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ABSTRACT In the process of acute resistance exercise, repeated variation in motion intensity can lead
to muscle fatigue and heart failure. Therefore, acquiring the interval of motion intensity variation in time
the training pattern and effect can be improved by acquiring the interval of motion intensity variation.
In order to achieve this goal, an improved Inception-V3 model is proposed for motion intensity variation
interval estimation. The MIVIE(Motion Intensity Variation Interval Estimation) dataset consisting of Strong,
Moderate, Weak groups achieve centralized and uninterrupted collection. Then, the multi-modal fusion
vectors of time-frequency eigenvalues are stacked up to 227 x 227 grayscale images fed into improved
inception-CNN. Finally, the manipulator’s trajectory optimization is completed under the guidance of
ATO-DQN (Adaptive Trajectory Optimization-Deep Q Network) algorithm based on the motion intensity
interval estimation. This work can improve the non-stationary effect of motor speed caused by changes in
motion intensity during rehabilitation, which can better guarantee the safety of patients.

INDEX TERMS Improved inception-v3 model, motion intensity variation interval estimation, DQN-based

trajectory optimization.

I. INTRODUCTION

With the development of medical technology, many more
diseases can be cured. However, for patients with hemiplegia,
the current main medical treatments are still nursing and
rehabilitation training [1]. Through targeted treatments that
depend on the appropriate diagnosis and therapy measures,
the movement ability of patients can be partially and even
completely restored [2]. Thus, rehabilitation training with the
assistance of an exoskeleton arm is proposed to alleviate this
practical problem [3]. Patients can gain the ability to conduct
rehabilitation exercises independently through the exoskele-
ton rehabilitation robot, which will reduce the treatment cost
and obtain more effective treatment [4]. In the process of
acute resistance exercise, repeated variation in motion inten-
sity can lead to muscle fatigue and heart failure. In order
to optimize the training mode and improve the training
effect, the reasonable use of this information can effectively
avoid the motor out-of-step in the trajectory control of the
manipulator [5].
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The existing method [6], [7], which uses the heart rate
as a detection mechanism, has been mainly used in medical
diagnosis. Compared with EMG signals or EEG signals,
the heart rate could alleviate individual differences and would
be more easily detected by wearable devices [8], [9]. In terms
of the existing research results [10], [11], collecting accu-
rate feedback signals and developing accurate and effective
control strategies could improve the efficiency and quality of
rehabilitation training.

Combined with medical and kinesiology theories, motion
intensity refers to the degree of force exerted by the human
body when performing actions and the degree of tension of
the body. The motion intensity directly affects the stimulation
effect of the current motion on the human body [12]. Existing
research has put forward the algorithms and framework for
heart rate monitoring during intensive exercise [13], [14].
Given the strong feature learning capabilities of CNNs,
the researchers have been active in applying deep neural
networks to solve the existing time-series classification prob-
lems. In the literature [15]—[17], the researchers used condi-
tional and gated restricted Boltzmann machines, deep belief
networks, recurrent neural networks, auto encoders, HMMs,
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and also extended form of CNN to improve the details of
various problems.

Specifically, the technical contributions of this paper can
be concluded as follows: MIVIE dataset consisting of Strong,
Moderate, Weak groups realizes the data collection of set-
ting specific situation according to the individual’s condition.
We build an improved Inception-V3 model is proposed for
motion intensity variation interval estimation. the manipula-
tor’s trajectory optimization is completed under the guidance
of ATO-DQN algorithm based on the motion intensity inter-
val estimation. In the field of technological innovation, use
physiological information obtained by BMD101 ECG sensor
and angular acceleration sensor to comprehensively judge
and divide the boundary of rehabilitation motion intensity
through the improved model achieve complementary advan-
tages and mitigate the negative effects.

Il. RELATED WORK

The difference of rehabilitation motion intensity results in
the difference of rehabilitation effect for various diseases
among different populations. Weak and moderate intensity
motion is associated with protection against chronic diseases,
especially cardiovascular disease [18], [19]. High intensity
interval training (HIIT) may be an incredibly effective way to
increase VOppeak and improve cardiorespiratory fitness com-
pared to moderate intensity continuous training [18]. There-
fore, the setting of rehabilitation motion intensity should be
personalized and self-adaptive. Traditional methods of pro-
cessing kinematic signals (obtained by multiple sensors) or
bioelectrical signals (EMG, ECG) seem to be hard to couple
the nonlinear relationship. To achieve rapid responses from
rehabilitation robots, the control system needs to respond in
real-time. Deep learning provides more possibilities for this
response [20], [21].

Some scholars have proposed a transfer learning (TL)
algorithm [22] that obtains rich data among users by mixing
models of multiple topics. This mapping relationship can
realize online data analysis for new objects. The Sensor-Wise
method [23] achieves a high-precision and lightweight struc-
ture with only two hidden layers, but this method has lim-
itations in the depth and accuracy of the motion intensity
classification. On the whole, the use of physiological signals
may be hampered by individual differences that are not easy
to model, and there is a problem of hysteresis in kinematic
signals [24]. From another perspective, the kinematic signals
were used to sense the motion state and detect the deviation
of the motion trajectory to achieve trajectory tracking [25].
Therefore, the deep learning algorithm is used to construct
the multi-mode vector composed of physiological signals and
kinematic signals to build the nonlinear coupling relationship
among the multi-mode information [26], [27].

lll. METHODOLOGY

A. DATASETS

The ECG signals of 24 able-bodied subjects were collected at
a sampling rate of 512Hz using the BMD101 Bluetooth ECG
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acquisition module. At the same time, the angular velocity
and linear acceleration of the joints are measured by an
integrated industrial MEMS attitude sensor installed at the
joints of elbow and shoulder of rehabilitation exoskeleton
robotic arm. The dataset was divided into two sub-datasets,
in which the data of 18 able-bodied subjects were used as
training datasets to build models and optimize parameters,
another 6 able-bodied subjects’ data were used as test datasets
for algorithm validation and trajectory optimization.

