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ABSTRACT Integrated circuits (IC) are fabricated on a wafer through stacked layers of circuit patterns.
To ensure proper functionality, the overlay of each pattern layer must be within the tolerance. Inspecting
each wafer’s overlay is unrealistic and impractical. Hence, wafers are selectively inspected at metrology
stations through sampling strategies. With virtual metrology (VM), the metrology quality of the uninspected
wafers can be estimated. Motivated by a real-world production environment of a 200mm semiconductor
manufacturing plant (fab), a VM to estimate the overlay of the photolithography process is envisioned.
Past researches on overlay VM leveraged fault detection and classification (FDC) data to estimate the
overlay errors. As such, for fabs in the progress of completing their FDC development for photolithography
equipment, a different modeling approach is required to realize an overlay VM that sustains the production
line until FDC data can be leveraged for VM. With practical gaps that must be addressed in real fabs,
this paper focuses on realizing an overlay VM for the photolithography process without leveraging FDC
data. Therefore, the objectives of this paper are two folds: First, to identify the research challenges towards
realizing the overlay VM. Second, to propose the future research perspectives of the envisioned overlay VM.
Based on the future research perspectives, a two-steps overlay VMmodeling approach utilizing data mining
techniques is proposed toward realizing the envisioned overlay VM system. The proposed approach first
classifies the process stability at the wafer lot level, and subsequently, performs overlay error estimations
for wafers in the wafer lots classified with stable process. Linear regression models are proposed to perform
overlay error estimations in this work to augment the interpretability of the overlay VM.

INDEX TERMS Virtual metrology, photolithography, overlay, classification, regression.

I. INTRODUCTION
Semiconductor manufacturing is a composite process that
transforms raw wafers into computer chips. The entire pro-
cess manufacturing process consists of four distinct stages
of operations. The first stage is the wafer fabrication stage.
In this stage, bare silicon wafers first enter the wafer fabri-
cation step to produce integrated circuits (IC) in the form of
dies on their surface through a repetitive process of a series
of sequential processing steps. The fabricated wafers are then
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sent to the second stage of the manufacturing process, called
wafer test, to inspect the electrical properties of the wafer
dies. Wafer dies that past these electrical tests are then sent
for assembly to be packed as computer chips, which is the
third stage of the manufacturing process. At the last stage,
the final test on the functionality of the chips is performed to
ensure that only chips that pass the tests are shipped to the
customers.

The required IC design is translated onto the surface of the
wafer layer by layer through sequential steps. The processing
steps involved to translate a layer of IC design onto the wafer
surface can be categorized into seven steps: lithography,
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etching, deposition, chemical mechanical planarization
(CMP), oxidation, ion implantation, and diffusion. These
steps are categorized as process steps, as opposed to metrol-
ogy or inspection steps that examine the qualities of the
wafers. The following describes thesemajor fabrication steps.

These fabrication steps are presented through the following
sequence [1], [2]: lithography, etching, deposition, chemical
mechanical planarization (CMP), oxidation, ion implanta-
tion, and diffusion.

The lithography process step, also known as the pho-
tolithography process step, typically marks the beginning of
a new layer. In this process step, the pattern of the IC is
imprinted onto the surface of the wafer through a mask (or
reticle). The wafer surface is first coated with photoresist
material. Then, a mask that contains the IC design pattern of
the layer is placed on top of the wafer in close proximity in
a machine called the stepper for the pattern imprinting on the
wafer’s surface. The pattern imprinting is accomplished by
exposing the mask and the wafer under ultra-violet light. The
exposed resist will be removed in the subsequent step, leaving
the protected area to represent the pattern imprinted.

At the Etching process, IC patterns are created on the
surface of the wafer by selectively removing the deposited
material. An etching mask is applied on the wafer surface
to protect the area that should remain. The material in the
unmasked area is then removed either through dry (physical)
etching or wet (chemical) etching. The etching processing
occurs in a localized environment called chambers of the
etching machine.

At the deposition process, thin organic and inorganic films
are deposited into the wafer to either create interconnectors
of the IC or as intermediate layers for specific processing
step and subsequently removed after the processing step is
completed. Deposition methods include physical vapor depo-
sition (PVD) and chemical vapor deposition (CVD), with the
former utilizes the sputtering of accelerated ion gas, while the
latter utilizes the chemical reaction from a mixture of gasses
at high temperatures.

At the chemical mechanical planarization (CMP) process
step, a planarization process is applied to the wafer to flatten
its surface to create a non-planar surface. This surface con-
ditioning step is crucial for the lithography process for the
correct transfer of the IC pattern. CMP process performs the
planarization process with the help of designated chemical
slurry.

At the oxidation process, silicon on the wafer surface is
converted to silicon dioxide, which is a layer necessary for
the ion implantation process later. In the modern fabrication
process, thermal oxidation is commonly used for the con-
version process. In thermal oxidation, a wafer is exposed to
oxygen or water vapor in a furnace environment for elevated
temperatures for effective conversion of the silicon oxide.

At the ion implantation process, dopant impurities are
introduced into the wafer to modify its electrical proper-
ties. Boron, arsenic, phosphorus, and antimony are examples
of impurities used. Ionized dopants are energized through

electrical field acceleration so that they can penetrate the
wafer to the desired depth. At the diffusion process, implanted
dopants are shifted across wafer sites at an elevated tempera-
ture. Dopants shifting is necessary to adjust their concentra-
tion across the wafer’s site. The diffusion process is used to
introduce dopant into wafer from dopant gas. The diffusion
time and temperature determine the implantation depth. The
diffusion process is also used to perform thermal oxidation in
order to obtain the silicon oxide layer.

The wafer fabrication process to produce IC required for
today’s technology may require 350 process steps or more.
With such a long processing sequence, and each process step
having its own process characteristics, wafer quality has to
be ensured throughout the various stages of the fabrication
process. Metrology steps are therefore placed in between
designated process steps to perform the quality checks. Wafer
quality can be determined bymeasuring critical parameters to
ensure that these parameters are within the product specifica-
tion limits and inspecting the surface of the wafer to ensure
no physical damage, defects, or unwanted particles are found
on the wafer. A failure in the metrology steps indicates the
presence of abnormalities such as equipment parts failure
or process performance drifts. Metrology steps are therefore
crucial to ensure wafer quality and maintain yield.

Although metrology steps are crucial to ensure wafer qual-
ity, they are considered non-value-added steps to the pro-
duction. In a high-throughput wafer fabrication foundry (fab)
where thousands of wafers are being processed each day, it is
both costly and inefficient in terms of time and manpower
to carry out metrology on every wafer. Hence, a sampling
approach is conventionally used. In a fab, a wafer lot is a sin-
gle unit quantity of wafer transportation cassette that typically
contains 25 wafers. Using the sampling approach, metrology
is performed after a certain number of lots are being pro-
cessed for a particular recipe-equipment pair, and for the lot
sent for metrology, a subset of the wafers are selected for
metrology. The metrology results obtained from these wafers
are used to represent the quality of the entire lot. In terms of
cycle-time (CT) of a fab, the sampling approach is beneficial
as it shortens the CT of the manufacturing process. However,
in terms of wafer quality assurance, the sampling approach is
undesirable. To address this gap, virtual metrology (VM) has
emerged as the means to examine the un-sampled wafers in a
lot without incurring additional cost to cycle-time.

VM is defined in the literature as mathematical models
that conjecture, estimate, or predicts the target metrology
variables of interest by utilizing historically sampled metrol-
ogy measurements, process, and equipment state informa-
tion [3], [4]. The realization of VM as a low-cost solution
that compliments the physical metrology to bridge the afore-
mentioned gap is made possible owing to the availability of
substantial computing power and storage at low cost.

VM has been actively studied by researchers for the past
decades for various fabrication process steps by leveraging
FDC data to provide real-time depiction of fabrication pro-
cess characteristics. FDC is still actively researched in recent
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years for various improvements to augment its capabilities
to handle various complex process characteristics in wafer
fabrication. Examples of these works can be found in [3]–[7],
and [8]. As such, active FDC development works are nec-
essary for real fabs to apply the various new approaches for
effective fault detection and classification.

In the event that the FDC development is in progress
or undergoes various improvement activities that render its
data unavailable until it is qualified for production use, FDC
data could not be leveraged to realize VM similar to past
researches. Hence, a different modeling paradigm is required
to realize an overlay VM to sustain the production line until
FDC is ready for production use and its data can be leveraged
by VM. Motivated by a real fab production environment
of a 200mm semiconductor manufacturing plant (fab), this
research focuses on realizing an overlay VM for the pho-
tolithography process without leveraging FDC data to cater
for such an event. The realization of the envisioned VM that
does not leverage FDC data is non-trivial with the presence
of practical challenges that must be addressed. Therefore,
the objectives of this article are two folds: First, to identify the
research challenges towards the realization of the envisioned
VM. Second, to propose the future research perspectives
towards a production overlay VM that does not leverage FDC
data for the real-world production settings.

The presentation of this paper is therefore organized as
follow: Section II presents the literature review of the related
research works, Section III presents the research analysis and
challenges, Section IV presents the future research direction
and the proposed VM model, and finally, Section V presents
the conclusion of this work.

II. RELATED WORKS
This section presents the literature review of related virtual
metrology (VM) works for the past decades.

In [9], the authors presented a faulty wafers detection
method for batch processes using k-Nearest Neighbor (kNN).
According to the authors, statistical process control (SPC) has
traditionally been used to identify faulty wafers in semicon-
ductor manufacturing. However, SPC is incapable of multi-
variate detection approaches. On the other hand, the widely
explored principle component analysis (PCA)-based and par-
tial least squares (PLS)-based detection for multivariate fault
detection were inefficient for batch processes as a result of
unique process characteristics involving nonlinearity, multi-
modal trajectories as a result of product mix, and process time
variation. PCA or PLS-based methods require the unfolding
of data into 2 dimensional (2-D) data array, thus requiring a
significant amount of data to build a reliable detection model
and restricting automated solution for online applications.
Hence, employing FDC and kNN, the authors proposed kNN
based fault detection to overcome the PCA-based detection
method. As a nonlinear classifier, kNN is capable of han-
dling data with nonlinear characteristics. With its simplic-
ity and flexibility, kNN is also suitable for practical use in
the production system. Differing from fault classification,

faults in fault detection cannot be defined and thus, labeled
upfront to train the model. Hence, the authors adapted the
conventional rule from kNN by considering the distinction
between the trajectories of the samples: should an incoming
trajectory is faulty, it will exhibit deviations from those of the
normal ones. Hence, by considering only the trajectories of
the normal samples and distance thresholds of the training
samples, the proposed model can achieve fault detection for
batch processes. Employing an industrial example from the
etching process, the proposed approach performed better than
PCA-based approaches in certain cases.

