
model. And the effectiveness of our proposed model in short-
term load forecasting is demonstrated by using two datasets
from different regions. And considering the difference in load
fluctuations between working days and holidays, it is verified
that this method has strong adaptability.

The remainder of this paper is organized as follows.
In Section II, we introduce the basic theory of algorithms
adopted in this article. Section III presents the main steps of
the proposed hybrid model in detail, including the principles
of the model, the prediction framework and the structure
of TCN-GRU, and some details of feature engineering.
Section IV provides specific process and parameter settings
of the experiment, describes the comparison with other mod-
els, also analyzes and discusses the reasons for the dif-
ferent evaluation indicators obtained by different models.
The conclusion of this paper and the future work are given
in Section V.

II. METHODOLOGY
A. CORRELATION ANALYSIS
Weather features are vital factors affecting short-term
load [31]. Due to actual geographical differences, which
weather features should be selected for short-term load fore-
casting should be analyzed in detail according to the actual
situation, and the factors with high correlation should be
selected to build the input data set. The distance correla-
tion coefficient [32] (DCC) is improved based on the Pear-
son correlation coefficient (PCC), which can measure the
non-linear correlation. According to the theory of statistics,
the distribution function represents the unique property of the
random vector itself, and the conditional distribution function
represents the distribution property of a certain random vector
under certain conditions. If we want to investigate the cor-
relation between any two random vectors X and Y , we can
compare the distribution F(Y ) of Y with the conditional
distribution function F(Y |X ) of Y under the condition of X .
The higher the similarity between the two, the less influence
of X on Y , the weaker the correlation between X and Y .

For the convenience of calculation, the distribution func-
tion is replaced by the following characteristic functions:

fXY (s, t) = E exp[i 〈s,X〉 + i 〈t,Y 〉] (1)
fX (s) = fXY (s, 0) = E exp[i 〈s,X〉] (2)
fY (t) = fXY (0, t) = E exp[i 〈t,Y 〉] (3)
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where E denotes Expectation, i represents imaginary unit,
s and t represents Real vector, 〈〉 accounts for dot product
operation. If and only if fXY (s, t)− fX (s) fY (t) = 0, X and Y
are not correlated, otherwise they are correlated. The follow-
ing distance covariance and variance are defined according to
the Euclidean norm:

D2
cov (X ,Y ) = ‖fXY (s, t)− fX (s) fY (t)‖

2 (4)

D2
cov (X) = ‖fXX (s, t)− fX (s) fX (t)‖

2 (5)

D2
cov (Y ) = ‖fYY (s, t)− fY (s) fY (t)‖

2 (6)

The expression of the distance correlation coefficient is
constructed by formula (4) - (6) as

Dcor =


D2
cov (X ,Y )√

D2
cov (X)D2

cov (Y )
, D2

cov (X)D
2
cov (Y ) > 0

0, D2
cov (X)D

2
cov (Y ) = 0

(7)

The various meteorological features and load data are
brought into above formula to calculate the correlation dis-
tance coefficient and Pearson correlation coefficient. The
distance correlation coefficient has only non-negative values.
The larger the value, the stronger the correlation between this
feature and short-term load, while the Pearson correlation
coefficient is between -1 and 1, the closer the absolute value
to 1, then the stronger the linear correlation between features
and short-term load.

B. TPE ALGORITHM
The selection of hyperparameters in machine learning will
directly affect the performance of the model. In the past, grid
search and random search were used for hyperparameters
optimization, but the execution time of this type of method
will increase proportionally with the expansion of the hyper-
parameter scale, resulting in insufficient efficiency. Other
tuning algorithms, such as particle swarm optimization [33],
are relatively time-consuming and not conducive to practical
application. TPE algorithm constructs a probability model
of the objective function in order to intelligently evaluate
each group of hyperparameters, reduce the searching time of
hyperparameters, and find the best hyperparameters for the
machine learning model more effectively.

TPE algorithm obtains the posterior probability distribu-
tion p(y|x) by parameterizing the probability distribution
p(x|y) and the prior probability distribution p(y). p(x|y) is
defined as follows [34]:

p(x|y) =

{
`(x), y < y∗

g(x), y ≥ y∗
(8)

where `(x) is the density formed by model observation, y
denotes the value of loss function generated by the model,
y∗ is the set threshold, and g(x) represents the density formed
by residual observation.

The expected improvement (EI) in TPE is optimized [35]:

EIy∗ (x) =
∫ y∗

−∞

(y∗ − y)
p(x|y)p(y)
p(x)

dy (9)

Let γ = p(y < y∗),
∫
R
p(x|y)p(y)dy = γ `(x)+ (1− γ )g(x),

we can get:

EIy∗ (x) ∝ (γ +
g(x)
`(x)

(1− γ ))−1 (10)

Equation (10) represents that in order to maximize
improvement, we hope the `(x) probability to be high and
the g(x) probability to be low at point x. In each epoch,
the algorithm is trying to improve the prediction model better
by returning the candidate algorithm x∗ with the largest EI .