1) ECG RECORDING HARDWARE

BMD101 is the 3rd generation bio-signal system-on-chip
(SoC) of NeuroSky. Because of the BMD101’s extremely low
system noise and programmable gain, it can detect bio-signals
and convert them into digital words using a 16-bit high reso-
lution ADC.

As shown in Fig.1(a), BMDI101 Bluetooth ECG sensor’s
sampling frequency is set at 512 Hz with the heart rate
monitoring range of 24~200bpm that measurement error can
be controlled within £1bpm. In order to better observe the
quality of signal collection, a specific online ECG waveform
display interface was designed shown in Fig.1(b). To avoid
the noise and baseline deviation caused by wire connection
during the intense motion, the subjects will perform the
muscle contraction and joint flexion and extension using a
single-lead remote Bluetooth transmission protocol which
can effectively solve the problems.

O ol i -

(a) BMD101 Bluetooth ECG sensor
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FIGURE 1. BMD101 bluetooth ECG acquisition module.

2) TIME-WINDOW LENGTH

In the processing of bioelectrical signal sequences, the per-
formance of the classifier should take priority over the
speed [28]. Recent studies [29] have shown that the
Qi (Quality index) can measure classification performance.
Furthermore, when there are fewer eigenvalues, a high Qi
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value can be obtained by using the Kaiser window function
and the window length of 512ms [29]. In order to improve the
classification efficiency [30], we choose the Kaiser window
function with a maximum delay window of 256ms to reduce
the delay without affecting the classification performance.
The 256 samples (256ms time window) separated by sliding
window with the 32ms sliding window step length and the
224ms overlap allow approximately 15s~20s for window
data pre-processing.

3) DATA ACQUISITION METHODS

Subjects must be trained before they formally participate
in the data collection project. The collected data includes
ECG at 512 Hz sampling frequency and a joint line accel-
eration and angular velocity signal at 60 Hz sampling fre-
quency. The dataset named MIVIE is divided into three
groups: SI (Strong Intensity), MI (Moderate Intensity),
WI (Weak Intensity).

Specific Standards and rules for each group are shown
in Table 1. Group SI exercise protocol included 30 seconds
of warming up, 120 seconds of running at 9~12 km/h,
30 seconds of rest, 120 seconds of joint flexion/extension at
2 times/s, and 30 seconds of walking to relax. Group MI exer-
cise protocol included 30 seconds of warming up, 100 sec-
onds of running at 6~8 km/h,30 seconds of rest, 90 seconds
of arm lifting at 1 times/s, and 50 seconds of walking to relax.
Group WI exercise protocol included 30 seconds of warming
up, 80 seconds of running at 3~4 km/h, 45 seconds of rest,
40 seconds of arm lifting at 0.6 times/s, and 50 seconds of
walking to relax.

In order to prevent muscle fatigue caused by excessive
exercise during one day, each subject completed 15 sets of
motion intensity training at intervals in a 3-week period in
which 24 participants were recorded.

TABLE 1. Standard and rules of different training motion intensity group.

War Joint w
Grou ming Running flexion/ alk Effective
P up(s) (s) ) extension  ing indicators
(s) (s)
120(9~12 120(2 85%+HRmax
S 30 im0 dmessy) 20 /80%VOsmax
60%~70%HR
M 30 1008k, 900 s avesvery
m/h) times/s)
O,max
. 45%~60%HR
WL 30 8(;(13/;;‘ K 4s 40(62'/2;“ 50 max/50%+V

Ozmax

Effective indicators must meet any of the following requirements[29], Otherwise, it will be classified
as invalid data:

(1).The average heart rate during exercise reaches the maximum heart rate of 85%/60-75%/45%-60%.

(2).VO:max(Maximum oxygen uptake) reaches 80%/65%/50%.

The sensor placement on the body is shown in Figure 2. For
the classification of the weak motion intensity, the test subject
hardly takes the initiative to exercise his or her limbs during
the entire rehabilitation exercise process and can complete the
entire exercise track. For the classification of the moderate
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motion intensity, the maximum output torque of the actuator
is limited, and the exercise can just barely be undertaken
under no-load conditions. For the classification of the strong
motion intensity, the output torque of the actuator on the
rehabilitation robot arm is further restricted, and it can hardly
drive itself to perform the rehabilitation exercises. In this case,
the subject needs to actively exert force to complete the entire
rehabilitation exercise trajectory.

FIGURE 2. Rehabilitation scenario.

All methods were carried out in accordance with relevant
guidelines and regulations. All subjects’ informed consent
were confirmed by themselves. The data acquisition protocol
was approved by Medical and Experimental Animal Ethics
Committee of Northwestern Polytechnical University, Xi’an,
China (approbation number: 6101030222595-202001001).

B. SIGNAL PRE-PROCESSING

1) TIME DOMAIN AND FREQUENCY DOMAIN ANALYSIS OF
ECG AND KINEMATICS SIGNAL

Like other physiological signals, ECG is a kind of low-
frequency weak signal under strong noise background and has
the following characteristics: The general sampling value of
normal ECG fluctuates from 0.05 mv to 5 mv, the frequency
range is from 0.05 Hz to 100 Hz, and 90% of ECG spectrum
energy is concentrated from 0.25 Hz to 35 Hz [31].

The process of collecting ECG signal will be disturbed
by various kinds of noise, the noise sources are usually as
follows:

(1) Power-line interference: 50Hz Power-line interference
is caused by the electromagnetic field formed by the lead
device which collects HR and the loop circuit of human body.

(2) EMG interference: The EMG interference can be
regarded as the instantaneous zero mean band limited
noise, and the main energy is concentrated in the range
of 30 ~ 300Hz.

(3) Baseline wander: Baseline wander in ECG amplitudes
is generally caused by low frequency interference [32], such
as aspiration and electrode movement, and the frequency is
less than 5 HZ; the change can be regarded as a sine com-
ponent added to HR at the same frequency as the aspiration
frequency, at 0.015 ~ 0.03 Hz, the amplitude of baseline
change was 15% of the ECG peak value.