In [10], the authors presented a VM model that can cap-
ture the process variations in multiple inputs and multiple
outputs (MIMO)-based processes. The predicted output is
then utilized by the authors to create a wafer-level run-to-run
(R2R) feedback process control scheme. Prior to being able to
integrate into a process control scheme, the VM model must
be able to capture the process variations in a MIMO process.
Therefore, the authors first presented a detailed formulation
of the VM modeling using Partial least squares (PLS) that
take into consideration metrology delays and two types of
process drifts: consistently and suddenly. Various statistically
summarized variables obtained from fault detection (FD)
systems are used for the model’s input. After the VM model
is developed, the quality of each predicted measurement
needs to be assessed quantitatively so that only good pre-
dictions are fed into the process control scheme. Hence,
in this work, the authors also proposed quality metrics to per-
form the required quality assessment. The double exponential
weightedmoving average (dEWMA)was used as the baseline
to evaluate the efficiency of the proposed control mechanism
using VM. By using data from the simulated MIMO process,
the experimental results showed that R2R controlling scheme
utilizing VM data achieved superior results compared to R2R
controlling scheme without the VM data.

In [11], the authors attempted to identify faulty wafers
in semiconductor manufacturing through VM. The moti-
vation was stemmed from the fact that early detection of
faulty wafers can avoid unnecessary resource consumption
and in some events, avoid the wafer being scrapped. How-
ever, applying VM in such detection has two challenges.
Firstly, an optimum number of model inputs need to be
selected from high-dimensional datasets containing measure-
ments from both machine sensors and physical metrology.
Secondly, wafer metrology data samples required to build the
VMmodel are usually small as physical metrology only mea-
sures a minimum number of wafers per lot. In the presence of
such adversarial data characteristics, the authors employed
data mining techniques to develop a VM model with high
accuracy. In this work, two VM models were built using the
same techniques to address the etching process of two etching
equipment that have been suspected to cause wafer scrap
in a real production environment. VM1 denoted the VM of
the first etching equipment while VM2 denoted the VM of
the second etching equipment. The data acquisition of the
first etching equipment involved 48 sensors while the second
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equipment involved 56 sensors. Each etching process has
8 unique steps with all the involved sensors operating during
the process. Deriving 4 summary statistics for each sensor’s
FDC data, a total of 1536 input variables were available for
VM1 while 1792 input variables were available for VM2. In
real-world practice, fabs only measure one wafer out of 25
wafers for each wafer lot at the physical metrology station.
Hence, the data available to develop the two VMmodels were
significantly low with only 118 wafers’ data available for
VM1 while 241 for VM2. To develop the VMs, the authors
first applied data pre-processing steps by converting them to
the relevant data structure, followed by dimension reduction.
The VM models were then trained using the input variables
obtained from the dimension reduction schemes. The large
numbers of available input variables were reduced signifi-
cantly to obtain the crucial ones for both VMs. With only a
small data sample size, the VM models built by the authors
were still able to perform abnormal wafers detection very
well with no misclassification on the normal wafers. The
regression models that achieved the best results were linear
regression and support vector regression (SVR).

In [12], the authors proposed the use of stepwise selec-
tion (SS) for an artificial neural network (ANN) to achieve
optimum variable selection for VM models that employ
ANN as its prediction algorithm. According to the authors,
the widely used Multi-regression-based (MR-based) SS has
three limitations that lead to lower predictions for the
ANN-based VM model. First, the features obtained from
MR-based can be suboptimum. Second, the use of MR-based
SS often requires subjective judgment based on engineer-
ing and domain knowledge when high-dimensional variables
are present. Third, the variables selected as features using
MR-based SSmay not be suitable for ANN-based VM. In this
work, the etching process considered has 12 unique steps with
36 equipment sensors involved tomonitor these process steps.
Among the input variables, 66 important ones were identified
by the process experts. These variables formed the expert-
recommended (ER-based) feature set and served as inputs to
the MR-based SS. The dataset consisted of 248 wafer lots
with 25 wafers or less. 247 sets were used to construct the
proposed VMwhile the last set was reserved as the prediction
set. For the 247 sets, the normal wafer sampling procedure
was applied to measure only one wafer per wafer lot, while
the prediction set has all 25 wafers measured to assess the
capability of the proposed VM in predicting the metrology
values of all 25 wafers. Using the proposed method, a prelim-
inary list of input variables is first obtained using MR-based
SS from the 66 input variables identified by the process
experts. Then, forward and backward elimination processes
are carried out repeatedly by the ANN algorithm selected to
perform prediction on wafers’ critical dimension (CD) from
the etching process. One-hidden-layer backward propagation
neural network (BPNN-1), simple recurrent neural network
(SRNN), and generalized regression neural network (GRNN)
were employed as the algorithms to evaluate bothANN-based
SS and VM’s conjecture models. The results from the

experiment demonstrated the highest prediction accuracy was
obtained by the proposed ANN-based SS, and all three ANN
models achieved similar prediction performance.

In [13], the authors presented a VM model that predicts
the etch bias (EB), which is the critical dimension (CD)
difference between the two patterns etched by plasma etch
equipment. The plasma etch equipment considered in this
study has dozens of sensors sampling the process charac-
teristics at the frequency of 1-2Hz for each wafer. With
fabrication’s duration ranges from several minutes to an
hour, thousands of sensor readings can be collected for each
fabricated wafer to depict the process characteristics. Such
datasets collected from the equipment typically contain char-
acteristics of high-dimensionality, varying data structures,
collinearity, and non-linearity interactions between the vari-
ables, to name a few. Variable selection and outlier removal
were the two steps deemed crucial by the authors in order
to build a VM model that is both robust and reliable in the
presence of such challenging data characteristics. According
to the previous studies, stepwise selection, random modeling
and genetic partial least squares (PLS) methods have shown
descent results in variable selections. Principal component
analysis (PCA) was employed by authors for outlier removal.
Three VM models were then built using linear PLS, step-
wise regression, and BPNN to determine the best combi-
nation of the aforementioned variables selection and outlier
removal techniques that is capable of the highest predic-
tion accuracy. The best experimental results were obtained
using stepwise variable selection and the BPNN prediction
algorithm.

In [14], the authors presented a VM using the data mining
approach to predict the overlay metrology qualities of the
photolithography process of a real fab. Two chucks of the
photolithography equipment were studied in this work with
a total of 37 equipment sensors involved to monitor the
fabrication process of each wafer. 1612 wafers’ sensor and
metrology data were collected for chuck 1 and 1563 wafers
for chuck 2 over a period of 8 months. Deriving 4 summary
statistics of minimum, maximum, mean, and variance, a total
of 148 statistical sensor parameters were made available to
construct the proposed VM that predicts 8 overlay variables.
Employing various dimension reduction schemes, the statis-
tical sensor parameters were reduced to only the ones deemed
crucial by the dimension reduction schemes. The authors also
analyzed the effects of the data collection period on VM’s
prediction performance. By utilizing the moving window
method, the authors discovered that when process drift was
absent in the data collection period, a substantial training
period on the VM model was preferably in order to gain pre-
diction accuracy. Among the regression model, kNN gave the
best prediction performance. The authors also developed an
R2R process control system embedded with VM by utilizing
EMWA in Monte Carlo simulations. The empirical results
obtained through a large number of simulations carried out
demonstrated that the proposed R2R control system was able
to perform process recipe adjustment correctly in order to
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correct the overlay metrology measurement that has drifted
far from the target values defined.

In [15], the authors presented a machine learning-based
faulty wafer detection method using novelty detection instead
of the conventional binary classificationmethod. In this work,
the authors defined a faulty wafer as a wafer with large devi-
ations in its metrology values. According to the authors, FDC
data are conventionally used by SPC for fault detection in a
fabrication process because of the immediacy of these meth-
ods. However, SPC methods for fault detection have various
limitations. Firstly, SPC only inspects and controls a subset of
the variables that have been known to have a high impact on
wafer quality. Secondly, SPC assumes independence between
variables while in actuality, the interaction between multiple
variables affects the wafer’s quality. Employing Principle
Component Analysis (PCA) in SPC may address the prob-
lem, but at the cost of information lost. Thirdly, SPC-based
methods assume linearity and unimodality in the data, but in
reality, the opposite is true. Lastly, FDC data, which are direct
observations of process conditions sampled by the equip-
ment’s sensor during the fabrication process, are not a direct
representation of the wafer’s quality; wafer quality has to be
derived from the sampled process conditions. An alternative
way to detect faulty wafers is through physical metrology
inspection. However, it is both impractical and unrealistic to
employ a metrology step after each process step and measure
all wafers processed because doing so will induce great costs
in finances, human resources, and production cycle time.
Virtual metrology (VM), as opposed to physical metrology,
allows the conjectures of metrology values through process
and equipment sensor data. Regression models are used to
perform numerical estimation on its predictors, which are
the targeted metrology variables’ values. Although VM has
conjecture capability, regression models are not sensitive
to deviations of the predictors. Therefore, the authors pro-
posed to detect faulty wafers using novelty detection using
machine learning. Focusing on photolithography equipment
with two chucks in this work, 2583 and 2509 wafers’ sen-
sor and metrology variables were collected for chuck 1 and
chuck 2, respectively. A total of 148 statistical sensor param-
eters were derived as inputs for the dimension reduction
schemes to identify the crucial ones for the prediction task.
Both cross-validation and moving windows methods were
employed to measure the accuracy of the models evaluated
by the authors. From the experimental assessment conducted,
One-Class Support Vector Machine (1-SVM) achieved the
highest detection accuracy through the moving windows
method. The obtained results were significantly high enough
for this work to be further researched in the future for practical
use in the production environment.