C. AdaBelief OPTIMIZER
The so-called AdaBelief [36] refers to adjusting the train-
ing stride according to the Belief in the gradient direction.
Compared with the Adam optimizer, the improved steps are
decomposed as Step 1-Step 4:

Step 1: Intialize θ0, and setM0← 0, s0← 0, t ← 0;
Step 2: While θ is not converged, set t ← t + 1, gt ←
∇θ ft (θt−1), Mt ← β1Mt−1 + (1 − β1)gt , st ← β2st−1 +
(1− β2)(gt −Mt )2;
Step 3: Bias correction toMt and st ;
Step 4: Update θt ←

∏
F ,√st

(
θt−1 − α

Mt√
st+ε

)
using Mt

and st corrected in Step 3.
Where gt represents the t-th step, Mt represents the expo-

nential moving average (EMA) of gt , and α is learning rate.
Consequently, AdaBelief replaces vt in Adam with st . vt and
st are EMA of gt2 and (gt −Mt )2 respectively. In the pro-
posed method for load forecasting, the optimizer will adopt
this improvement to consider curvature of the loss function,
instead of taking a large (small) step where the gradient is
large (small). In other words, this method considers not only
modulus size of the past gradient of parameters, but also the
consistency of the gradient direction in the past.

III. SHORT-TERM LOAD FORECASTING
BASED ON TCN-GRU
Short-term load forecasting can denote as:

Ŷi = f
(
Xi,Ŵ ,b̂

)
(11)

where Xi is the input data after correlation analysis and
preprocessing; Ŵ and b̂ are the optimal estimates of weight
parameter and bias parameter. Based on massive input data,
we continuously iterate in the direction of the fastest gradient
descent with the goal of the smallest loss function value.
Finally, the non-linear implicit relationship f between the
short-term load and the input data is learned, and then obtain
the optimal estimation value Ŷ of short-term load forecast-
ing. In this paper, the hidden information of data features is
extracted by temporal convolution network and input it into
the prediction model of gated recurrent unit to obtain the
short-term load forecasting value.

A. TEMPORAL CONVOLUTIONAL NETWORK
Temporal Convolutional Network (TCN) is a neural network
algorithm proposed by Bai et al. [22] in 2018 to analyze
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time series data. Causal convolution, expansion convolution
and residual connection are introduced in TCN, which solve
the problem of feature extraction of long-term time series
information. The structure and principle are described as
follows:

1) CAUSAL CONVOLUTION
Causal convolution plays two key roles in TCN: making the
network produce an output with the same length as the input,
and avoiding the leakage from future to past. Figure 1 shows
the principle of causal convolution structure. In causal con-
volution, convolution operations are performed strictly in
chronological order, that is, the convolution operation at time
t only occurs on the data before t − 1 and t − 1 in the
previous layer. It is worth noting that causal convolution is
easily restricted by the receptive field, so that it can only
accept short history information for prediction.

FIGURE 1. The principle of causal convolution structure.

2) DILATED CONVOLUTION
Distinct from traditional convolution, to solve the restricted
receptive field problem, the TCN convolution structure
allows interval sampling of convolution input, which is
called dilated convolution [37]. For one-dimensional time
series input X = (x0, x1, . . . , xT ) and filter f : {0, 1,
2, . . . , n − 1} → R, the dilated convolution operation F(·)
is defined as follows:

F (T ) = (X∗d f ) (T ) =
n−1∑
i=0

f (i) · xT−d ·i (12)

where d denotes the dilated factor, n represents the filter size
and T − d · i accounts for the direction of the past.
By increasing dilation factor d and filter size n, the TCN

is able to extend the receptive field. It allows the top layer
output to receive a wider range of input information. The
principle of dilated causal convolution structure is presented
in Figure 2. The filter size n = 2, the top layer d = 1,
means that every point is sampled during input; the middle

FIGURE 2. The principle of dilated causal convolution structure.

FIGURE 3. The details of residual block in a deep TCN.

layer d = 2 denotes that one of every two points is sampled
as the input. It can be seen from Figure 2 that the deeper
the layer, the larger the dilated coefficient. The size of the
effective window in the TCN convolution structure increases
exponentially with the number of layers. Therefore, TCN can
obtain a larger receptive field with less layers.