As shown in Table 2, the information of motion state
mainly concentrates on P-T wave and QRS complex wave of
ECG [33]. The frequency band of QRS complex wave band
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TABLE 2. Frequency band distribution of main information and noise of
ECG.

QRS

Baseline P-T Power-line EMG
complex . .
wander wave interference interference
wave
0~0.5 3~10 3~40 50 30~300

is 3~40Hz, and the frequency band of P-T wave is 3~10 Hz,
so the interval frequency is filtered to reduce the noise.

For the nonlinear and non-stationary weak signal with
strong randomness and noise, the traditional method has poor
effect. Considering the characteristics of HR signal and the
speed of operation, this paper chooses wavelet threshold
denoising method and sets threshold function:

w

W — W—ak 3
0.01 W] <A
o/2InN M
G+ 1)
med(|d])
- E

(W[ >

where W is primitive wavelet coefficient, W* is the adaptive
modified wavelet coefficient, « is the correction factor which
is set to 0.4, A is the threshold setting value, N is the amount
of ECG sampling points, ¢ is the noise intensity estimation
under the wavelet coefficient, med(|d|) is the median of the
absolute value of the wavelet coefficients at each scale, E is
the correction constant 0.65.

ECG signals with noise was decomposed into 8 levels
of wavelet by Coif4 wavelets, then baseline wander was
removed by wavelet decomposition and reconstruction. EMG
and power frequency interference were removed by improved
threshold algorithm, the specific effect of noise removal is
shown in Fig.3.
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FIGURE 3. Comparison of denoising effect of improved Coif4 wavelet
threshold algorithm and original signal.
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2) EXTRACTION OF ECG EIGENVALUES
The following eigenvalues were extracted as the input layer
of the subsequent deep learning model.

a: THE STANDARD DEVIATION OF THE TIME DOMAIN (SD)

@

where x; is the signal value corresponding to the time series,
N is the total number of sampling points of the time series,
and u is the average value of the segment signal.

b: APPROXIMATE ENTROPY (ApEn)

The approximate entropy is a nonlinear dynamic parameter
used to quantify the regularity and unpredictability of time
series fluctuations.

For a one-dimensional series such as a heart rate,
the extraction method was designed to reconstruct the vec-
tor and calculate the vector distance. Then, we counted the
number of conformances and expressed series in the form
of non-negative numbers. The algorithm hyper parameter
r = 0.2*SD, which represents the parameter measure of
“similarity”’, was used in this paper to reconstruct the vec-
tor dimension. The specific algorithm for the approximate
entropy is expressed as follows.

The one-dimensional heart rate discrete signal obtained by
sampling at equal intervals is a(/), a(2) ..., a(N). we recon-
stituted the signal into a 3-dimensional vector, namely, A(7),
A(2) ..., A(N-m+1). When 1<i<N-m+1, the number of
reconstruction vectors satisfying the following conditions is:

number of A(j) such that

= [d[A(i),Ao')] <

}/(N—HH-I) (3)
where d[A(i), A(j)] is the vector distance. The vector distance
is defined as the value of the largest absolute difference of
each dimension in the two reconstructed vectors, where the
range of j is [/, N-m+1], including j = i.

or(r) = (N —m+ D72 og(C(r)) (@)

The state quantity of the current reconstructed dimension
was defined by the above equation. The approximate entropy
(ApEn) equals the difference value between the state quantity
of the strong reconstruction dimension and the current dimen-
sion state quantity.

ApEn = ¢"(r) — ¢"*1(r) )
¢: FREQUENCY DOMAIN EIGENVALUES (FDE)

Considering the real-time nature of the control accuracy,
the frequency domain signal was obtained by a fast Fourier
transform (FFT). We mainly used the root mean square fre-
quency (RMSF) and the root variance frequency (RVF) as
the frequency domain eigenvalues. These two parameters
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reflect the characteristics of the motion-related aspects more
effectively. The specific algorithm is as follows.

RMSF = M (6)
S s(f
FC — Jo ZSStdf 7
Jo7 s(hHdf
RVE — oOF — FORS(fHdf ®
foree s¢Har

where S is the corresponding frequency domain amplitude,
f is the corresponding frequency, RMSF is the Root Mean
Square Frequency, FC is the frequency centre, and RVF is
the Root Variance Frequency.

d: EXTRACTION OF KINEMATIC EIGENVALUE

The angle signal and the angular velocity signals of this article
were obtained by the encoder of the INNFOS disc motor.
Due to the diversification of the motion of the rehabilitation
exercise, the joint angular velocity was also changed under
different motions. Therefore, it was difficult to determine the
specific motion intensity by directly determining the angular
acceleration signal. Hence, we calculated the motion velocity
of the collected data set based on the collected signal points
in this paper.

R,@) =[ri—m), r(i —(m—1)),...,7r@)]

. . . . 9
Yin (@) = [y —m), y(i — (m — 1)), ..., y()]
N
3 Rn(i) = Yim(i)
AVD = =0 (10)

N

where R, (i) is the one-dimensional vector composed of the
measured angular velocity values in the previous m seconds,
Y,,(i) is the one-dimensional vector of the angular velocity
value of the expected motion trajectory in the time period and
N is the total number of the vectors.

The angular velocity deviation (AVD) was obtained by the
collected data set and the actual feedback signal. In summary,
the process block diagram of building a multi-mode vector is
described in Fig.4.

3) TRANSFORMATION FROM EIGENVALUE DATA MATRIX TO
GRAYSCALE PIXEL MATRIX

If the original one-dimensional time series data matrix is
directly used as network input, the network input dimension
is too large resulting in expensive network computation. After
extracting the eigenvalues of the original signal, the original
Matrix of the input data is normalized and aligned.