In [16], the authors demonstrated the use of a VM-based
control scheme to perform estimation of plasma electron
density and plasma etch rate. According to the authors,
the prediction of these metrology variables in the plasma
etch process is non-trivial due to its process characteristics
that are time-varying, process drifts, and sudden process shift

owing to maintenance activities. Traditionally, SPC has been
used to manage the plasma etch process. However, the SPC
approach introduces metrology delays that could result in a
large number of wafers being processed erroneously before
the first faulty wafer’s metrology result is detected by SPC
for process issues. Advanced process control (APC) and
VM have both availed as the solution to the control issues.
However, the VM approach is preferable to APC because
the APC system could not be utilized efficiently for wafer-
to-wafer control due to infrequent measurement and metrol-
ogy delays. In this work, the authors investigated the use
of plasma independence (PIM) data to realize the proposed
real-time control scheme. Two PIM sensors were involved to
provide the process condition data at the sampling frequency
of 13.56MHz. Amaximum of 52 harmonics of this frequency
can be recorded to depict the process condition. The con-
trol method was implemented using the predictive functional
control (PFC) model. Employing multiple linear regression
(MLR), ANN, and Gaussian process regression (GRP) as
the prediction algorithms to evaluate the proposed method,
the best prediction results were obtained by ANN. Although
the obtained experimental results were promising, migrating
the solution to the production environment requires further
investigation on the limitations encountered in the experi-
ment.

In [17], the authors studied the efficacy of a two modeling
approach to develop an accurate VM model for the plasma
etch process in semiconductor manufacturing. According to
the authors, the plasma etch process is still one of the most
challenging processes to model for accurate metrology qual-
ity prediction. A two modeling approach consisted of global
modeling and local modeling were proposed by the authors in
an attempt to model this process. The authors defined global
modeling as the use of all available training data to model
the behavior of the process, while local modeling referred to
the use of a subset of the available training data to perform
the modeling. The selection criteria for the subsets depend
on the context information of interest. Hence, local modeling
can produce VM models with higher prediction accuracy
over certain operational behavior, while global modeling is
more suitable when a general prediction spanning across the
operational space is required. Partial least squares (PLS),
artificial neural networks (ANNs), and Gaussian process
regression (GPR) were the algorithms selected to compare
the efficacy of the two modeling approaches to predict the
etch rate of the plasma etching operation. In global modeling,
the data are prepared using two approaches: chronologically
and interleaving with reference to known events. In local
modeling, three preparation methods are used: partitioning
by wafer position during preventive maintenance (PM) cycle,
clustering through PM cycle, and time windowing method.
Two datasets of 12133 wafers and 18513 wafers were formed
to evaluate the efficacy of the proposed modeling. A total
of 103 process variables were collected through equipment
built-in sensors. An additional 159 process variables were
collected through PIM sensors. The best prediction result was
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obtained through the use of the localized GPR model using
the time-windowing method.

In [18], the authors presented a data fusion approach to
develop a VM model for the Cu-CMP process when only
a small data sample size is available for a product mixed
production environment. According to the authors, conven-
tional VM models are built when the number of observations
is sufficient to form a stratified matrix between processing
equipment and the products processed. Hence, an accurate
VM model could not be developed using the conventional
approach when mass production is still in its early stage.
Therefore, the authors proposed to fuse the data from dif-
ferent equipment that perform the Cu-CMP process. There
are two main parts in the proposed method: i) fusion method
utilizingMarkov chain Monte Carlo (MCMC) for identifying
the significant parameters and ii) the derivation of a hierarchi-
cal Bayesian model using the parameters from the MCMC.
The proposed method was compared with a conventional
VM-APC (advance process control) model through a simu-
lation experiment to evaluate their prediction accuracy. The
best result was obtained by the former model.

In [19], the authors presented a VM approach that
enables early-stage metrology outcome prediction and pro-
cess control through the generated feedforward control sig-
nal. According to the authors, several process steps may
influence the variability of target metrology and not just
the immediate process step before the target metrology. The
scenario studied by the authors consists of a sequence of four
process steps, with the target metrology as the immediate
metrology step after the fourth process step. The process’ data
that are taken into consideration for prediction was denoted
as the observable portion of the VM scheme, which con-
sisted of the first two process steps, while the unobservable
portion was made up of the process step thereafter. Hence,
the authors aimed to achieve early-stage detection by esti-
mating the target metrology’s result at the observable point
and subsequently initiates process control on the processes
in the unobservable portion to reduce the metrology vari-
ability. The advantages of the proposed methods are four
folds: 1) provides the ability to comprehend the effects of
early-stage processes on the target metrology; 2) provides
lower bound observable processes on overall metrology vari-
ability; 3) early-stage detection of process drifts or abnor-
mality, thereby potentially used for predictive maintenance
purposes; 4) enhance process control on the unobservable
process steps through its feedforward control signal. Elastic
Net was employed as the prediction model of the proposed
VM. According to the authors, this work is the first to apply
Elastic Net in VM research. By using a real-world dataset that
consisted of 870 wafers and 327 process variables collected
through a period of 5 months, the experimental assessment
showed that Elastic Net obtained the lowest prediction error
scores in comparison with other regression models.

In [20], the authors presented a feasibility evaluation
of the VM developed to predict the etch depth of two
different recipes of the plasma etch process in a high

product-mixed scenario. According to the authors, although
various VM algorithms have been proposed as a result of
active research in this area, applying VM for accurate predic-
tion in a real complex production environment remains the
key challenge. The authors conducted the VM development
according to the phases in Cross-Industry Standard Process
for Data-Mining (CRISP-DM) model. The variable selec-
tion phase is typically performed separately from the predic-
tion model development phase by using different algorithms.
However, in this work, these two phases are embedded by
using the stochastic gradient tree boosting algorithm. Two
model update approaches are evaluated in this work. First,
the model is updated on monthly basis. Second, the model is
updated whenever metrology data are available. Using data
collected over a period of 6 months in a real fab, the data used
in this work consisted of 64000 wafers’ process data, with
2900 wafers having their metrology data recorded. A total
of 120 potential process predictors were derived from the col-
lected data. The experimental results showed that by jointly
optimizing the data pre-processing and the parameters of the
model, coupled with model updates, it is possible to achieve
an accurate VM that is feasible to be used in a complex
production environment.

In [21], the authors presented a VM model for the plasma-
enhanced chemical vapor deposition (PECVD) fabrication
process. The metrology quality of interest is the average
thickness of the silicon nitride layer on the surface of the
wafer. FDC data for the PECVD process is first filtered
through various statistical methods to generate a final list
of available predictor variables. Then, three variable sets
were prepared. The first variable sets contain a full list of
variables. The second variable set contains a subset of the
full list selected based on expert knowledge. The last variable
set is further filtered from the second variable set to only
contain the variables deemed most important by the FDC
experts. Using real fab’s data collected over a period of 9
months, the data used in this work consisted of 450 wafers’
FDC data with more than 150 FDC sensor variables available
as potential predictors. The regression methods employed
in this work were multiple linear regression (MLR), simple
linear regression (SLR), ridge linear regression (RLR), partial
least square (PLS), and support vector regression (SVR).
Experimental results showed that SVR utilizing the expert
knowledge variable set outperformed the other regression
methods used with its capability to generalized unseen con-
ditions better than then its counterparts.

In [22], the authors presented the use of the relevance vec-
tor machine (RVM) to develop a robust regression VMmodel
with variation inference. According to the authors, neural
network (NN) has been the most employed prediction algo-
rithm for VM. Although widely used, NN is known for three
limitations. First, NN suffers from the over-fitting problem.
Second, NN is not robust in the presence of potentially outlier
data. Third, NN lacks inferential information to measure the
performance of theNN statistically. The authors are not aware
of any previous works that have attempted to solve all three
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weaknesses in a single VM solution. The proposedmodel was
termed RVM-VI. Using actual plasma etch process data from
the industry collected over a period of 5 months, 76 wafers’
process and metrology data were available to conduct the
experiment, with 40 equipment sensors involved for process
condition monitoring. The process condition was sampled by
the sensors at the rate of 1Hz, i.e. every second. 2 summary
statistics were derived for each equipment sensor. Hence,
a total of 80 potential features were available for selection.
Utilizing stepwise selection procedure for dimension reduc-
tion and feature selection, the RVM-VI showed better predic-
tion accuracy compared to other models in the experimental
evaluation conducted.

In [23], the authors presented a VM model using locally
weighted partial least square (LW-PLS). According to the
authors, the PLS regression method is a widely used
VM model due to its capability to handle the collinearity
present in the variables. However, the prediction accuracy of
PLS degrades with the characteristics of the modeled process
changes. An example of an event that can alter process char-
acteristics is the equipment maintenance activities. Hence,
in this work, the authors proposed LW-PLS as an adaptive
VM model to cater to process characteristics changes. Using
the proposed method, a VMmodel was developed for the dry
etching process to predict the etching conversion difference
by utilizing variable importance in the projection (VIP) to
select the relevant mode inputs. The proposed VM model
was compared with the conventional method called sequen-
tial update model (SUM) and ANN model for prediction
accuracy using real-world dry etching equipment data. The
real-world data consisted of both process data from the equip-
ment engineering system (EES) and the optical emission
spectroscopy (OES) signals sampled at 100 milliseconds. For
EES data, a total of 400 types of signals were stored to depict
the process condition. From these process data, 9 statistical
representatives were derived by the authors: maximum, min-
imum, the range between maximum and minimum, median,
average, standard deviation, integral, differential and count.
The etching process considered in this work has 16 unique
process steps. Hence, a total of 57600 (i.e. 400 process signals
x 16 process steps x 9 statistical representatives) features
were derived for one etched wafer. The results from the
experiment conducted showed that the proposed VM model
achieved higher prediction accuracy than the comparison
models. In addition, the proposed model was resilient against
equipment maintenance activities with lower variation in its
prediction performance pre and post-maintenance activities
than SUM and ANN models.

In [24], the author presented a novel strategy to VM called
multi-step VM. According to the author, the classical VM
approach only takes into consideration only the last process
step before the metrology step of interest as input vari-
ables when developing the VM model. However, since the
semiconductor process is a sequential process step, it was
a reasonable assumption to the authors that the metrology
quality of the wafers not only depend on the process step

immediately prior to the metrology step, but also on the
previous process steps. Hence, a multi-step VMwas proposed
in this work utilizing regularized machine learning method-
ologies. The process steps considered in this work start from
Chemical Vapor Deposition (CVD) step, followed by the
photolithography step, and ends at the etching step. Using
real-world data that consisted of 583 wafer samples, various
combinations of these process steps were evaluated using
two regression models to find the combination that gives the
best prediction result. The two regression models employed
were ridge regression (RR) and least absolute shrinkage
and selection operator (LASSO). The proposed multi-steps
approach showed improved prediction results over the clas-
sical approach. The acceptancy of prediction accuracy from
the experimental results is subject to each semiconductor
company. If the results are considered accurate enough, this
strategy may be used in a production environment in place of
the real metrology step.

