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ABSTRACT Monocular depth estimation is a basic task in machine vision. In recent years, the performance
of monocular depth estimation has been greatly improved. However, most depth estimation networks are
based on a very deep network to extract features that lead to a large amount of information lost. The loss
of object information is particularly serious in the encoding and decoding process. This information loss
leads to the estimated depth maps lacking object structure detail and have non-clear edges. Especially in
a complex indoor environment, which is our research focus in this paper, the consequences of this loss of
information are particularly serious. To solve this problem, we propose a Dense feature fusion network that
uses a feature pyramid to aggregate various scale features. Furthermore, to improve the fusion effectiveness
of decoded object contour information and depth information, we propose an adaptive depth fusion module,
which allows the fusion network to fuse various scale depth maps adaptively to increase object information in
the predicted depth map. Unlike other work predicting depth maps relying on U-NET architecture, our depth
map predicted by fusing multi-scale depth maps. These depth maps have their own characteristics. By fusing
them, we can estimate depth maps that not only include accurate depth information but also have rich object
contour and structure detail. Experiments indicate that the proposed model can predict depth maps with
more object information than other prework, and our model also shows competitive accuracy. Furthermore,
compared with other contemporary techniques, our method gets state-of-the-art in edge accuracy on the
NYU Depth V2 dataset.

INDEX TERMS Monocular depth estimation, dense feature fusion network, depth adaptive fusion module,
multi-scale depth maps, indoor.

I. INTRODUCTION
Depth estimation is a fundamental problem in computer
vision, applied to robot navigation, augmented reality, 3D
reconstruction, autonomous driving, and other fields. From
the last century, scholars have begun to try to estimate the
depth of the scene. Previous methods usually use optical and
environmental geometric constraints to estimate the depth
of the scene [1]. At present, most depth estimation is based
on the transformation estimation of two-dimensional RGB
images to RBG-D images, mainly including the Shape From
X method to obtain the scene depth shape from the image
brightness and shade, different perspectives, luminosity and
texture information, as well as the algorithm combining SFM
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(Structure From Motion) and SLAM(Simultaneity Localiza-
tion And Mapping) methods to predict the camera position
and pose. Although many devices can obtain depth directly,
the equipment is expensive. Binocular depth estimation can
also be used, but to deal with binocular images, it needs
to use stereo matching for pixel correspondence and paral-
lax calculation. The computational complexity is very high,
and for the low texture scene, the matching effect is not
good. Though monocular depth estimation is considered an
ill-posed problem for a single image that lacks the necessary
geometric information, it has been widely concerned because
it’s relatively cheaper and easier to popularize. Monocular
depth estimation is to use an RGB image under a single or
unique perspective to estimate the distance of each pixel in the
image relative to the shooting source. With the development
of technology, monocular depth based on deep learning has
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made great progress. Eigen et al. [2] proved through experi-
ments that the relative depth of the image can be obtained by
using a Convolutional Neural Network(CNN). Most of the
Newest approaches [3]–[6] about depth estimation based on
deep learning show great performance. However, there are
some challenges in depth estimation from a single image.

First, most models of depth estimation are based on very
deep neural networks to extract the features from the image
to get good performance, but the feature maps obtained by
multiple convolutions lose many pieces of information espe-
cially object information, which leads to small objects and
object structure detail missed in the feature map. Further-
more, after many times of convolution and pooling, the spa-
tial dependence and channel dependence of the feature map
is weak. We will preserve much object information, but
can’t obtain high-level semantic information if we reduce
the convolutional layers. Generally, most depth information
associated with high scale feature maps, and object infor-
mation are usually associated with lower feature maps. For
indoor scenes with many objects, the impact of informa-
tion loss is particularly serious. To deal with this problem,
some pre-works [7], [8] introduce the skip-connection to add
Low-scale features to the decoder module. But most of the
time, skip-connection only includes a single-scale feature
map.