In this paper, a method is proposed to convert batch
one-dimensional time series to two-dimensional gray-scale
images, that is, the original time-domain signal is the format
of the one-dimensional data matrix, which is transformed into
an m X n grayscale pixel matrix.
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In order to keep the pixel matrix stable and reduce the
computation time of the procedure of the transformation,
the random principle of N choosing 3 is adopted before the
stack of the eigenvalues. On the other hand, too much pre-
processing will lose the small information of the eigenvalues
such as the wave crests of the time-frequency series in the
QRS complex, so only the grayscale, the open operation and
the bicubic interpolation operations are used after the pixel
matrix is generated.

Firstly, we need to extract a R-R sequence from a contin-
uous signal as a sample, and the grayscale pixel matrix is
transformed by the data matrix:

= A(i, j) — min(A)

= ————— x255 (11
max(A) — min(A)

where i is the ordinal number of eigenvalues, j is the ordinal
number of the sampling points of R-R time series, max/min
(A) represents the maximum and minimum values of the pixel
matrix, and C matrix is the normalized matrix.

Ongm eigenvalue

data Matrx
Alignment oD | Aoz o | atLo)
Data Normalization : 2, -
/\ acnh |aey | - [aew Superimposed Figenalue
RMS | Alm,1) | Am2) A(m, n)
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RME R EEH CGirayscale
i 3 Opening operation
Bicubic mterpolation
AVD ‘ can [ can] ~ [canw

C(l) | C@2a | = C2.n

Clm.1) | Clm,2) C (m, n)

Figenvalue grav image
prxel value Matrix

FIGURE 5. The conversion process from eigenvalue data matrix to gray
pixel matrix.

Fig.5 shows the conversion process from eigenvalue data
matrix to gray pixel matrix. After the normalization of the
Matrix from O to 255, the Pixel Matrix with dimension n x m
is obtained. Secondly, the ‘““square” structure element per-
forms an open operation on the grayscale image to remove
the process noise caused by the low signal-to-noise ratio.
Finally, the time-frequency image with the size of 800 x 800
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is adjusted to 227 x 227 by using the bicubic interpolation
algorithm.

C. RESAMPLING OF THE REHABILITATION MOTION
TRAJECTORY

The rehabilitation motion trajectory collected from volun-
teers through the teaching reply mode could not be directly
used to simulate the patient’s experiment. The sampled trajec-
tory points needed to be resampled to facilitate the adjustment
of the motion rate during the experiment [34].

The Lanczos resampling method is widely used in the
two-dimensional vector resampling process in the field of
image processing [35]. Considering the function mentioned
above, the effect of smooth interpolation was available for
the one-dimensional data such as the rehabilitation motion
trajectory data. The purpose of the resampling is to double
the number of points in the rehabilitation motion

Let the input point be x. Then, the weight of the Lanczos
window function corresponding to each point is defined as

Lix) = sinc(x)sinc(x/a) if —a < x<a (12)
0 otherwise
where sin c(x) = % Furthermore, a can be taken as

2 or 3, as it is the hyper parameter that corresponds to the
adjustment and reduction interpolation or the amplification
interpolation. Because the purpose of this paper is to up
sample, we set a = 3.

Then, the set of reconstructed points corresponding to the
specific reconstruction function is defined as follows:

|x|4+a

> sl —i) (13)

i=|x|—a+1

S(x) =

where S(x) is the resampled value at the position, which is the
sampled value of the original position.

D. MOTION INTENSITY MUTATION PERCEPTION MODEL
The input layer of the motion-intensity perception model con-
sists of multi-modal information fusion data, and the expected
output is the specific exercise intensity classification result.
The deep neural network (DNN) method is used to implement
the model.

1) NEURAL NETWORK ENVIRONMENT

The programming uses the TensorFlow framework and the
Keras library, trains the model in the Python environment,
uses Nvidia’s CUDA parallel computing architecture to
achieve hardware acceleration, and uses the C++ language
API interface in the control software to connect the control
program of the actuator.

2) ARCHITECTURE AND PARAMETERS OF INCEPTION-SIM
MODEL

After using the ZCA whitening method to reduce the redun-
dant information, the model takes the feature value stack
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map as input, and then sends it to the convolutional layer
of 5 x 5, 3 x 3 convolution kernel, which is used to extract
the fluctuation trend information of eigenvalues in the low
frequency band.

The DropBlock layer can be used to simulate noise and
improve generalization ability [36]. The traditional dropout
regularization technique is not used in the proposed network,
because for the convolution layer, the feature map adjacent
position elements share semantics in the spatial block area,
and the structured DropBlock layer performs better in the
convolution network where mentioned in the Discussions and
Results section.

DropBlock has two main parameters, block size and y.
block size is 7, and the calculation of y is 3.373 x 1073 by
the equation 14.

_1—kp fs?

bs? (fs —bs+1)2 (14

where kp represents the probability of a unit remaining in the
traditional dropout (between 0.75 and 0.95, with a final value
of 0.9), fs represents the size of the feature map, bs represents
block size.

After the first two convolution layers, using the advantage
of the Inception structure to reduce the number of parameters,
Inception-sim is proposed for the small amount of classifi-
cation (in our work, we need 6 classifications) based on the
InceptionV3 convolution network structure.

Compared with traditional Inception-V3 [37] module “one
5 x 5 convolution replaced by two 3 x 3 convolution™ (*“Sth
layer” module), Inception-Simin also added “N x 1 and 1 x
N”* module (*“6th layer”” module) to reduce the network over-
fitting and speed up the network, the specific acceleration
fusion module is shown in Fig.6

DropBlock
7X7,0.8

27X27X128

Concat— .
Simdeep

27X 27 X256

FIGURE 6. Inception-simin module: From left to right, the third
sub-column represents mini module of the “5th layer” module, the fourth
sub-column represents mini module of “6th layer”.
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Inception-Simdeep shown in Fig.7 is used in deep layers
and reduces the feature map size to increase network depth
by combining of “6th layer” and ““7th layer”. An example is
given to illustrate the meaning of *“‘split or connect” indicated
by the arrow. The 19 x 19 x 64 layer of conv2d is connected to
the 27 x 27 x 96 Maxpool layer, and finally the 19 x 19 x 160
layer of Maxpool layer is generated. Its advantage is that it
realizes the function of inception to reduce the parameters,
and can save the calculation time and improve the accuracy
in part, which is discussed in the “Result and Discussion”
section.

e

Goncat—
Simdeep
19X 19X 384

FIGURE 7. Inception-Simdeep module: “3 x 3" represents the size of
kernel, “ /2" represents stride of 2, “ 64" represents the amount of kernel.