In [25], the authors developed a VMmodel for the plasma-
assisted oxide etching process. According to the authors,
the prediction accuracy of VM is vital for the model to be
reliably used in various monitoring systems in a fab. Due to
the fact that the etch rate could not be measured in-situ to the
process, and the challenging characteristics of this process,
VM models utilizing to perform the etch rate estimation in
real-time. However, these models that are typical driven by
nonlinear statistical methods, such as the principal compo-
nent regression (PCR), have low reliability as they tend to
perform well with training datasets but not on the validation
dataset. In this work, the authors showed that by introducing
information that better represents the process states, the relia-
bility and hence their prediction accuracy can be augmented.
With reference to the plasma-assisted oxide etching process,
the new parameters were selected by referring to the reaction
mechanism of the plasma. These parameters were obtained
by analyzing the data from EES and OES. From a total
of 1670 parameters, 79 of them were selected through the
sensitivity ranking test (SRT) that assesses the sensitivity
of these parameters during the etching process. By using
these parameters to form new principal components (PC)
through PCA, an improvement in the etch rate prediction
accuracy was demonstrated through the use of PI parameters
in PCR-based VM.

In [26], the authors presented the use of extreme machine
learning as the conjecture model in VM for the plasma etch-
ing process’s etching rate (ER). According to the authors,
controlling the plasma etching process is known to be chal-
lenging due to the process characteristics that are difficult to
model. As such, estimating the etch rate is a non-trivial task.
With the advent of VM, it is now possible to perform in-situ
etch rate prediction. However, obtaining robust and reliable
VM schemes is challenging in actual an production environ-
ment due to restricting factors such as lowmetrology samples
to develop the model, process drifting across time, and effects
from both periodic and ad-hoc maintenance activities on
the equipment. Nonlinear modeling techniques are therefore
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needed for such processes. Among the nonlinear models,
support vector machines (SVM) and neural network (NN)
has been widely applied in nonlinear modeling. However,
they are not easy to train, interpret and scale efficiently
with problem dimension. Hence, the authors proposed to use
extreme learning machines (ELM) as the nonlinear model for
VMwhich is capable of addressing the shortcomings of SVM
and NN. By using real-world OES data of 2194 wafers with
their measured ER to compare the performance of both linear
and non-linear models in the experimental setup, the authors
showed that the proposed model has higher effectiveness than
the VM model to predict the ER.

In [27], the authors presented a feature selection method
that incorporates randomization to improve feature search
efficiency. VM development commonly involves feature
selection over high-dimensional datasets to obtain input vari-
ables that best represent the characteristics of the process
being modeled. Feature selections commonly used in VM
modeling are heuristic-based which can be classified into
sequential and stochastic methods. The former class is prone
to suboptimal solutions while the latter, over-fitted solution.
The computational cost of these methods is also sufficiently
high when the datasets are dimensionally high. To address
these issues, the authors proposed a feature selection method
using the random forward search. By introducing random-
ization into feature selection, the proposed method performs
a sequential search over subsets of data that are randomly
joined. Two datasets of a plasma etching process from real
fab were used to conduct the experimental evaluation. The
first dataset consisted of 839 features with 3 target metrol-
ogy variables for 118 wafers, while the second dataset con-
sisted of 1224 features with 1 target metrology variable for
241 wafers. The evaluation results showed that the proposed
feature selection method was computationally less intensive
when dealing with high-dimensional datasets and at the same
time, prevents suboptimal and over-fitted solutions.With PLS
used as the learning algorithm, the proposed method not only
reduced computational cost but also achieved higher predic-
tion accuracy compared to other methods in the experiment.

In [28], the authors presented a VM model for the plasma
etching process through the use of OES data. The enormous
amount and the vast number of highly correlated features
in spectroscopic signals data are the challenges that authors
intents to tackle. The contribution of this work is two folds.
First, the fused lasso model is used for feature selection
from a high-dimensional dataset. According to the authors,
this work was the first to evaluate the performance of the
fused-lasso algorithm in VM modeling. Previous studies
mainly used Principle Component Regression (PCR) and
Partial Least Square (PLS) to extract important features from
high-dimensional datasets by performing a transformation on
the dataset. Although these methods have been proven to
be robust in high-dimensional dataset reduction, these meth-
ods do not provide a clear interpretation between the trans-
formed features and the original features in the dataset. The
lack of interpretability prevents the engineers operating the

semiconductor equipment to utilize the transform features for
troubleshooting and performance improvement plans. Sec-
ond, the feature selection procedure in this work handles both
the wavelength and the time factor in the dataset. Due to
the dynamicity of plasma processing, preserving time infor-
mation in the reduced datasets is crucial. According to the
authors, the existing studies have focused on reduced datasets
already summarized statistically. Statistically summarized
datasets not only lacks interpretability but also fail to preserve
the time information of the plasma process. These limitations
hinder information tracing between the wavelength measured
and the time of the measurement. Using OES data from
real fab sampled, 61 samples were collected from 3 wafer
lots. Each of the samples was comprised of 2045 wavelength
channels sampled 160 times. Hence, the dataset contained
a total of 327200 process variables to be evaluated. The
experimental results evaluated using the dataset showed that
the performance of the proposed VM model surpassed the
performance of other VM models compared.

In [29], the authors presented a VM using the support
vector machine (SVM) to predict if a wafer will exceed
defect threshold counts. According to the authors, as wafers
proceed in a series of loops over various major fabrication
process steps involving diverse process recipes, defects in
terms of cracks and particles can potentially be deposited
onto the surface of the wafer, resulting in improper functional
behavior and thus, lead to yield loss. Defect threshold in
terms of numbering counts are defined to decide if a wafer
can proceed for further fabrication, a rework is required or
the wafer should be scrapped completely. To determine the
defect counts, regular physical metrology is required. While
ensuring wafer quality, physical metrology could not be per-
formed on all wafers in production as such actions will be too
expensive in terms of equipment costs, manpower, and pro-
duction time. Conventional practice adopts various sampling
strategies at metrology steps by measuring a subset of the
wafers to determine to overall quality level. However, such
an approach potentially missed out on problematic wafers.
Hence, the authors proposed the development of a VM that
estimates if a wafer is good enough to proceed with further
fabrication. Support vector machine (SVM) was employed as
the prediction model to address the challenges in the formu-
lated classification task. Sensor readings from high sampling
rate sensors of the equipment involved were utilized to first
derive a set of informative features, followed features reduc-
tion to obtain the critical ones, and lastly to train the SVM
using the available data. The experiment was conducted in a
real fab over many months with two fabrication equipment
over hundreds of wafers. With each fabrication equipment
having more than 100 sensors, more than 1500 features were
derived for each wafer. The experimental results showed
that the classifier was capable to achieve more than 90%
prediction accuracy even when the training data was limited.
The experiment also revealed that in order to obtain higher
prediction accuracy, VM needs to be developed separately
for each machine instead of developing a single VM for all
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the machines. It is possible for VM to obtain better results
should chamber-specific VM is developed. However, the lack
of training data prevented this direction.

In [30], the authors presented an in-situ particle monitoring
system using VM to measure particle contamination in the
plasma etch process. According to the authors, the plasma
etch process is a complex nonlinear process and sensitive to
particle disturbances. Expensive metrology steps are often
necessary to measure the fabrication process’s etching rate.
Particles are generally contributed from three sources: clean
room, wafer handling, and from the equipment itself due
to product-mixed run. While the first two contributions can
be handled through various protocols, practices, and guide-
lines, mitigating particle from the last source is the most
challenging. Hence, the VM model is employed to provide
an in-situ particle monitoring system for the etching pro-
cess. The method proposed by the authors performs early
particle detection during the oxide etch process. 6 months
of real-world data from SPC, APC, and the plasma pro-
cess monitor system were acquired to form the necessary
datasets for 130 wafer samples. With a sampling rate of 1Hz
from the plasma etch sensors, 212 data points were used
as inputs to the VM model for particle count prediction.
Multilayer Perceptron Network (MLP) was used as the pre-
diction algorithm, and the comparison was made between
two learning algorithms: LevenbergMarquardt algorithm and
resilient back-propagation algorithm. The experimental eval-
uation showed that the best prediction results were obtained
by the former learning algorithm.

In [31], the authors addressed the reliability of a VMmodel
over time in the semiconductor production environment.
According to the author, the reliability of the VM degrades
over time as data characteristics changes due to various
scheduled activities (such as equipment maintenance activ-
ities) and non-scheduled events (such as faulty parts replace-
ment in the equipment) that occur in the semiconductor
equipment. Hence, the VMmodel must be updated to include
the new data characteristics. However, frequent updates on
the VM model can incur higher costs as the VM model
needs to be re-trained for each update. In addition, not all
updates performed will enhance the model’s performance
since not all disturbance at the equipment causes a change
in the data characteristics. Hence, the authors proposed an
intelligent VM model using the ensemble artificial neural
network (ANN) with an adaptive update. In the proposed
approach, ensemble ANN was used as the prediction algo-
rithm, and the prediction accuracy variance was used to gauge
the reliability of the VM. Two sets of four months data
corresponded to two photolithography equipment of a real
fab were collected to conduct the experimental evaluation.
Each dataset contained data from 2301 lots, 133 process
variables recorded from the equipment’s sensors for each lot,
and the measurement outputs of the 6 corresponding metrol-
ogy variables. The experimental evaluation demonstrated that
the required performance can be obtained by the proposed
method at a lower cost compared to other models evaluated.

The proposed VMmodel also capable of performing anomaly
process events detection, hence, allowing it to perform wafer
quality monitoring.