Second, many pre-works reference the U-NET [9] archi-
tecture to design the network. Although U-NET gets good
performance in many vision tasks, the gradual decoding
makes U-NET shows poor performance in multi-scale feature
fusion. To deal with those problems, we propose a network to
estimate the depth from a single image by fuse multi-scale
depth maps. In the part of the encoder, we propose a Dense
Feature Fusion Network (DFFN). DFFN uses multiple sam-
pling and channel compression to fuse different scale features
for obtaining fused feature blocks preserving the detailed
information of the image. Since the features extracted by
convolution are a mixture of cross-channel and spatial infor-
mation that leads to the dependence between features in the
feature maps is less, we introduce the channel attention mod-
ule to enhance dependence. In the decoder part, we designed
a Depth Adaptive Fusion Module (DAFM) to decode the fea-
ture block. In this module, we estimate the depth maps from
each scale feature block and set learnable weights for these
depth maps. Finally, we get the final feature map by directly
adding these weighted depth maps. Using this module, we not
only get a depth map with rich scene information but also
reduce the parameters of the decoding module.

Our contributions can be summarized as follows:
• We propose a Dense Feature Fusion Network (DFFN).
By aggregating multi-scale features, a feature pyramid
is established to solve problems, caused by the loss
of information in the encoding process, such as the
blur of the depth map and the lack of object structure
information.

• Wepropose theDeepAdaptive FusionModule (DAFM).
By estimating coarse depth maps of various scales, and

performing weighted summation on these depth maps,
a depth map with both high accuracy and rich scene
information is obtained.

• Extensive experimental results show that our model
shows that our predicted depth map has more object
information and clearer edges than other previousworks,
and has competitive depth accuracy in the NYU-Depth
V2 dataset.

II. RELATED WORK
In this section, we mainly discuss the related works about
monocular depth estimation and multi-scale fusion.

A. MONOCULAR DEPTH ESTIMATION
In recent years, deep convolutional networks have been
applied to depth estimation and have achieved excellent
results such as [2]–[8], [10]–[24]. Now we generally consid-
ered that the beginning of the depth estimation of a single
image based on deep learning is Eigen et al. [2]. Eigen used
a multi-scale convolutional neural network to extract image
features and predicted image depth. Although they got a
coarse depth map, they proved that the depth of an image
can be estimated by extracting the multi-scale features of
the image. Based on this work, Eigen and Fergus [10] built
a framework composed of depth estimation, surface normal
prediction, and semantic annotation. Liu et al. [11] used a
deep convolutional neural network and Conditional Random
Field (CRF) to imitate the intricate relationship between adja-
cent parts of the depth map precisely. The model extracted
the relevant features from an RGB image through CNN, then
used CRF to improve the smoothness and edge preserva-
tion of adjacent superpixel blocks. Laina et al. [7] proposed
a network based on FCRN (Fully Convolutional Residual
Networks) to a depth map or depth maps. Yuru et al. [24]
added an attention mechanism to the classification algo-
rithm, combined with contextual content, and it also used the
soft classification method to improve the quality of predic-
tion depth. Wu et al. [23] applied (Atrous Spatial Pyramid
Pooling) ASPP to depth estimation tasks. It used ASPP
convolution kernels of different sizes to obtain feature
information of different scales, which achieved excellent
estimation results. Lo et al. [22] proposed a multi-channel
and multi-rate feature extractor, which can effectively extract
multi-scale information for depth prediction. Most of these
methods have not shown great ability to recover the infor-
mation of the objects in the depth map, resulting in the blurry
objects in the estimated depth map, especially many structure
details are lost. In addition to the above-supervised meth-
ods, to reduce reliance on labeled data, scholars have also
introduced unsupervised estimation methods [12], [13], [18]
that utilized epipolar geometry and deep CNN to train
the network. SfMLearner [25] is the first framework to
predict depth and ego-motion using monocular videos.
In this paper, we focus on the supervised depth estimation
method.