Through the collaboration of Inception-Sim layer and
DropBlock layer to achieve acceleration, the implementation
of “first Inception-Sim and then Avgpooling” mode is con-
ducive to maintaining feature stability, but it increases the
complexity of calculation by three times. Finally, through the
whole connection layer Softmax output six kinds of motion
intensity mutation mode, the specific network model is shown
in the Fig.8 and Table 3.

E. ADAPTIVE TRAJECTORY OPTIMIZATION ALGORITHM
BASED ON DQN

Impedance control allows only the actual trajectory of the
robot to be adjusted, rather than associated with the desired
trajectory of the robot [38], which leads to the out of step of
motor in the face of motion intensity mutation. The reason
is that when the output of the joint motor does not reach the
desired position, a new position control signal is received, and
the original position control signal is overwritten, resulting in
the deformation of the motion trajectory.
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Faced with such problems, this paper proposes a trajectory
optimization algorithm aiming at stabilizing motion intensity.
The strategy is to optimize the dynamic trajectory in each
time window, and adjust the joint drive motor speed based
on DQN (Deep Q Network) algorithm to keep the motion
intensity in the “moderate” state. With the iteration of the
algorithm, the deviation between the actual trajectory and the
desired trajectory gradually tends to 0.

Markov decision process is generally described using
Multi-tuple (S, A, P, R, y), S is finite state set, A is action
set, P is finite state transition conditional probability, r is
reward function, y is discount factor of reward function, used
to measure long-term reward and penalty.

+ State Space:
Si = (Us(i), Ueli), Di(i)" (15)

where U(i) is the angle signal value converted by shoulder
encoder, U, (i) is the angle signal value converted by the elbow
encoder, D, () is the distance value between the target point
and the current position in the Cartesian space coordinate
system.

¢ Action Space:

Ar = (w5(1), we(1)) (16)

where ws(t), w.(¢) are the angular velocity of shoulder joint
and elbow joint servo motor respectively, through the control
of motor angular velocity to achieve state transfer.

+ Reward Function:

5
DG)[1+ |AUFG) + AU ()]
m=1,2
50
DG)[1+ |AUFG) + AU ()]
m=23,4
DG)[1+ |AUFG) + AU ()]
m=>5,6
-5 Z res () < 0.75,
j=i—3
D(i) > D(i — 3)

where m represents the mutation type of motion intensity
prediction, AU,(i), AU} (i) are differentials between the cur-
rent position and the desired position of shoulder joint, elbow
joint, respectively.

The e-greedy algorithm is used to select the action of the
actual Q value:

—&+ if a=argmaxgqgy(s, a)
a

x| ™

m(als) < (18)

~lm =

if a # argmax g (s, a)
a
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TABLE 3. Summary of motion intensity mutation perception model
model.

Layer Oqtput lz}yer 'Keme.l Parameter
dimension dimension
Feature-in 227%227%3
Conv 1 113x113x64 5%5 Leaky relu
Maxpool 1 57x57x64 2x2 Stride=2
Conv 2 57x57x128 3x3 Leaky relu
Maxpool 2 27x27x128 2x2 Stride=2
DropBlock 27%x27x128 7 Y =3.373e-3
ion-Simi 27x27x256
mIncep?tlonS-Slr(rinn o 1x1/3x3 ieiu
ception-Simdeep F7x1/1x7 elu
Inception-Simdeep TxTx512 Relu
AvgPool 3x3x512 2x2 Stride=2
DropBlock 3x3x512 1 Y =3.373e-3
FC1 1x1x4608 Dropout=0.9
FC2 1x1x512 Dropout=0.7
Softmax 1x1x6
TABLE 4. The corresponding meaning of the value of m.
Value of m 1,2 34 5,6
Motion intensity M—S W—M W—8
mutation types M—W S—M S—W

M(Moderate), W(Weak), S(Strong) represents the type of motion intensity mutation. The reward function
rewards the maintenance of “moderate” intensity actions, and punishes motion intensity mutation actions.
Moreover, the penalty of intensity mutation across two grades (m=5,6) is much greater than that of across
one grade (m = 1,2) and its concrete effect is shown in the reward function.

TABLE 5. Algorithm: Adaptive trajectory optimization algorithm based on
DQN.

1:For episode=1, do
2: Read the initial value of exoskeleton manipulator joint position and
motion intensity state
3: For =1, do
4: With ¢ probability random logic
True: Randomly selected action : 4;
False: Select the action corresponding to the maximum Q value
5: Execute corresponding trajectory optimization action A, and
calculate the reward function r(i)
6:  Record the next time slice of the manipulator system: iy
7:  Store the(Si,ai,r,Si+1) data in experience replay
" D(i) <0.01

8 Set y = r+ymaxq(S,,,,a,,,0") Otherwise

i+
9:  Gradient descent method to update network layer parameters for
evaluating Q network: L =(y, - ¢(5,.4,.6))’

10: Copy the network layer parameters of the evaluated network to the
target network per completion of a training branch

11: end for

12:end for

where ¢ is the hyper-parameter of the algorithm; k(set k=4)
represents the amount of action types that the algorithm can
choose.

In the specific implementation algorithm of trajectory opti-
mization strategy based on DQN, the pseudo code is shown
in Table 5.

IV. EXPERIMENTAL VERIFICATION

A. DEMONSTRATION TEACHING MODE

To realize the demonstration teaching mode, it is neces-
sary to collect the motion track position signal through
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motion capture. When collecting motion track position sig-
nals, the INNFOS joint actuator is set to the ““‘current” mode.
In this state, the current in the actuator is zero, there is
no holding torque, the upper limbs of a healthy person can
directly drive the INNFOS joint actuator, and the integrated
encoder will record the current movement track position data.