In [32], the authors introduced an adaptive VM method-
ology using the group method of data handling (GMDH)
type polynomial neural networks (NN) to automate feature
selection and NN topology specifications. The motivation
of this work stems from the authors’ observation that the
previous VM studies lack the discussion on both feature
and model selections. The development of a VM model
commonly encounters high dimensional inputs of process
variables collected from the semiconductor processes. The
reduction of high-dimensional inputs coupled with appro-
priate model complexity is crucial to develop a VM model
with high prediction accuracy. The novelty of this work is
four-folds. First, GMDH is proposed to tackle the challenges.
Second, two novel features were proposed by the authors to
augment the prediction accuracy. Third, an enhancement to
the Material Removal Rate (MRR) estimation of the CMP
process utilizing the proposed method was presented, and
lastly, the ease of adaptability of the proposedmethod to other
semiconductor processes was discussed. The dataset from the
prognostics and health management (PHM) data challenge
in 2016 was used in the experimental evaluation of this
work. The authors showed that better prediction accuracy and
enhanced scalability were achieved by the proposed method
compared to the data challenge champion method of the same
year.

In [33], the authors presented a VM model utilizing mul-
titask learning. Developing a VM model for equipment with
various process chambers is challenging. Firstly, even though
the chambers of the same equipment perform the same chem-
ical process, the chambers’ conditions will not be identical
due to process variations over time. The occurrence of these
variations is frequent enough that dedicated VM models
for each chamber are justifiable. However, the lack of the
number of observations per chamber necessary to develop a
reliable VM model restricts this approach. In addition, this
approach requires high resources in both time and manpower
to perform the measurement at the required metrology step in
order to obtain the relevant metrology data. Hence, a global
model using grouped observations of each chamber is more
feasible. However, the global model is incapable of capturing
localized chamber process variances, causing the model to
have inaccurate predictions. Multitask learning is therefore
proposed to compensate for such sparse and diversified cham-
ber information. The advantages of multitask learning are two
folds. First, multitask learning performs information learning
simultaneously, allowing the model to explore shared infor-
mation among the chambers. Second, simultaneous learning
increases the number of observations in each learning. This
capability is beneficial especially for chambers that have
relationships but the number of observations available is
small. In this work, the authors proposed the use of non-
linear and ensemble multitask methods, utilizing Multitask
Adaboost and Multiboost model, to develop the VM model.
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The authors were unaware of any previous attempt to use such
an approach in semiconductor VMmodeling. The experimen-
tal results using real-world FDC data demonstrated showed
superior results over the single-task learning model while
compared with the other multitask learning models, the pro-
posed model can minimize wrong information sharing condi-
tions, thus minimizing prediction inaccuracy.

In [34], the author investigated the efficacies of applying
transfer learning for the neural network-based VM model.
VMmodel is a prediction model that estimates the metrology
measurement outcome as a function of the metrology vari-
ables with their corresponding process variables. Data-driven
VM models use various mathematical models to derive the
function that best represents the relationship from the his-
torical data collected for two groups of variables. The need
for sufficient historical data to derive an accurate function
poses challenges to develop a VMmodel for new equipment.
Instead of performing data collection afresh, the authors pro-
posed to use transfer learning utilizing the existing VMmod-
els from similar sets of equipment to develop the VM model
for the new equipment. Two transfer learning strategies were
investigated which are model weights transfer and feature
representation transfer. VMmodels built using the two strate-
gies were then compared with VM models built using inde-
pendent learning. Two real-world photolithography process
datasets with the same target metrology quality were used
to conduct the experimental evaluation, with the first dataset
consisted of 1954 wafers and 1952 wafers for the second
dataset. For each of these wafers, 133 process variables
and 3 metrology variables were recorded. The models in
the experiment were required to estimate the values of the
3 metrology variables. The experimental results showed that
transfer learning is capable of developing a VM model with
sufficient prediction accuracies when there is a shortage of
data to conduct independent learning.

In [35], the authors presented a VM development model
to cope with the equipment condition change for accurate
wafer critical dimension (CD) prediction. According to the
author, APC systems are conventionally used to control CD
by adjusting process recipe parameters run-to-run. However,
APC systems encounter control delays due to the delay in
metrology, in addition to incurring high metrology costs.
Incorporating VM into APC systems can solve the problem
by using VM to predict the CD and feed the prediction
into APC systems for process control. Hence, accurate CD
prediction is crucial. Equipment conditions can change due to
various conditions. These changes affect the accuracy of VM.
Differing from the previous works, the authors approached
the modeling by considering the correlation between the
results obtained from the wafer’s CD measurement and the
condition change of etching equipment. Both global and local
model approaches were used by the authors to construct the
VM. In addition, the authors proposed an APC system that
contains multiple VMmodels with the capability to select the
optimum one based on the highest similarity to the current
equipment condition. A simulation dataset was generated to

conduct the experimental evaluation. The simulation data
consisted of 2976 wafers with 2 equipment sensors’ data.
The experimental results showed that the proposed method
obtained better prediction and error reduction compared to
the conventional APC systems.

In [36], the author evaluated a joint modeling approach to
augment faulty wafer detection in semiconductor manufac-
turing. According to the author, faults in wafer processing
are inevitable due to various internal and external factors.
A faulty wafer or wafer estimated to be faulty should be
held for further inspections to determine if the wafer can
be reworked or have to be scrapped. Predictive modeling
has been applied actively in semiconductor manufacturing
in recent decades to detect potential wafer faultiness and
enhance production yield. Conventionally, a predictive mod-
eling task is formulated as a classification task if the targeted
metrology variables are categorical value, and formulated
as a regression task if the targeted metrology variables are
continuous values. Each task has its own sets of prediction
algorithms, and there is no single setting that will consistently
be the best for all problems. Hence, this work proposed joint
modeling of both tasks to augment the performance of faulty
wafer detection. First, a regression task is performed to pre-
dict the numerical values of the targeted metrology variables.
Then, the predicted numerical outputs are used to classify the
wafer for fault detection. Two datasets from a real-world fab
were collected over a period of 7.5 months. The two datasets
corresponded to the photolithography process of two different
equipment in the fab, with the first dataset recorded data for
2583 wafers and 2509 for the second. For each of the wafer,
102 process variables and 4 target metrology variables were
recorded. Themeasured values for each of the 4 target metrol-
ogy variables were recorded in both numeric and binary forms
to meet the requirement of this work. Averagely, only less
than 1% of faulty wafers were present in the datasets. The
experimental results showed that with such highly imbal-
anced datasets, the proposed modeling was able to achieve
superior prediction performance over the comparison model.
The experimental results also showed that the ANN model
performed the best in both tasks compared with other models
evaluated.

In [37], the authors presented a feature-based VM frame-
work (FVM) to develop a VM model for wafers processed
in batches of lots. The FVM framework is built upon the
statistics pattern analysis (SPA) framework previously devel-
oped by the authors for processmonitoring purposes. Accord-
ing to the authors, feature development in the current VM
approaches correlates the process variables to the metrology
measurements. In the FVM approach, batch process fea-
tures are first derived and then correlates to the metrology
measurements. The SPA quantifies process characteristics
using various statistical measurements instead of the process
variables themselves. Therefore, the FVM utilizes the statis-
tics from SPA, coupled with other features such as process
knowledge-based landmark features, profile-driven features,
and geometry-based features to enrich the features available
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for VM. The proposed method was first used to develop a
dedicated VM model for two process characteristics of the
CMP process based on simulated data. These two process
characteristics are the material removal rate (MRR) and the
within-wafer non-uniformity (WWNU), respectively. Then,
comparisons were made between the proposed method and
other VMmethods by predicting the end-of-batch sheet resis-
tance of a plasma etch system using real-world OES signal
data. 18 process variables of the OES signals were recorded
for 1121 wafers at the rate of 0.1 seconds. 6 features were
derived for each of the 18 process variables, resulting in a total
of 108 features available to construct the VM. The VMmodel
developed using the proposed approach demonstrated perfor-
mances that surpassed other VM models in both simulation
study and industrial case study.

In [38], the authors proposed the use deep learning
approach to develop a VMmodel that is robust against cham-
ber condition variation of plasma etching equipment. Accord-
ing to the authors, optical emission spectroscopy (OES) data
has found frequent usage in developing plasma etch equip-
ment’s VM model because it contains a large amount of
process quality information. On the other hand, deep learning
such as convolutional neural network (CNN) has proven its
success in the field of computer vision and image processing.
Applying deep learning (DL) to develop a VM model using
OES data is not straightforward as OES data cannot be treated
as an image as this approach will cause much significant
loss to the process information. It is therefore necessary to
modify the network configuration of the DL in order for
DL to process OES data successfully. Two DL configuration
changes were carried out by the authors in the work. The first
configuration change is at the convolution calculation in order
to cater to the time series data in the OES, while the second
configuration is at the normalization method of the DL in
order to preserve signal intensity information in the OES
data. The proposed DL model is termed OESNet. To assess
the performance of the proposed DL model, various DL
models from the ImageNet Large-scale Visual Recognition
Challenge (ILSVRC) were employed for comparison candi-
dates. The experimental results showed that the proposed DL
model achieved better performance than ILSVRC models in
aspects of generalization capabilities, prediction accuracies,
and inference time when processing OES data. In addition,
the proposed DL model is robust against chamber sparsity
and chamber condition variations.

In [39], the authors presented the use of deep autoencoders
(AE) utilizing clipping fusion regularization to perform fea-
ture extraction for VMmodel development. According to the
authors, a single wafer fabrication process can contain mul-
tiple sub-processes defined according to the product recipe.
Each product recipe also has a different setup. A case in point
is the etching process. With each sub-process monitored by
various sensors, the signals captured reflect such heterogene-
ity and transient characteristics in the recorded data across
sub-processes. However, current feature extraction methods
do not take into these characteristics. Hence, in this work,

the authors aimed at performing feature extraction over such
data by into consideration these signals characteristics. This
was achieved by applying clipping fusion regularization into
the AE. Real-world plasma etching data with 298 observa-
tions involving 5 equipment sensors were used to evaluate
the performance of the proposed model. 6 summary statistics
were derived for each of the signals: process duration, maxi-
mum, minimum, the range between maximum andminimum,
average, variance, skewness, and kurtosis. A total of 1740 fea-
tures were derived to cater to all sub-process steps of the
main process step. The proposed model was compared with
conventional feature extraction methods using the dataset.
The features extracted were then evaluated through various
prediction models for wafer critical dimension (CD) predic-
tion. The experimental evaluation showed that the proposed
feature model successfully reduced the prediction errors of
the models tested in the authors’ work.