3) RESIDUAL CONNECTION
TCN can also expand the receptive field by adding hidden
layers. In order to avoid the disappearance of the gradient
caused by the hidden layer being too deep, TCN applies the
residual block to the deep network to solve this problem [38].
More specifically, each layer of TCN contains multiple filters
for feature extraction.We replace the convolutional layer with
a general residual block. The details of the residual block and
a deep TCN structure are shown in Figure 3. It can be seen
that a deep TCN consists of several residual blocks.
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One branch of the residual block performs a transforma-
tion operation F on the input X (r−1), adding a branch for a
1 × 1Conv transformation to ensure that the element wise
addition accepts tensors of the same shape [39]. The output
X (r) of the r-th residual block can denote as:

X (r)
= Activation

(
F
(
X (r−1)

)
+ X (r)

)
(13)

where activation function utilizes Rectified Linear Unit
(ReLU) [40]. F is a series of transformations, including
dilated causal convolution layer, weight normalization, acti-
vation layer and dropout layer. In details, for normalization,
we apply weight normalization [41] to the convolution filter.
In addition, a Dropout [42] is added after the activation layer
of each convolution for regularization.

FIGURE 4. The structure of GRU network.

B. GATED RECURRENT UNIT & ATTENTION MECHANISM
1) GRU MODEL
GRU network is an improved model of LSTM network.
It optimizes the three gate structures of LSTM, integrates
forget gate and input gate into a single update gate [43],
and mixes neuron state and hidden state. It can effectively
alleviate ‘‘gradient disappearance’’ of RNN and reduce the
number of parameters of the LSTM network unit. Thus, GRU
shortens the training time of the model. The structure of
the GRU network is shown in Figure 4. The mathematical
formulas are described in formulas (14)-(18).

rt = σ (Wr · [ht−1, xt ]) (14)

ut = σ (Wu · [ht−1, xt ]) (15)

h̃t = φ(Wh̃ · [rt × ht−1, xt ]) (16)

ht = (I − ut )× ht−1 + ut × h̃t (17)

yt = σ (Wo · ht ) (18)

where xt , ht−1, ht , rt , ut , h̃t and yt are respectively the
input vector, the state memory variable at previous moment,
the state memory variable at current moment, the state of

reset gate, the state of update gate, the state of the current
candidate set and the output vector at current moment; Wr ,
Wu,Wh̃,Wo are weight matrices for the corresponding inputs
of the network activation functions; I stands for Identity
matrix; [] denotes vector connection; · represents matrix dot
product; × is matrix cross product; σ represents sigmoid
activation function; φ denotes tanh activation function. The
mathematical description of σ and φ are as follows:

σ (x) =
1

1+ e−x
(19)

φ(x) =
ex − e−x

ex + e−x
(20)

The core module of GRU network is update gate and reset
gate. The splicing matrix of the input variable xt and the state
memory variable ht−1 at previous moment is input into the
update gate after sigmoid nonlinear transformation, which
determines the degree of state variable brought into current
state at previous moment. The reset gate controls the amount
of information written to the candidate set at previous time.
The information of previous time is stored by I − ut times
ht−1, and the information of current time is recorded by ut
times h̃t , and adds the two as current time output.

2) ATTENTION MECHANISM
Attention mechanism [44] is the simulation of biological
attention through the algorithm, which can dynamically
adjust the attention degree of a deep neural network to dif-
ferent features according to the needs of different prediction
tasks. It mainly changes the attention to information, thereby
increasing important and useful information, suppressing and
ignoring useless information. The attention mechanism is
used to effectively highlight the key features that affect the
power load in the prediction results of the GRU layer, and
improve the prediction performance of the model. These
features are processed through formula (21) and are used as
a standard to measure the importance of different features.
Then through equation (22), they are quantified as attention
weight value between 0 and 1, finally through formula (23),
summing all the products of attention weights and features,
we get the final output features. Compared with the original
features, features processed by the above steps will be more
direct and effective. The above steps are carried out in a
dynamic loop, so as to realize the highlight of important fea-
tures, and then make more effective use of different features
in different prediction situations. The formula is expressed as
follows:

zki = u tanh(Whk + Uhi + b) (21)

αki =
exp(zki)∑n
j=1 exp(zkj)

(22)

H =
∑n

i=1
αkihi (23)

where zki denotes themeasure standard of feature importance;
u, W , U stand for the weight parameter matrices; b accounts
for the bias; hk stands for the hidden layer state corresponding
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TABLE 2. Correlation coefficient comparison.

to the last input; hi stands for the hidden layer state corre-
sponding to the i-th element of the input sequence; tanh is
activation function; αki represents the attention weight of the
hidden state of historical input to the current input; H is final
output feature.

FIGURE 5. The short-term load forecasing framework based on TCN-GRU
model.

C. THE LOAD FORECASTING FRAMEWORK BASED
ON TCN-GRU MODEL
Due to the combination of CNN’s extraction capabilities and
RNN’s time-domain modeling capabilities, TCN can extract
the temporal correlation of features [45]. Besides, consid-
ering the load data scale of the whole area, GRU not only
increases the depth of the model but also processes big data
more accurately and quickly than LSTM. Thus, the model
can forecast load data with multiple features according to the
extracted feature information. The short-term load forecast-
ing framework based on the TCN-GRU model is illustrated
in Figure 5. The framework is established by four main steps:
missing data processing, distance correlation analysis, feature
engineering, and load forecasting based on the TCN-GRU
model. The first three steps together are the data prepro-
cessing. Each step in the framework is described in detail as
follows:

1) MISSING DATA PROCESSING
The raw data usually have a large amount of missing data
because of interrupted signal transmissions or acquisition

equipment failures. There are not many missing values in the
dataset used in this paper. To avoid the adverse impact of
missing data on load forecasting, missing data are filled with
data from the same moment of the previous day.