The motion trajectory is collected for the rehabilitation.
The rehabilitation motion requires the coordination of the
four main joints of the upper limbs of the human body.
The encoder data has been converted into joint motion angle
data. The zero position of the joint angle corresponds to
the initial state, the elbow joint has degrees of freedom in
flexion/extension, and the shoulder joints M1, M2 and
M3 correspond to abduction/adduction, flexion/extension,
and internal/external rotation degrees of freedom, respec-
tively. The motion trajectory is shown in Fig.9.

TITRITTRI
= | [II3X113%61 ]

] S7%57x128]

2Tx27%356

L T | sz

FIGURE 8. Motion intensity mutation perception model’s network
structure.

120

100

80

—— Elbow joint

60

Joint angle(”)

6 8 10 2
Time(s)

R
=

FIGURE 9. Motion trajectory of the shoulder and elbow joint angle.

B. DESIGN OF THE REHABILITATION MOTION
DECOMPOSITION
The motion intensity mutation perception model has achieved
good results in offline testing, but the use of the model
in actual scenarios requires the online model to achieve
real-time interaction. The designed rehabilitation experiment
is conducted on the two basic degrees of flexion/extension
freedom of the shoulder and elbow joint. The specific action
decomposition diagram we adopted is shown in Fig.10. The
motion trajectory of the actuator is collected through the
demonstration teaching mode as shown in Fig.11.

As shown in Fig.12, the exoskeleton arm was fixed on the
aluminium alloy steel frame. Additionally, the upper arm and
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FIGURE 10. Rehabilitation motion decomposition.
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FIGURE 11. Rehabilitation motion trajectory through the demonstration
teaching mode.
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FIGURE 12. Rehabilitation motion experimental platform.

the forearm were loaded with extra 1.0 kg weights. The simu-
lated patient wore the exoskeleton arm by grasping the grip of
this arm with the right hand. The nylon bolts were tightened
to adjust the overall length to a comfortable location. The
heart rate sensor was worn on the patient’s left-hand finger.
After confirmation that the setup was correct, we turned on
the power for the rehabilitation experiment. This experiment
was conducted in five consecutive rehabilitation cycles with
a pause of 5 seconds after each cycle.

C. VERIFICATION AND OPTIMIZATION OF THE
MOTION-INTENSITY PERCEPTION MODEL

The transformation from an offline model to an online model
requires optimization of the program packaging interface
and running time. The engineering optimization is mainly to
use the CPU multi-threading feature, which can encapsulate
the perception model and translate it into the Visual Studio
2017 platform. The control program uses the reserved input
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layer and output layer program interfaces. After the test,
athread is established in the main program for data collection,
and multi-mode fusion and standardization are performed.
The running time of identification using the perception model
is approximately 1.8 s, the thread resource occupancy rate is
in line with expectations, and the heart rate signal acquisition
cycle is 3 seconds. In the designed experiment, the motion
intensity will be initially set to the medium intensity, and the
online perception model will correct the real-time exercise
intensity every 5 seconds. The encoder records five consecu-
tive cycles of motion trajectory, which are shown in Fig.13.

=
S

—— shoulder joint
= = clbow joint

iy
» =
s 3

Joint Angle (deg)
P
s 2

I
=

=

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Rehabilitation training time (S}

FIGURE 13. Experimental motion trajectory of five consecutive cycles.

The data obtained by the online motion intensity mutation
perception model are shown in Table 6. The results show that
in the first three rehabilitation cycles, the motion intensity of
the subjects is mainly concentrated in the mutual transforma-
tion between “‘strong” and ‘“‘moderate’’. The main reason is
that the subjects are full of energy at the beginning of the
experiment, producing a strong interactive force between the
muscles and the manipulator. During the last two cycles,
the subjects’ motion intensity gradually changed from ““mod-
erate” to “weak”, accompanied by a decrease in motion
velocity and deformation of the motion trajectory, which was
caused by the subject’s muscle fatigue and a decrease of upper
limb strength.

TABLE 6. Online motion intensity perception model intensity data.

Intensi The The The The The
Y first  second third fourth fifth
Strong  252%  243%  6.6% 0.0% 0.0%
Moderate ~ 74.8%  75.9%  653%  134%  18.8%
Weak  00%  0.0%  281%  86.6%  81.2%

In summary, the data obtained by the online perception
model are basically consistent with the motion trajectory
measured in the experiment. The classification accuracy of
the perception model has been verified, laying a founda-
tion for the adaptive trajectory optimization algorithm based
on DQN.

V. RESULTS AND DISCUSSION

A. MULTI-MODE INFORMATION FUSION

The multi-mode feature vector constructed in this paper was
composed of heart rate eigenvalues and kinematic eigen-
values. A parallel coordinate plot adopting the standardized
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pre-processing is shown in Fig.14(a). For the intensity label,
the solid line indicates that the prediction vector of the model
matches the actual label, while the dashed line is opposite.
From the perspective of feature value dimension, the feature
vectors of four-dimensional heart rate signal are densely
distributed with high accuracy, while the feature vectors of
two-dimensional kinematic signal are distributed dispersedly,
which is roughly due to the relative hysteresis and anisotropy
of the kinematic signal.

plot with scaling of Standardization

arallel coordinates,
L Model predictions
. Low - Correct
}—x Low- Incorrect
+3.0 std [ Medium - Correct
' Medium - Incorrect|
o High - Correct
* High - Incorrect

+1.0 std |

mean

=10 std -

-2.0 std |-

-3.0 std -

-4.0 std |-

SD ApEn  RMSF  RVF
(a). parallel coordinates plot with scaling of Standardization

Parallel coordinates plot with scaling of Normalization

Shoulder  Elbow

Model predictions |

<n ApEn RMSF RVF Shoulder Elbow
(b). parallel coordinates plot with scaling of Normalization

FIGURE 14. Parallel coordinates plot with scaling of standardization and
normalization.