In [40], the authors presented a data-driven framework for
VM modeling that emphasizes not only model prediction
accuracy, but also model interpretability. According to the
authors, the latter criteria have been missing from the study
of VM modeling. The existing framework of a data-driven
VM model typically focuses on regression model compar-
isons for the highest prediction accuracy using sets of features
selected through automated feature selection methods. The
invaluable knowledge of the subject-matter experts (SME)
has not been taken into consideration as an important source
of information to be integrated into the VM modeling frame-
work. The development of a VM modeling framework that
integrates the domain knowledge of the SME is, therefore,
the focus of this work. In this work, the CMP process was
selected as the subject domain and Gaussian Bayesian Net-
work (GBN) was selected as the learning model of the pro-
posed framework. The proposed framework can be divided
into four phases. In the first stage, data pre-processing is
carried out on FDC and metrology data to construct training
and testing datasets. In the second stage, blocking rules are
generated based on SME knowledge to govern the GBN’s
learning procedure. The third phase performs the structure
learning for the GBN using the output from the first and sec-
ond phase, and at the fourth phase, prediction accuracy is
examined. Real-world CMP process data were used to con-
duct the experimental evaluation. After data pre-processing
was applied to the dataset, the finalized dataset consisted
of 545 wafers with 129 process variables available for each
wafer. The results obtained from the experiments conducted
showed that the prediction accuracy of GBN is on par with
other regression methods while using only lesser features.
The inclusion of the SME blocking rules did not reduce the
prediction error. However, with the inclusion of the govern-
ing rules, root-cause analysis is made possible through the
VMmodel as the cause and effect relationship is made clearer
for interpretation through the GBN.

In [41], the authors presented the use of deep learn-
ing (DL) in VM for feature extraction. According to the
authors, although VM has been widely studied, wide-scale
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implementation of this enabling technology in the production
environment has yet to be successful. This is mainly due
to the limitations of the current feature extraction methods
in handling semiconductor process data that are both large
and complex, two-dimensional data. The case in point is
the OES data of the plasma etch process. Manual feature
extraction is not feasible in terms of time and scalability
while automated feature extraction potentially missed out on
crucial information. Hence, the authors explored the use of
Convolutional Autoencoders to perform feature extraction on
the OES data, of which such approach has not been explored
in the existing studies. The extracted features were then fed
into a regression model for plasma etch rate prediction. The
proposed method was experimented with using other types of
autoencoders as well to construct a variety of DeepVM-based
models. These models were compared with other non-DL
VM models recently developed for plasma etch rate predic-
tion using OES data. Real-world OES and etch rate data were
collected for 1554 wafers to conduct the experimental eval-
uation. 6 summary statistics were derived to create features
for the OES signals: maximum, minimum, average, variance,
skewness, and kurtosis. The results from the experiment
conducted revealed that the proposed approach outperforms
conventional regression VM models.

In [42], the authors presented a VMmodel to predict to per-
formwafer die inspection using ANNwith a multi-task learn-
ing scheme.Wafers that completed the fabrication process are
first tested at the wafer test phase to ensure the wafers meet
the required electrical properties at the die level. At the final
test phase, the functionality of the chips is inspected to filter
out the faulty ones. It is possible for a wafer die to fail the final
test even though it first passed the wafer test, resulting in yield
loss. Therefore, the capability to predict the final test failure
before the dies reached the final test is much desired in order
to minimize various costs. In order to predict die failure at
the final test, VMwas first constructed at the wafer test phase
to estimate the results of the non-sampled dies. Then, a joint
model approach was constructed, containing both VM and
the final test failure prediction. A real-world dataset was used
to conduct the experiment. The dataset was collected over a
period of 1 week. The sample size for each day consisted of
500000 wafer dies. 54 variables were recorded for each wafer
die, with another 5 variables derived from the wafer map.
The proposed model obtained the highest prediction results
in comparison with various baseline models.

In [43], the authors proposed a tree-based ensemble
VM model for the PVD semiconductor process. According
to the authors, the existing VMmodels have low competency
in handling data that are stochastic and nonlinear in nature.
Certainmodels are also liable to the over-fitting issue. In addi-
tion, a large amount of data are usually required to success-
fully model the semiconductor process of interest, which may
be costly to collect. Hence, in this work, the authors proposed
a VM model that overcomes these limitations, focusing on
predicting the wafer resistivity of the physical vapor depo-
sition (PVD) process. The proposed model generally has

two parts. First, preliminary prediction results are obtained
from the ensemble model. The prediction results then serve
as features input to another model to obtain the final pre-
diction. Sequential model-based optimization (SMBO) was
employed as the optimization algorithm for the proposed
model. A dataset consisted of 22327 wafers with 70 equip-
ment parameters was used to conduct the experiment. In the
experiment, the authors demonstrated that superior perfor-
mance is obtained by the VMmodel utilizing SMBO in com-
parison to the VMmodel utilizing random search for the same
prediction algorithm. The authors then made a comparison
between the proposed SMBO-based VM model and other
existing VMmodels for prediction accuracy assessment. The
comparison showed that the proposed model achieved bet-
ter prediction accuracy by gaining more robustness against
noises present in the data.

In [44], the authors proposed a VM model for the CMP
process to predict the material removal rate (MRR). Differing
from the previous studies in that attemptsMRR prediction for
CMP, this work introduced a dynamic prediction approach as
opposed to the static approach used in the previous studies.
The dynamic prediction approach is deemed more suitable
as MRR changes over time due to process and machine
performance variations. In the proposed method, K-Nearest
Neighbor (KNN) is first used to selectMRR samples from the
historical datasets. These samples serve as past references to
the MRR in order to model its behavior changes over time.
Gaussian process regression (GPR) model is then used to
join the selected samples. Lastly, the MRR’s prediction and
its uncertainty are obtained through the multi-task Gaussian
process (MTGP). The proposed method outperformed its
counterpart with lower prediction errors in the experiments
conducted and achieved satisfactory results in comparison
with both ensemble and deep learning models by leveraging
information from past references of the MRR. In addition,
the proposed model is capable of demonstrating the MRR’s
behavioral changes over time and provides prediction uncer-
tainties along the prediction timeline.

In [45], the authors proposed a deep learning VM model
with prediction uncertainty for the CVD fabrication process.
The target metrology quality is the electrical property of the
CVD fabrication process. According to the authors, although
the data-driven VM approach has been widely studied, there
are still limitations that warrant research attention. First,
wafer fabrication usually spans multiple processing stages
before a physical metrology measurement operation is per-
formed, but the studies of the multi-stage VM approach
are lacking. Second, the existing multi-stage VM studies do
not include time-series dimension in their modeling. Third,
the conventional VM approach performs feature extraction
explicitly from prediction model development. As such,
the end solution may not be properly optimized for the two
operations. Fourth, conventional feature extraction is per-
formed over statistically summarized data instead of the raw
data. The former data are known to provide more descrip-
tive information to the learning algorithm at the cost of
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information loss, potentially resulting in less accurate pre-
diction. The aforementioned challenges can be addressed
by using a multi-stage convolutional neural network (CNN)
VM model. CNN allows information extraction over high
dimensional raw data implicitly, resulting in a low dimen-
sional feature set, and subsequently, performs scalar value
metrology variables prediction using the extracted features.
However, the DL approach is liable to the over-fitting prob-
lem. The use of the Gaussian process model (GPR) to quan-
titatively measure prediction uncertainty can aid in solving
the over-fitting problem, with the limitation that it could
not be applied on high dimensional data without the risk of
model instability. Hence, by utilizing the strength of CNN
and GPR, the authors proposed the fusion of CNN and GPR
for a multi-stage VM model, termed CNN-GPR. In addition,
instead of utilizing backpropagation learning for the model,
the authors trained the proposed model using posterior den-
sity distribution maximization. The VM model was experi-
mented with using data from a real semiconductor plant to
predict the wafer electrical property prediction of the CVD
process. The CVD process consisted of 4 stages. A total of 27,
27, 27, and 20 equipment sensors for each of the 4 stages
were involved in process data collection. Data for a total
of 170 wafers were collected over a period of approximately
2 months. 4 descriptive statistics were derived for each of
the process variables collected through the sensors. These
4 descriptive statistics were maximum, minimum, variance,
and average. The experimental results showed lower predic-
tion error in comparison with other regression models and at
the same time, able to quantify the confidence level of the
prediction.

In this section, past decades of VM researches were
reviewed. Table 1 presents the comparison of these researches
in terms of the fabrication process step studied, the targeted
metrology quality, and the research contributions. In the next
section, research analysis and the research challenges to real-
ize the envisioned VM will be presented.

III. RESEARCH ANALYSIS AND CHALLENGES OF
OVERLAY VIRTUAL METROLOGY
This section first presents the analysis of the related
VM research works presented in section II to identify the
key criteria for developing a successful VM, followed by
the current research challenges towards realizing an overlay
VM for potential future researches.

A. RESEARCH ANALYSIS
1) VM MODELLING
In the literature, VM is identified as a data-driven model
with soft sensors capable of virtually sensing the quality
of an un-sampled wafer based on process and equipment
data [23], [26]. The virtual sensing capability of the VM, also
known as its prediction capability, is achieved through various
data mining algorithms. Examples of these algorithms are
SVM, PLS, andGPR, to name a few from the literature. These

algorithms attempt to derive mathematical models in the
historical data to map the key process representative variables
to the targeted metrology [27]. According to [23], data pre-
processing is crucial for realizing a high-performance VM.
The data preprocessing steps are made up of 1) derivation of
statistical process representative variables from process and
equipment state information for a list of candidature input
variables, 2) exclusion of outliers to minimize prediction
error, and 3) shortlisting of high influential input variables
through selection algorithms. Step 3) is commonly known as
the feature selection step. Accurate feature selection is cru-
cial for prediction accuracy enhancement and computational
load reduction [23], [27]. Hence, in summary, VM modeling
involves building a prediction model by using appropriately
derived input and output representatives from the historical
data for the data mining algorithms to model the relationship
between the two data entities. A successfully derivative of this
relationship will result in high prediction accuracy by the data
mining algorithms.

2) HIGH SAMPLING PROCESS DATA
Fabrication processes are sampled at high frequency by
various physical sensors on equipment to preserve their char-
acteristics for analysis. According to [29], process data sam-
pled by sensors with high frequency are, in most cases,
capable of depicting the fabrication process characteristics
accurately. From the prior works reviewed, the number of
sensors reported ranged tens to hundreds, and their sam-
pling rates ranged from hertz (Hz) to megahertz (MHz)
[13], [16], [22], [23], [29], [37]. These sampled data are
retrieved from fabrication equipment and stored by advanced
data acquisition systems, such as the FDC and the EES,
in near real-time and made retrievable through various data
communication channels provided by these systems. The
immediate availability of these data enables various near
real-time automated fault detections to be implemented.
Leveraging these data for VM, a wafer’s metrology variables
can also be estimated in near real-time to gauge its metrology
quality.