2) DISTANCE CORRELATION ANALYSIS
In this paper, we analyze the correlation between the data
and compare the Pearson coefficient and distance correla-
tion coefficient between the meteorological features and the
predicted load. Among them, because some features and the
predicted quantity are not simply linear, the distance correla-
tion coefficient that can measure the non-linear relationship
is better than the traditional Pearson correlation coefficient in
the correlation analysis. Table 2 analyzes the correlation coef-
ficient comparison of meteorological features. Each weather
feature is the value obtained after the weighted average.
The original weather data is from the hourly data of five
major cities in Spain (Madrid, Barcelona, Valencia, Seville,
Bilbao) [46].

From Table 2, although the DCC score of the same fea-
ture is significantly better than PCC, the overall correla-
tion coefficients are still low for the following reasons.
It is difficult and tedious to collect and process the national
weather data. We select data of major cities to reflect the
overall national weather changes because large cities with
large populations account for a larger share of the national
power generation. These five major cities make up one-third
of Spain’s total population. The correlation coefficient of
weather features after weighted average is relatively low
(<0.8), but it can still reflect the correlation with the total
power generation to a certain extent. We retain the three
weather features of temperature, humidity, and wind speed
(DCC values are relatively high), removing other weather fea-
tures (DCC values are about 0.1) that have little impact on the
results [47], [48].

TABLE 3. Forecasting results of proposed model with different features.

Further, Table 3 analyzes the forecasting results of the pro-
posed model with or without irrelevant weather features. It is
proved that the weather variables selected via the Distance
correlation coefficient are able to bring better forecasting
performance and faster prediction speed.
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FIGURE 6. Load and electricity price for one month in 2015.

3) FEATURE ENGINEERING
Ourworkmainly conducts feature engineering on five aspects
of data: historical load data, electricity price data, meteoro-
logical features, date features, and other features. Electricity
price is also considered to be a vital relevant factor affect-
ing load changes. Load and electricity price for one month
in 2015 is described in Figure 6. It can be seen that the
total load is positively correlated with the electricity price.
Meanwhile, the distance correlation coefficient also proves
the correlation between electricity price and load, and the
correlation coefficient score is 0.577. In this paper, this cor-
relation coefficient score is higher, so we choose the price
feature as an important feature of load forecasting.

FIGURE 7. Actual electricity load (monthly frequency) and 1-year lagged
load.

This research mainly considers the date features such as
week, month and holiday. Figure 7 presents the actual elec-
tricity load (Monthly frequency) and 1-year lagged load.
From this point, we can find that the load has seasonal
pattern on a monthly scale. At the same time, we not only
consider whether a given time belongs to a weekend, but also
specifically distinguish between Saturday and Sunday. It is
appropriate to take the date features as the relevant factor for
total load forecasting.

Finally, we generate some important features. After see-
ing that there is a high correlation among the temperatures
of the different cities, we will also try creating a weighted

temperature features by taking into account each city’s pop-
ulation. The specific formulas are as follows:

wx =
px
P

(24)

Temp =
∑

wx · Tempx (25)

where wx is the temperature weight of each city, px stands for
the population of each city, P stands for total population of
5 cities, Tempx is the temperature in each city and Temp is the
temperature features input into the model.

We have also generated a very useful feature based on the
peculiarities of Spain, that is, whether a given period is in
business time. Not all companies have weekdays between
9 a.m. and 5 p.m., because there is a siesta. The most com-
mon business hours are from Monday to Saturday, 9:30 a.m.
to 1:30 p.m., and then from 4:30 p.m. to 8:00 p.m.

In this paper, we adopt the one-hot encoding process for
category features. Due to the different feature dimensions of
the collected discrete data, to improve the robustness of the
model, the data is normalized, and the formula is as follows:

Xn =
X − Xmin

Xmax − Xmin
(26)

where Xn is the normalized data, X is the original data,
Xmax and Xmin are the maximum andminimum values of each
feature in the sample.

TABLE 4. Classification and processing methods of input features.

The classification and processingmethods of input features
are described in Table 4. Owing to a large number of feature
types, we also use 24 previous time steps [49] to extract
or generate features in order to avoid redundancy during
data operation and reduce model performance. Since the past
features may have a significant impact on the current load
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FIGURE 8. The principle of sliding time window.

forecasting, the network can understand the past deeply and
extract time-varying features. The principle of the sliding
time window is shown in Figure 8 below. The step size is
set to 24, which means that each time the sliding window
in Figure 8 moves 24 steps to the right to reconstruct fea-
tures. In other words, we perform day-ahead short-term load
forecasting (direct multistep-ahead forecasting) with 24 steps
of historical data [50], [51].