The vectors preprocessed by standardization are more
densely distributed under the same label and more dispersed
under different labels, which is convenient for classification
and identification of the model. In contrast, the vectors shown
in Figure.14(b) that are preprocessed by normalization are
scattered under the same label, ma inly because normalization
does not change the relative order of the data, but it does not
keep the space between the dimensions of the initial vector.
Finally, the gradient identification of each dimension of the
initial vector disappears.

B. PERFORMANCE EVALUATION OF PROPOSED MODEL
1) BASELINES
In order to verify the performance of the proposed model in
individual motion intensity mutation monitoring, the multiple
state-of-the-art methods are listed below for comparison:
MLP-CNN [39]: The model includes two algorithms which
were integrated in a concise and effective way using a
rule-based decision fusion approach.
ECG-CNN [40]: The deep two-dimensional CNN for ECG
arrhythmia classification using the Xavier initialization and
exponential linear units.
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FIGURE 15. Radar chart of classification effect of CDB dataset.

VGGNET [41]: The model uses very small (3 x 3) convo-
lution filters thorough evaluation of networks with the depth
to 16-19 weight layers.

34-layer CNN [42]: The network contains 33 layers of con-
volution followed by a fully connected layer and a softmax.

Besides the above networks, we also compare with widely-
used image classification frameworks, such as VGGI16,
Resnet50 and Inception-V3.

2) EVALUATION INDEX

Precision, Recall, ACR (average convergence rate) and F1 are
used as network performance evaluation indexes, which are
expressed as follows:

. P
Precision = ——
TP + FP
1
average convergence rate = —————
epoch time
TP
Recall = ——
TP + FN
Fle2x Precision x Recall (19)

Precision + Recall

where epoch time represents the overall time when the
loss function value stabilizes, TP FP TN FN represents for
True Positives, False Positives, True Negatives and False
Negatives, respectively.

3) COMPARISON WITH THE STATE-OF-THE-ART METHODS
We compared the proposed method with the latest
method, and tested on MIT-BIH ECG Compression Test
database (CDB) and Finger Clip Heart Rate Database, respec-
tively. To save space, we show two typical classification
labels (W to S, to S) precision and recall (left of the table),
overall (right of the table) precision, recall, F1 scores and
ACR. In all experiments and evaluations of the proposed
method is based on the results of 5-fold cross-validation.
Results are demonstrated in Table 7, Table 8, respectively.
In order to observe the results more intuitively, we visu-
alize the model performance evaluation into Radar Chart
shown in Figure 15 and Figure 16 through data visual-
ization. On the whole, poor performance of classification
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TABLE 7. Model evaluation on MIT-BIH ECG compression test database
(CDB).

WtoS Mto S

Intensit  Precisi  Precisi OP::Z?;: Overall Fl ACR
y on/Rec  on/Rec Recall (1/s)
on
all all
MLP- 0.6145/  0.7985/ 4.032e-
CNN 0.6568 06125 0.6342 0.5852 0.6087 3
ECG- 0.7652/  0.9456/ 2.932¢-
CNN 0.4823 0.6935 0.8654 0.6561 0.7463 3
VGGN  0.8211/  0.6425/ 3.932e-
ET 0.7520 05354 0.7524 0.5628 0.6439 3
34- 0.8452/  0.8012/ 4.932¢
layer . . 0.8124 0.6724 0.7358 : B
CNN 0.6245 0.6723 3
Propos
0.9223/  0.8145/ 5.132¢-
ed 0.6123 0.2453 0.8721 0.6242 0.7276 3
method
TABLE 8. Model evaluation on mimve database.
Wto S Mto S Overall
Intensit  Precisi  Precisi Preecisi Overall Fl ACR
y on/Rec  on/Rec Recall (1/s)
on
all all
MLP- 0.8522/  0.7565/ 4.724¢-
CNN 0.8268 07245 0.8245 0.7852 0.8043 5
ECG- 0.8678/  0.8785/ 5.584e-
CNN 08521 06732 08425 07541 07958 7T,
VGGN  0.8842/  0.9752/ 6.4263
ET 0.8289 08354 0.9124 0.5628 0.6961 262
34- 0.8452/  0.8012/ 7.546¢
layer . . 0.8124 0.6842 0.7428 : B
CNN 0.6245 0.6723 2
0.8183/  0.8523/ 5.542¢-
VGGl16 0.6423 06247 0.8345 0.6423 0.7258 5
Resnet  0.8745/  0.9123/ 7.678e-
50 08523 07825 0.8915 0.8354 0.8625 P
Incepti 0.8824/  0.9254/ 6.852e-
on-V3 0.8524 0.7852 0.9041 0.8123 0.8557 2
Propos
0.8952/  0.9345/ 9.132¢-
ed 08123 07845 0.9081 0.7563 0.8252 2
method

methods based on time series (ECG-CNN and 34-layer
CNN) can be observed in both datasets. It is worth noting
that the general image classification framework (VGG16,
inception-v3, Resnet50) achieves better performance than
these digital-based approaches. This situation is in line with
our original intention of transformation from eigenvalue
data matrix to grayscale pixel matrix, that is, the applica-
tion of time series data to image classification framework
will be limited. When the proposed method comparing with
these conventional image classification frameworks, index
of Precision, F1, and Recall remains at a high level but the
most prominent performance index is ACR, the structure
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FIGURE 16. Radar chart of classification effect of FCHR dataset.

optimization of our improved inception-CNN network plays
a key role in reducing redundant network parameters and
improving network running time.

C. ANALYSIS OF INDIVIDUAL DIFFERENCES

It is not sufficiently comprehensive to analyse the problem
of individual differences based on the classification accuracy
of the perception model. We randomly extract 100 sets of
data from each measured exercise intensity label, and we
use the t-distributed stochastic neighbour embedding (t-SNE)
method to perform dimensionality reduction and visualiza-
tion of the data. The t-SNE method is used to reduce the
dimensionality of the multi-mode fusion vector to two dimen-
sions. The two-dimensional distribution graphics are shown
in Fig.17.