3) DATA CHARACTERISTICS VARIATIONS
Fabrication process characteristics, and hence its data char-
acteristics, may change over time owing to various inter-
nal and external disturbances, such as maintenance events,
load change, equipment condition change, and equipment
part replacements [23], [31], [35]. As process characteris-
tics are preserved in the data sampled by the equipment
sensors, changes in the process characteristics are directly
reflected in the sampled data. According to [23], equipment
part replacement strongly affects the process characteristics.
Reference [31] further stated that data characteristics changes
will not always correspond to the disturbances that occurred.

Data characteristics will gradually change over time
regardless. Hence, it is important for VM modeling to take
into consideration this factor in order to develop a reliable
VM for production use. Various techniques were used in the
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TABLE 1. Comparison of the fabrication process step, the targeted metrology and the contribution of VM researches.
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TABLE 1. (Continued.) Comparison of the fabrication process step, the targeted metrology and the contribution of VM researches.

literature to cater to this variation. Reference [23] presented
the use of the Just-In-Time (JIT) model to handle both charac-
teristics variations and nonlinearity of the fabrication process.
Reference [31] presented the use of the ensemble artificial
neural network as the model for both reliable estimation and
adaptive model update. References [17] and [35] adopted
global and local modeling approaches to cope with distur-
bances and correlation changes. References [43] and [44]
employed GRP to provide the reliability index for the pre-
dicted metrology outcome.

4) HIGH-DIMENSIONAL FEATURE SET
Existing VM works highly utilized FDC data to perform
metrology quality prediction. The FDC data, which typi-
cally contained sensor readings in their raw forms [15], are
derived into various statistical process representatives for
meaningful depictions of the process characteristics. The
wafer fabrication process requires the repetitive performance
of major fabrication processes as listed in Section I. Metrol-
ogy qualities of a wafer are potentially affected not only by
the current process step but also the steps before it [27].
In addition, a single fabrication process step may consist of
various sub-process steps. As such, the number of statistical
representatives derived from the raw data to create a list of
potential features as inputs to VM can range from hundreds to

thousands [23], resulting in high-dimensional characteristic
input data.

5) PROCESS REPRESENTATIVES SELECTION
The availability of a large number of raw sensor readings
enables a large number of process representatives to be
derived as inputs to VM. To obtain high accuracy predic-
tion in VM, it is necessary to only select the most relevant
process representatives from this large number of poten-
tial process representatives [27]. This selection is performed
through feature selection or feature extraction methods. Ref-
erence [27] distinguished between feature selections from
feature extraction where the latter is defined as the extrac-
tion of new variables from the combinations of the origi-
nal variables. Sequential forward selection is an exemplar
of the feature selection method while PCA is an exem-
plar of the feature extraction method. Various algorithms
were also proposed in the literature to perform this feature
filtering process. For example, reference [27] proposed a
feature selection algorithm that incorporates randomization
for search efficiency, reference [28] applied fused LASSO
algorithm to address this issue, while references [39], [41],
and [45] employed deep learning models to deal with this
issue.
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With these research analyses defined, research challenges
that need to be addressed in order to realize the desired VM in
a production environment of semiconductor manufacturing
can be identified.

B. RESEARCH CHALLENGES
1) A SHORTAGE OF RESEARCH IN OVERLAY VM
As the demand for device miniature continues to increase,
the photolithography process remains the most critical wafer
fabrication process step in order to shrink the feature sizes
and reduce circuits’ linewidth [46]. As ICs are fabricated on
a wafer through a multilayer wiring process achieved through
the major fabrication process steps, each patterned layer must
overlay each other within the permitted range defined in their
design specification to ensure proper functionality and thus,
the yield of the products.Misalignment results in bad dies that
eventually fail the final test and thus, yield loss [47]. Overlay
error is therefore defined as the displacement between the
present exposure layer relative to the preceding exposure
layer [46], [47]. From Table 1, it can be seen that the majority
of the VM research works focused on the metrology qualities
of the etching process. Research works related to VM for
overlay, on the other hand, were not actively researched.
It can be seen that only works from [14], [31], [34], and [36]
focused on photolithography with only [14] explicitly stated
their targeted metrology was the overlay while the [31],
[34], and [36] did not. In addition, the datasets used were
real-world data proprietary to the specific semiconductor
manufacturer. Implementing the same modeling approach in
the production environment of another fabmay yield different
results owing to various varying production practices and
product mixtures. Hence, additional research with reference
to the prior works is necessary to realize a VM model in a
different production environment. With the lack of research
in overlay VM, it is also necessary to derive knowledge from
VM research conducted for other process steps as well to
realize an envisioned VM.

2) A LACK OF NON-FDC VM MODELLING APPROACH
With high-frequency sensing technology, process and equip-
ment data during a fabrication process can be sampled
at very short time intervals [29]. These data sampled at
high-frequency rates are, in most cases, sufficient to accu-
rately depict the dynamicity of the fabrication process of the
equipment for each wafer [29]. Utilizing an FDC system,
these raw sensor readings can be retrieved from fabrication
equipment and stored in the FDC system in near real-time.
Besides sensor data retrieval and storage, the FDC system
also performs process and equipment fault detections. The
complexities of fault detections in fabrication processes have
rendered active research in FDC systems for accurate fault
detections, as showed in the works by [3]–[7], and [8].
From the literature, FDC data have been leveraged as the
primary data source to derive various process representatives
for VM modeling. Hence, in the event FDC data are unavail-
able owing to FDC system development and implementation

works, a VM that is modeled independently of FDC data is
required to sustain the production environment until the FDC
system resumes production status again.

3) VM MODELLING USING LOW PROCESS
CHARACTERISTICS DEPICTION DATA
From observations in a real production environment, real-
time sensor data retrieval without an FDC system will
incur high computational cost on the equipment, leading to
degraded equipment performance that affects the wafer fabri-
cation duration. In order to preserve the computational power
of the equipment for fabrication operations, only a single
summarized reading for each sensor of a fabricated wafer
is obtainable. That is, only an averaged reading per sensor
is available for the entire fabrication duration of a wafer,
instead of short time interval readings per sensor. Comparing
the characteristics of these two types of data, the formal
resembles data sampled at an extremely low-frequency rate.
Therefore, its process characteristics depiction capability at
the wafer level is also extremely low. Realizing a VM for a
production environment using such data characteristics has
not been attempted by prior works. Hence, it is a research
challenge of this work to realize an overlay VM utilizing data
with low process characteristics depiction. Table 2 summa-
rizes the research challenges in the realization of the envi-
sioned VM in real-world production settings.

In this section, research analysis for successful realization
of VM and research challenges of this work were presented.
With the research challenges identified, the next section
presents the research perspective towards realizing the envi-
sioned overlay VM.

IV. RESEARCH PERSPECTIVE
With the research analysis and challenges defined in the
previous section, this section presents the research perspec-
tive of this work that envisioned the overlay VM capable of
addressing the aforementioned research challenges.

A. A LOT-LEVEL VM MODELLING
Prior works have largely focused on leveraging FDC data to
derive process representatives in VMmodeling. As FDC data
are raw sensor readings sampled at high frequency during
the fabrication process of a wafer [15], VM modeling using
FDC data is wafer-level modeling. To cater to the events
that FDC data are rendered inaccessible, a different modeling
paradigm is required. Without FDC data, deriving process
representatives at the wafer level is not viable owing to
the single averaged sensor readings that render low process
characteristics depiction quality. As more process character-
istics depictions are necessary to increase the accuracy of the
metrology prediction, this work proposed to derive process
characteristics at lot-level. As a wafer lot is a batch of wafers
with the same fabrication steps sequence stored in a wafer
cassette, wafers in the same lot will be processed at the same
fabrication equipment. Hence, utilizing the averaged sensor
readings from all 25 wafers in a single wafer lot can provide
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TABLE 2. Research challenges in realization of the envisioned overlay
VM in the real-world production settings.

higher visibility into the overall quality of the fabrication
process of the equipment. Let x denotes a single process
characteristic derived and each of the ovals denotes a wafer,
Figure 1 illustrates the difference between deriving a pro-
cess characteristic between the wafer-level and lot-level. The
proposed lot-level modeling paradigm resembles to approach
taken by [9] and [37] that considered the process character-
istics of a batch of lots for process fault detection, but with a
distinctive difference in the time dimension. In [9] and [37],
all wafer lots in a single batch are fabricated at the same
time, as opposed to fabricating each wafer in a lot separately.
The photolithography fabrication characteristic is represented
by the latter. With the difference in time-dimension of each
wafer in a wafer lot for a photolithography process, this work
applies the process capability index, Cpk , to determine if a
photolithography process can be qualified for overlay error
estimation using the lot-level VM proposed by this work. Cpk
has been conventionally used by the industry to gauge the
performance of a process with reference to its specification
limits, with Cpk ≥ 1.33 adopted as the standard measure-
ment to indicate that a process is well capable of performing
within its specification limits [48]. LetUSL denotes the upper
specification limit, LSL denotes the lower specification limit,
Cpku and Cpkl denotes the process capability approximating
the upper and lower specification limit, respectively. Let µ
denotes the mean and σ denotes the standard deviation mea-
sured from a sample,Cpku,Cpkl andCpk of a process are given
by equations (1), (2} and (3), respectively.

Cpku = min
{
USL − µ

3σ

}
(1)

FIGURE 1. Difference between deriving process characteristics at
wafer-level and lot-level.

TABLE 3. Comparison of the joint modelling steps sequence in [36] and
the two-steps modelling sequence of this work.

Cpkl = min
{
µ− LSL

3σ

}
(2)

Cpk = min
{
USL − µ

3σ
,
µ− LSL

3σ

}
(3)

Cpk is selected as the smallest index among the upper and
lower process capability to exercise precaution from over
judging the capability of a process. Hence, the higher the
value ofCpk , the smaller the fabrication process characteristic
variation between subsequent wafer in a lot. Exploiting this
characteristic, lot-level features can be derived to provide
higher visibility into the stability of the photolithography
process.