4) LOAD FORECASTING BASED ON TCN-GRU MODEL
With the input of multi-features, the difficulty of load fore-
casting has been improved a lot. Fortunately, the TCN net-
work can effectively extract the input feature X. The data
reconstructed by sliding time window is divided into a train-
ing set, a validation set and a testing set. The training set
is utilized to train the TCN-GRU model, and the validation
set is used for parameters tuning by the TPE algorithm.
After several iterations, the testing set is input into the opti-
mized TCN-GRU model to predict the short-term load and
evaluate the model performance.

Otherwise, to further improve the performance of the
model, this article also uses two techniques to make inno-
vations: AdaBelief optimizer and Attention mechanism.
We have added different optimizer comparison experiments,
compared the performance of Adam, SGD (stochastic gradi-
ent descent) [52], and AdaBelief in terms of training loss and
prediction accuracy. The Attention mechanism is also added
to the neural network structure to help us better predict the
fluctuation of the load at details [48]. The structure of our
proposed TCN-GRU model is shown in Figure 9.

5) PERFORMANCE EVALUATION
In this paper, mean absolute percentage error (MAPE), root
mean squared error (RMSE) and mean absolute error (MAE)
are selected as evaluation metrics of load forecasting model.
The formulas are as follows:

XMAPE =
1
n

n∑
i=1

|yi − ŷi|
yi

× 100% (27)

XRMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)
2 (28)

XMAE =
1
n

n∑
i=1

∣∣yi − ŷi∣∣ (29)

where n represents the number of testing samples. yi and ŷi
respectively denote the actual load value and model predicted
load at time T.

IV. CASE STUDY
A. EXPERIMENTAL SETTINGS
In this paper, the electricity and energy data of Spain from
January 1, 2015 to December 31, 2018 (1h sampling inter-
val) is used as the research object. The data is retrieved
from ENTSOE, which is a public portal of Transmission
Service Operator (TSO) data. The electricity price data is
from TSO Red Electric Espana. Weather data is open-source
on Kaggle [46], obtained from the open meteorological API
of the five largest cities in Spain. The datasets are split into
a training set, a validation set and a testing set according
to the proportion of 8:1:1, i.e., the training set accounts
for 28052 hours, the validation set and test set each con-
tain 3506 hours of data.

In this paper, firstly Experiment 1 is set up to prove the
improvement effect of the proposed model, and the effects
of different optimizers and Attention mechanism on the
learning performance and prediction error of TCN-GRU are
compared.

Then, in order to verify the effectiveness and superiority
of the proposed model, we compared the prediction results
of TCN-GRU on the dataset with other comparative mod-
els in Experiment 2. It is noted that the proposed model
is compared and analyzed with various single prediction
models (SVR, XGBoost, LSTM, GRU, TCN) and hybrid
models (CNN-LSTM, CNN-GRU, TCN-LSTM). In Exper-
iment 3, the proposed model is tested on PJM power sys-
tem load data to verify the forecasting effectiveness in
other scenarios. All models adopt the TPE algorithm for
parameter tuning, and the prior distribution of hyperparam-
eters is set according to prior experience to ensure that
the compared models have relatively consistent complexity.
All experimental models run in the Python 3.7 program-
ming environment. The deep learning architecture is based
on the Tensorflow framework, the version is tensorflow-
gpu 2.2.0, the hardware is a laptop with Intel Core i5-4210,
the GPU is NVIDIA GeForce GTX 840M, and 16GB of
memory.

B. EXPERIMENT 1: THE INFLUENCE OF AdaBelief
OPTIMIZER AND ATTENTION MECHANISM
ON LOAD FORECASTING
In this experiment, we use the same learning rate (lr = 1e-2)
and the same training epoch (n = 60) to test the changes of
loss function of TCN-GRU in the states of AdaBelief, Adam,
and SGD. It is noted that mean squared error (MSE) is used as
the loss function to compare the performance of the Adabelief
optimizer with other optimizers. The formula is:

Loss =
1
n

n∑
i=1

(yi − ŷi)
2 (30)
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FIGURE 9. The proposed TCN-GRU model structure.

FIGURE 10. MSE loss trend of TCN-GRU on training set with different
optimizers.

where n represents the number of samples. yi stands for the
actual value. ŷi stands for the predicted value of the model.
Figure 10 shows theMSE loss trend of TCN-GRU on train-

ing set with different optimizers. It is obvious that compared

with Adam and SGD, AdaBeilief has the lowest loss on the
training set and validation set, and the learning speed is also
the fastest.

TABLE 5. Load forecasting evaluation on the testing set with different
optimizers.