The different colours of W(Weak), M(Moderate), and
S(Strong) in the figure represent the multi-mode vector of
weak motion intensity, moderate motion intensity and strong
motion intensity, respectively. The position of the letter is
determined by the value of the original multi-mode fusion
vector data through the dimensionality reduction.

The first three graphs separately represent the experimental
data of each subject, and the fourth graph combines the data
of three subjects and then draws them by the intensity classi-
fication. Analysing the position of the multi-mode vector data
after the dimensionality reduction shows that the distribution
of the individual multi-mode fusion vectors has a high degree
of discrimination. The same letters are clustered together, and
different letters are far apart. The result of the dimensionality
reduction for the classification is more extreme.

In the first two graphs, the classifications of the letter S
and the letter M is more cross-over, which can also sup-
port the source of error between strong motion intensity and
medium motion intensity in the confusion matrix. Compared
with the first three figures, the mixed fourth figure shows
that the distribution of the different letters is relatively scat-
tered. The same letter logos converge into clusters, and more
logos converge into multiple coherent blocks. On the whole,
the model still shows a certain degree of discrimination
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5

FIGURE 17. t-SNE embeddings of multimode feature vectors from
different subjects.
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FIGURE 18. Comparison of cumulative delayed reward for MADQN,
traditional DQN and ATO—DQN.

for data with large individual differences. The results ver-
ify that the method of adding kinematic eigenvalues to the
multi-mode fusion vector can alleviate the negative impact
of the ECG signal due to individual differences to a certain
extent.

D. ANALYSIS OF ADAPTIVE TRAJECTORY OPTIMIZATION
ALGORITHM

ATO(adaptive trajectory optimization)-DQN algorithm
emphasizes on dynamic state interaction. In order to improve
the processing speed of the algorithm, the offline data
pre-training of Evaluating Q Network is carried out. The ratio
of offline and online samples with motion intensity mutation
labels is 1:5, and the feedback angle information recorded in
the pre-training process is put into experience replay.

The cumulative delayed reward for MADQN (Multi-agent
DQN), traditional DQN and ATO-DQN under motion inten-
sity mutation state as the episode increases is shown in Fig.18.
Attributed to the pre-training operation, the convergence
speed and stability of ATO-DQN algorithm are significantly
higher than those of MADQN and DQN. More obviously,
ATO-DQN algorithm obtains higher cumulative delayed
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FIGURE 19. Performance of reward value and convergence rate under
different learning rates. When the learning rate e is 0.7, the model step
length is too short and the convergence speed is too slow; when the
learning rate is 0.98, the convergence speed is greatly improved but
cannot converge.
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FIGURE 20. Comparison of the trajectories of two states.

reward. In contrast, MADQN is more suitable for multi-agent
(at least more than two agents) cooperative control.

Fig.19 shows the performance of reward value and con-
vergence rate under different learning rates. For each motion
cycle, 400 groups of samples can be obtained and the learning
rate (e = 0.9) is used to accelerate the iteration. Then, the
action output is randomly selected by the e-greed algorithm,
and the stability is high under multiple tests.

The rehabilitation motion trajectory used in the percep-
tion model validation experiment is imported into ATO-DQN
algorithm model as the test datasets, and the real-time
motion intensity is set as the mixed state of “Strong” and
“Weak”, and the trajectory control signal is outputted to
the exoskeleton manipulator and executed without load. The
actual motion trajectory is shown in Fig. 20(a), while the tra-
jectory without algorithm optimization is shown in Fig. 20(b).
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It can be seen from Fig.20 that the output speed of the
control method without ATO-DQN algorithm is relatively
unstable in the face of continuous motion state mutation,
resulting in the distortion of the actual output trajectory.
The trajectory of elbow and shoulder joint begins to jitter
and deform between 0~20% cycles (Corresponding to the
first two stages in Table 6, namely the transition stage from
“strong” to “moderate’ state).

In contrast, after the optimization of ATO-DQN algorithm,
due to the action selection refinement and dynamic inter-
action ability, the tracking effect of motion trajectory on
real-time environmental changes is enhanced, and the overall
fluctuation is small, which can better guarantee the motion
safety of patients.

VI. CONCLUSION

In this paper, the time domain, the frequency domain eigen-
value of ECG and the angular velocity deviation of the
encoder were extracted as the input layer of the motion
intensity variation interval estimation model, which was con-
structed for classification and identification. In the experi-
ment, the results verify that the method of adding kinematic
eigenvalues to the multi-mode fusion vector can alleviate the
negative impact of the ECG signal due to individual differ-
ences to a certain extent. When the proposed method compar-
ing with those conventional image classification frameworks,
the structure optimization of our improved inception-CNN
network plays a crucial role in reducing redundant network
parameters and improving network running time. After the
optimization of ATO-DQN algorithm, the tracking effect
of motion trajectory on real-time environmental changes
enhance, which can better guarantee the motion safety of
patients.

Our work also has many limitations. Compared with other
methods, the precision, recall and F1 index have not been
significantly improved. In Analysis of adaptive trajectory
optimization algorithm, the types and evaluation indicators of
DQN methods are not comprehensive enough. Most impor-
tantly, the current technology does not have good versatility
in the application of manipulators, only in the angular veloc-
ity sensor and ECG signal multimodal feature vector shows
good result. In subsequent research, our work can refine the
classification limit of motion intensity and improve the speed
correction accuracy of trajectory. We hope the trajectory
correction technology will develop towards the direction of
generalization and diversification.

ABBREVIATIONS
ECG: Electrocardiogram; MIVIE: Motion Intensity Vari-
ation Interval Estimation; ATO-DQN: Adaptive Trajec-
tory Optimization-Deep Q Network; MADQN: Multi-agent
DQN;

CNN: Convolutional Neural Network; ACR: average
convergence rate.
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