With the research perspective defined to envision an over-
lay VM capable of addressing the aforementioned research
challenges, an overlay VM model can be proposed to realize
the envisioned overlay VM. Hence, the next section proceeds
to present the overlay VM model proposed by this work.

V. THE PROPOSED OVERLAY VM MODEL
Drawing from the research insights from the invaluable prior
VM works, this section presents the proposed VM model of
this work to realize the envisioned overlay VM presented in
the previous section. The proposed overlay VMmodel in this
section also sets the future research endeavors of this work.
The proposed model will be presented in four parts. Each part
illustrates a characteristic of the proposed model. The first
part pertains to the descriptive statistics for the process repre-
sentatives. The second part pertains to prediction modeling.
The third part pertains to the prediction algorithms. The last
part pertains to the workflow of the proposed model.

A. DESCRIPTIVE STATISTICS FOR PROCESS
REPRESENTATIVES
The derivation of statistical process representatives is crucial
to provide meaningful depictions of the process characteris-
tics to the prediction algorithms. Differing from prior works
that derived statistical process representatives at the wafer
level, this work derives the statistical process representatives
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TABLE 4. Statistical sensory features that will be derived at lot-level
modelling of this work.

at the lot level. Referring to the work by [14] that mod-
eled an overlay VM, 4 descriptive statistics were derived at
the wafer level: minimum, maximum, mean, and variance.
In view that this work derives statistical process representa-
tives from a single wafer lot that consists of multiple wafers,
additional descriptive statistics will be derived to augment
the depiction of the process characteristic. These statistical
features were also found in VM research works that derive
statistical sensory features from FDC data, such as [23]. [39]
and [41]. Further referencing [49], Table 4 presents statistical
sensory features that will be derived in this work. The use of
these statistical sensory features in the prior photolithography
VM works is also noted.

B. A TWO-STEPS PREDICTION MODEL
The prediction model of the proposed overlay VM is a two-
steps prediction model with each step represents a prediction
task. The first prediction task is a classification task and
the second is a regression. The proposal of this prediction
model was based on the knowledge derived from the work
by [15] and [36]. According to the findings of [15], modeling
faulty wafer detection as a classification task would yield
higher detection accuracy than a regression task. In [36],
the author employed joint-modeling of both regression and
classification tasks to detect faulty wafers. The regression
task was performed first to predict the wafer’s metrology
variables’ values. The predicted values were then used as
input to the classification task for faulty wafer detection.
Deriving knowledge from these twoworks, this work presents
a two-steps prediction modeling that first performs the clas-
sification task, followed by the regression task – a reverse
of the prediction task sequence compared to the sequence
in [36]. Table 3 illustrates the difference between the task
sequence taken by [36] and the proposed sequence of this
work.

C. PREDICTION ALGORITHMS
From the review of the related works in Section II, the fol-
lowing prediction algorithms are identified for each of the
estimation tasks in the proposed VM modeling. For each of
the tasks, two prediction algorithms are selected with the first
algorithm as the proposed algorithm while the second as the
comparison algorithm. The advantages of each of the selected
prediction algorithms are briefly described as they are listed.

1) CLASSIFICATION TASK
a: k-NEAREST NEIGHBOR (kNN)
The k-Nearest Neighbor (kNN) algorithm is selected as the
proposed prediction algorithm for this work due to its sim-
plicity, flexibility and its capability to be modified to perform
novelty detection, as demonstrated by work in [9]. KNN is
also inherently capable of nonlinear classification.

b: ONE-CLASS SUPPORT VECTOR MACHINE (1-SVM)
In [15], the authors examined the accuracy of various novelty
detection algorithms in detecting faulty wafers for the pho-
tolithography fabrication process and concluded one-class
SVM (1-SVM) as the best algorithm. As the work in [15] has
the closest resemblance to the classification task of this work,
1-SVM is selected as the comparison algorithm to evaluate
the performance of KNN in novelty detection of wafers with
faulty overlay.

2) REGRESSION TASK
a: ELASTIC NET
Elastic Net is an enhanced model deriving from the best
features of both ridge regression and least absolute shrinkage
and selection operator (LASSO) model. In ridge regression,
the final model contains all the predictors while in LASSO,
only a subset of the predictor enters the final model, hence
achieving a sparse solution and simplifies interpretation com-
pare to ridge regression. However, when there exist highly
correlated predictors in a group setting, LASSO randomly
selects only one predictor from each group, thereby discard-
ing significant predictors in its modeling and hence lower
prediction accuracy. With Elastic Net, this weakness can be
overcome, resulting in higher prediction accuracy without
much cost to the sparsity of the model [19]. This capability
is crucial to this work for accurate selection of the equipment
parameters most influential to the overlay error for a given
photolithography process that took place not only contributes
to accurate prediction in VM but also prepares for the exten-
sion of this work towards causality analysis of the overlay
error. Elastic Net is selected as the proposed model of this
task.

b: k-NEAREST NEIGHBOR (kNN)
In [14], the authors assessed the prediction accuracy of
various linear and nonlinear regression algorithms for pho-
tolithography process VM. The evaluation results showed
that kNN was the best regression algorithm. As the work
in [14] has the closest resemblance to the regression task of
this work, kNN is selected as the comparison algorithm to
assess the performance of Elastic Net.

D. VM SCHEME
The VM scheme based on the proposed model of this work
can be figuratively depicted in Figure 2. The VM scheme
involves five steps. At the first step, a unit of lot completes the
photolithography process. The lot then moves into the next
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FIGURE 2. Workflow of the proposed VM scheme.

step to determine if it will be sent for physical metrology by
the sampling strategy currently in place. If the lot is selected
for wafer sampling at physical metrology, the lot will move
to step 4. Otherwise, the lot will move the step 3 where its
process condition is classified. This is the first prediction
task of the proposed VM model, which is the classification
task by means of the novelty detection method. If the process
condition of the lot is classified as unstable, the lot will
be sent for physical metrology where physical inspection
will be performed. This is denoted as the third step in the
VM scheme. If the process condition of the lot is classified
as stable, virtual metrology will be performed on the wafers
of the lot. This is the second prediction task of the proposed
VM model, which is the regression task. Otherwise, the lot
will be sent for physical metrology. The proposed prediction
algorithms for each of the two tasks are listed in the third

column of Figure 2, while the descriptive statistics to derive
process representatives for both the tasks are listed in the
fourth column.

In this section, the proposed overlay VM model of
this work was presented. With the given real-world pro-
duction settings that differ from those in the litera-
ture, a two-steps modeling approach was derived by
drawing insights and design principles from the prior
VM works. With the proposed overlay VM model in place,
the next section concludes this study in preparation for
future research endeavors to realize the envisioned overlay
VM.

VI. FINAL COMMENTS
Prior works have mainly leveraged FDC data in VM mod-
elling. Sampled at high frequency, FDC data are capable
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TABLE 5. Comparison of the nominated data mining models for the proposed VM modelling.

to provide high depiction of the process characteristics.
However, in the event that FDC data are unavailable owing
to various FDC system development activities, only aver-
aged reading per equipment sensor can be collected from
a real photolithography equipment to depict the entire pho-
tolithography process of a wafer. These averaged data have
extremely low process characteristics depiction capability.
With the need to sustain the overlay metrology of a pro-
duction environment until FDC data are available again,
this work proposed an overlay VM modelling approach
that utilizes these averaged data from the real photolithog-
raphy equipment. A lot-level modelling paradigm is pro-
posed in this work, which differs from most of the prior
works that utilized wafer-level modelling. The lot-level con-
cept has similarity to the batch-level concept presented in
the prior works of [9] and [37], with the difference in
the treatment of time-dimension. In [9] and [37], batches
of wafers step through the process step at the same time,
while in photolithography process, wafers of a wafer lot
are processed sequentially. Hence, Cpk index is necessary
to select only stable photolithography process for lot-level
modelling.

With wafer-level modelling, the process condition of a
wafer is assessed after it completes fabrication. With lot-
level modelling, the process condition of a wafer is assessed
after all wafers in a lot completes photolithography. Hence,
the formal exhibits wafer-to-wafer level control while the lat-
ter exhibits lot-to-lot control. To realize the lot-to-lot control
for overlay metrology in production environment, a two-steps
prediction model is proposed to define a VM scheme for the
production environment. The VM scheme, as depicted in Fig.
2, takes into consideration the existing sampling strategy and
complements it with the proposed overlay VM. Each of the
step in the proposed VM model represents a prediction task.
The first prediction task is a classification task that estimate
if a wafer is potentially faulty and should be routed for
overlay metrology station for physical inspection. If a wafer
is classified as faultless, the second prediction task, which is a
regression task, will attempt to estimate the numerical values
of its overlay errors.

With the proposed overlay VM model, the overlay quality
of the fabricated wafers can continue to be monitored until
FDC data is available again and leveraged for VM using the
approach proposed by the prior works. As such, it is the also
the aim of this work that the proposed modelling approach
can further contributes towards the research of VM in catering
various scenario of a production environment.

VII. CONCLUSION
The semiconductor technology advancement as predicted
by Moore’s law has become the benchmark to drive the
performance of the fab with shorter cycle-time to produce
high-quality semiconductor end products. Such challenging
demands brought about the emergence of VM and the pro-
liferation of its research. As ICs are fabricated on a wafer
through a multilayer wiring process achieved through the
major fabrication process steps, each patterned layer must
overlay each other within the permitted range defined in
their design specification to ensure proper functionality and
thus, the yield of the products. The displacement between
the present exposure layer relative to the preceding exposure
layer is defined as overlay error. With feature size shrinkage
and linewidth reduction in IC for device miniature, pho-
tolithography continues to be the most crucial wafer fab-
rication process step to minimize overlay error. Motivated
by a real-world fab production environment, this research
aims to realize an overlay VM in the event that the avail-
ability of FDC data of a real- photolithography process is
interrupted due to various development activities of the FDC
system. Realization of the envisioned VM is a non-trivial
task owing to practical challenges that must be addressed.
Hence, in this paper, a thorough research analysis was carried
out on the related research works to identify the relevant
research challenges. Based on the research challenges identi-
fied, the research perspective towards the envisioned overlay
VMwas defined. Next, the proposed VMmodel to realize the
envisioned overlay VMwas presented. Through the proposed
VM model, the required future research endeavors of this
work were also defined and the execution of these works are
underway.
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