The comparison of prediction error of different optimizers
on testing set is presented in Figure 11. It is obvious that
AdaBelief has the largest number of samples of small errors.
In addition, combined with the results of various metrics
in Table 5, Adam has a large prediction error at this learning
rate (RMSE>2000MW), and the training effect is obviously
inferior to AdaBelief and SGD. On the one hand, from the
trend of the loss curve, it can also be seen that Adamoptimizer
has encountered a barrier in this case. The val_loss fluctuates
around 0.04, and the learning rate needs to be reduced to
ameliorate. On the other hand, the calculation speed of each
epoch of AdaBelief is also significantly faster than the other
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FIGURE 11. Comparison of prediction error of different optimizers.

two optimizers (computation time is reduced by 24.8% and
6.9% respectively compared with Adam and SGD). In gen-
eral, in this load forecasting task, the AdaBelief optimizer
has only 1.24% on MAPE, which brings a very outstanding
performance improvement.

TABLE 6. Short-term load forecasting evaluation with or without
attention mechanism.

After determining AdaBelief as the optimizer of the pro-
posed method, this article also sets up an experiment to judge
whether the Attention mechanism can improve the perfor-
mance of the model. While ensuring the same other param-
eters and experimental environment (especially, the same
optimizer), we compared the performance of TCN-GRU
with or without the Attention layer. The selected three-day
(8.8-8.11 in 2018) short-term load prediction experimental
results are shown in Table 6, and the prediction curve results
are shown in Figure 12. It is clear that the model with Atten-
tion layer is superior to the model without Attention layer in
various statistical metrics. The progress inMAPE, RMSE and
MAE are 16.0%, 21.1%, 13.8% respectively. But after adding
the attention mechanism, the calculation time of each Epoch
is slightly increased. We are able to draw a conclusion that
the TCN-GRU load predictionmodel with Attention layer has
improvement in prediction accuracy compared to the model
without the Attention layer, but the time required for each
Epoch increases.

C. EXPERIMENT 2: LOAD FORECASTING OF DIFFERENT
MODELS ON SPAIN LOAD DATASET
In this experiment, according to the aforementioned split
rule, the training set time ranges from January 1, 2015 to

FIGURE 12. Short-term load forecasting with or without attention
mechanism.

March 14, 2018, and the validation set is from March 15,
2018 to August 7, 2018. The rest (August 8, 2018 to Decem-
ber 31, 2018) is the testing set. All models are trained with
the training set and the validation set is utilized for parameter
tuning.

The parameters in this article are tuned by the TPE algo-
rithm provided by Hyperopt [53]. The prior distribution of
hyperparameters are as follows: learning rate is set as loga-
rithmic uniform distribution between 0 and 1, the batch size is
set to [8, 16, 32, 64], and the distribution set by dropout [54]
is [0.2, 0.3, 0.4, 0.5], the number of epochs is set to an integer
uniform distribution from 50 to 200, and the number of nodes
in hidden layer of neural network is distributed as [32, 64,
128, 256]. The remaining parameters are set according to past
experience. It is worth noting that the deep learning models
all utilize the AdaBelief optimizer and Attention mechanism.

Finally, the parameters of each model optimized by TPE
are summarized as follows.

(1) TCN: The algorithm is built using the Keras library in
Tensorflow framework. The number of filters is 64, the kernel
size in every convolution layer is 2, and the dilation factor is
set to [1, 2, 4, 8, 16]. The stack number of the residual block
is 2, activation function using ‘‘ReLU’’.

(2) GRU: The number of hidden layers is 2 and the number
of nodes in hidden layer is set to 256/128, activation function
using ‘‘tanh’’.

(3) LSTM: The number of hidden layers is 3 and the num-
ber of nodes in hidden layer is set to 128/128/64, activation
function using ‘‘tanh’’.

(4) CNN: The number of convolution layers is 1, the num-
ber of filters in convolution layer is 64, the kernel size in every
convolution layer is 2, the number of fully connected layers
is 2 and the number of neurons in fully connected layer is set
100/1, activation function using ‘‘ReLU’’.

(5) XGBoost: The learning rate is 0.01, the max depth of
trees is 8, iteration is set to 60, colsample equals 0.8, alpha
is 0.1, lamda is 0.2, gamma is 0.1 and the minimum child
weight is 3.
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FIGURE 13. Load forecasting profiles of all models on the testing set.

(6) SVR: The kernel function is ‘‘rbf’’, the penalty factor
is set to 5 and other parameters are default settings.

The prediction results of all models on the testing set are
shown in Figure 13. In order to better display, we process the
forecast results every 24 hours into the average hourly load of
the day. Definitely, there is volatility in the load on different
days.

TABLE 7. Load forecasting evaluation on the testing set.

Load forecasting evaluation of all models on the testing
set is presented in Table 7. Distinctly, the TCN-GRU hybrid
neural network model proposed in this paper has achieved
the best results in MAPE, RMSE, and MAE. Compared with
the comparison models, the proposed method has a signifi-
cant improvement in performance, and the forecasting load
error is smaller. In the individual models, GRU has the best
performance, while SVR model performs relatively poorly
(RMSE>2000MW). When comparing in the hybrid models,
it can be seen that the extraction ability of TCN is superior to

that of CNN. As far as MAPE is concerned, TCN is 35.6%
lower than CNN in LSTM, and TCN is 60.4% lower than
CNN in GRU. Among all comparison models, the method
proposed in this paper combines the best performanceGRU in
a single prediction model and the TCN with better extraction
capability. The MAPE is reduced to 1.24%, our proposed
model obtains the best prediction performance as a result.

TABLE 8. Calculation time of each epoch for all neural network models.

Further, we also researched the calculation time of all
neural network models on the testing set. The calculation
time for each epoch of different models is shown in Table 8.
The results present that the TCN model has the fastest load
prediction speed in the individual models, and the GRU
prediction speed is better than LSTM [14]. In the hybrid
models, whether CNN or TCN is adopted as the extraction
method, the calculation time of GRU and LSTM is undoubt-
edly increased. Among them, the model combined with TCN
is more time-consuming, but TCN-GRU still has a shorter
calculation time than TCN-LSTM. Although the calculation
time of the proposed model is relatively higher than single
models, with the development of cloud computing and the
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FIGURE 14. Short-term load forecasting of all models on three-day
working day.

FIGURE 15. Short-term load forecasting of all models on three-day
holiday.

advancement of GPU computing power in future, it is still
satisfactory in practical applications.

In order to evaluate the performance of the model more
comprehensively, we used different time periods (three days
in August, 8.15-8.17 and three days during the Christ-
mas holiday, 12.25-12.27) for short-term load forecasting
and further analysis. The forecast results are shown in
Figure 14 and Figure 15. The results show that all models
can roughly fit the rising and falling trend of load whether
it is during normal working days or during the peak period
of holiday power consumption. In terms of the peak, valley,
stable or fluctuation range of the actual load in the testing
set, the model proposed in this article has the smallest bias.
Comparedwith several comparativemodels, it can best fit and
capture the changing trend of the actual load.

Considering that there is a large difference in electricity
consumption between weekdays and holidays, we compared
and analyzed short-term load forecasting metrics for the
three days of normal working days (mid-August) and Christ-
mas holidays. Table 9 shows two representative short-term
load forecasting results during working days and holidays.
Obviously, in normal working days, the proposed model has
achieved the best prediction results in all statistical metrics,
and the MAPE is only 1.24%. In holiday short-term load
forecasting, TCN-LSTM is slightly better than TCN-GRU on
MAPE, and TCN-GRU is slightly better than TCN-LSTM
on MAE. When comparing RMSE, the proposed model fore-
casting error is distinctly lower than other models. Generally
speaking, the proposed model has apparent advantages and
strong robustness in load forecasting performance.

D. EXPERIMENT 3: LOAD FORECASTING OF DIFFERENT
MODELS ON PJM POWER SYSTEM
In this experiment, to evaluate our proposed model perfor-
mance over different scenarios, a set of hourly load data are
added from PJM, which is a famous benchmark. According
to the data source information, the market region is EAST
and the time is from 2017-7-3 00:00 to 2018-7-3 00:00. The
specific data is shown in Figure 16.

FIGURE 16. PJM hourly metering load data.

Similarly, the dataset is split into a training set, a validation
set and a testing set according to the proportion of 8:1:1. The
parameters of each model are set as follows.

(1) TCN: The algorithm is built using the Keras library in
Tensorflow framework. The number of filters is 64, the kernel
size in every convolution layer is 2, and the dilation factor is
set to [1, 2, 4, 8]. The stack number of the residual block is 2,
activation function using ‘‘ReLU’’.

(2) GRU: The number of hidden layers is 1 and the number
of nodes in hidden layer is set to 128, activation function using
‘‘tanh’’.

(3) LSTM: The number of hidden layers is 1 and the
number of nodes in hidden layer is set to 128, activation
function using ‘‘tanh’’.
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TABLE 9. Short-term load forecasting evaluation for each model in two representative period.

(4) CNN: The number of convolution layers is 1, the num-
ber of filters in convolution layer is 16, the kernel size in every
convolution layer is 2, the number of fully connected layers
is 2 and the number of neurons in fully connected layer is set
32/1, activation function using ‘‘ReLU’’.

(5) XGBoost: The learning rate is 0.05, the max depth of
trees is 6, iteration is set to 60, colsample equals 0.8, alpha
is 0.1, lamda is 0.2, gamma is 0.1 and the minimum child
weight is 3.

(6) SVR: The kernel function is ‘‘rbf’’, the penalty factor
is set to 10 and other parameters are default settings.

TABLE 10. Calculation time of each Epoch for all neural network models.

The prediction results based on different models for
PJM load data on 2018-6-21 are shown in Figure 17.
Similar to experiment 2, the computational speed and sta-
tistical metrics of each model are computed and shown
in Table 10 and Table 11. From these results, although PJM
load dataset does not contain meteorological features and
electricity price data, the proposed model still achieves the
best forecasting performance. Based on TCN-GRU model,
the MAPE is only 1.16% with less features. In terms of
MAPE, TCN-GRU is 59.7% lower than CNN-GRU. It can be
concluded that our proposed is competent for different STLF
situations. Among all the comparison models, our proposed
model is mediocre in prediction speed but has obvious advan-
tages in forecasting accuracy.

FIGURE 17. The prediction results based on different models for PJM load
data on 2018-6-21.

TABLE 11. Load forecasting evaluation on the testing set.

E. DISCUSSION AND ANALYSIS
In this paper, the load data considering electricity price,
weather and date are utilized to simulate the experiment.
Experimental results from all aspects present that the
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proposed model is superior to the comparison models in
terms of prediction accuracy and efficiency. Furthermore,
the following information can be analyzed from the results:

(1) Experiment 1 proved that the proposed model was
further improved with the blessing of two technologies.
Compared with the traditional Adam in load forecasting
tasks, the AdaBelief optimizer has a faster convergence rate,
better stability, obvious accuracy advantages and stronger
normalization. Theoretically, AdaBelief mainly modifies the
adaptive learning rate tuning item in Adam and considers
curvature information. Although the change is little, it is very
prominent in the prediction effect of the time series. Besides,
the accuracy is slightly improved with the added Attention.
In principle, Attention solves the problem that RNN can-
not be operated in parallel. Meanwhile, Attention can grasp
the key points of information and avoid the weakening of
long-distance information to some extent. Although adding
attention mechanism inevitably increases the calculation time
slightly, we mainly focus on prediction accuracy. In terms of
load forecasting, the optimization of neural networks is still
worthy of study.

(2) In the individual models, GRU fits the actual load
best, and the convergence rate is faster than LSTM. In the-
ory, GRU merges the input gate and forget gate in LSTM
into one update gate, eliminating redundant gate mechanism.
Moreover, the GRU has fewer parameters, and when the data
set is not particularly large, it can improve the prediction effi-
ciency and alleviate the problem of gradient disappearance.

(3) In the hybrid models, the performance of the proposed
model is better than CNN-LSTM, CNN-GRU and TCN-
LSTM. And the prediction error of TCN-LSTM is lower
than that of CNN-LSTM. These demonstrate that TCN is
superior to CNN in feature extraction. In principle, TCN has
a wider receptive field due to dilated convolution and can
capture historical data and time relationships in a long-term
range. TCN also introduces residual block to avoid gradient
disappearance. Due to the limited receptive field, the CNN
model has a poor ability to capture long-distance features,
and even the prediction accuracy of the CNN-GRU hybrid
model is worse than that of the single GRU model. This
paper proposes a model that combines the advantages of
TCN andGRU to achieve the best prediction effect. However,
in terms of calculation time, due to features extraction, fore-
cast requires more time than single models, but the pre-
diction accuracy is improved. In the practical application
of load forecasting, forecast accuracy should be primarily
considered.

(4) In this article, we also discuss the short-term load
forecasting during working days and holidays. No matter
what the load fluctuation is, the proposed model achieves the
best prediction results. It can be summarized that the model
maintains a high precision prediction effect from the overall
period to the local time, and the model has a certain capability
to adapt to the fluctuation of the load. Moreover, the proposed
model is tested on PJM power system to verify the forecast-
ing effectiveness in other STLF scenarios. Finally, Table 3

also shows the importance of data preprocessing in load
forecasting.

V. CONCLUSION
This paper proposes a hybrid TCN-GRUmodel for short-term
load forecasting. First, the correlation between meteorologi-
cal features and short-term load are analyzed, using fixed-
length sliding time windows to reconstruct various features
as input features of TCN. Next, the historical information
and time relationship hidden in features can be extracted well
by TCN, and then use the prediction advantages of the GRU
model. With the support of AdaBelief optimizer and Atten-
tion mechanism, the proposed TCN-GRU model improves
the accuracy and efficiency of short-term load forecasting.
Finally, the model parameters tuning adopts the TPE algo-
rithm which consumes less time. The experimental results
in this paper present that the model has good adaptability to
short-term load forecasting in different periods and different
types of load data, in other words, the proposed model has
strong robustness. It can be concluded that the combination of
more new technologies and neural networks is a tendency for
the improvement of short-term load forecasting in the future.

In future work, it is necessary to consider more detailed
weather data and higher-dimensional data features on the
performance of the predictionmodel and verify the prediction
effect of this method in other scenarios. In addition, some
novel load data preprocessing methods that can improve the
prediction accuracy should be explored.
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