VOLUME 9, 2021 67697



X. Yang et al.: Monocular Depth Estimation Based on Multi-Scale Depth Map Fusion

B. MULTI-SCALE FEATURE FUSION
Multi-scale feature fusion is a common method of feature
extraction. Convolutional neural networks gradually abstract
and extract features through convolution. The deep network
has a large receptive field and strong semantic expression
ability. However, due to the deep layer convolutional abstrac-
tions, the resolution of the feature map is low, and a large
number of spatial characteristics detail information is lost.
The shallow network shows the ideal ability to preserve
scene information and the feature maps are higher resolu-
tion, but the semantic information representation ability is
weak. Multi-scale feature fusion deals with these problems.
The fused features from different scales can help us get
the fusion features that have good semantic expression abil-
ity and many spatial characteristics detail information, such
as [3], [26]–[30]. He et al. [26] proposed (Spatial Pyramid
Pooling in Deep Convolutional Networks) SPPNet, which
used atrous convolution with different atrous rates to extract
the feature map at the same time, and then the features
were all connected by channels to obtain a fused feature
map. Zhao et al. [27] proposed (Pyramid Scene Parsing Net-
work)PSPNet. They used different sizes pooling layers on
the same feature map at the same time by constructing a
pooling pyramid to obtain feature maps of different scales.
Then they upsampled all the feature maps of different scales
to the same resolution as the original feature map. Finally,
they connect them to the original features map. Liu et al. [28]
proposed the ParseNet, which extracts the global features of
the image through global pooling and merges them with local
features. Zhou et al. [29] in order to explore the complex
relationships and exploit the complementarity between RGB
image and depth information, the Deep Convolutional Resid-
ual Autoencoder (DCRA) includes two branch input RGB
branch and input depth branch were proposed. Furthermore,
multi-fusion modules were proposed at the same time. These
modules aggregate information include texture and structure
information between the RGB and depth branches of the
encoder and fuse their features over several multiscale layers.
These modules showed a great performance in the feature
fusion. Wu et al. [30] proposed a multi-level context and
multimodal fusion network (MCMFNet) to fuse multi-scale
multi-level context feature maps and learn the object edges
from depth information. MCMFNet can obtain the detected
result with a clear object boundary. Hu et al. [3] proposed a
network using convolution instead of the pooling layer for
multi-scale feature fusion. they upsampled all the feature
maps obtained by the encoder to the same resolution with
channel compression, channel connection, and convolution
operation. But the directly upsampling high scale feature map
just increases the resolution and does not increase additional
features. Furthermore, there is a lack of feature dependence
between feature maps of different scales, which with impact
fuse result. To improve the fusion effectiveness, we down-
sample the low scale feature and concatenate it with high
scale features and then compress them before upsampling
the high scale features. Furthermore, we introduce channel

attention to assist the feature fusion. Experiments show that
our proposed Dense Feature Fusion Network achieved good
results based on our baseline. We will introduce the detail in
Section III.

III. OVERVIEW
In this section, we first introduce the overall framework, and
then we describe the Dense Fuse Feature Network (DFFN)
and the Depth Adaptive Fusion Module (DAFM) in detail.

A. OVERALL FRAMEWORK
In this paper, we select the encoder-decoder framework as
the base architecture. In the encoding phase, we proposed
a Dense Feature Fusion Network (DFFN), that can obtain
fused feature maps of multiple scales by aggregating dif-
ferent scales’ feature maps. These fused feature maps will
participate in decode together with the original feature maps
to solve the problem of information loss. In the decoder
module, unlike the previous work, we use the Depth Adaptive
Fusion Module (DAFM) to fuse the rough depth map esti-
mated from each scale feature block to obtain the final depth
map. The framework of our network is shown in FIGURE 1.
Specifically, (1) the encoder module uses SENet [31] as the
backbone. To deal with the information loss in the deep
network, the Dense Feature Fusion Network (DFFN) is pro-
posed. We denote the fusion feature map, on the ith layer of
the fusion feature pyramid, as F if , and the F iori indicating the
original feature maps at the ith level of the pyramid of the
backbone. We will introduce the detail about the fusion net-
work in the next part. (2) In the decoder phase, we proposed
the Depth Adaptive Fusion Module (DAFM) to get the fine
depth map by fuse multi-scale depth maps. We first compress
the original feature map to half of the channels and con-
nect them to obtain feature blocks. Through this operation,
we ensure that the coarse depth map estimated in the next
operation contains object information and depth information.
Furthermore, concatenate fused and original featuremaps can
close the difference in those depth maps. Next, we compress
these feature blocks to get the coarse multi-scale depth maps
and set a learn the weight for each coarse depth map. At last,
we sum the weighted depth maps to obtain the final depth
map.

B. DENSE FEATURE FUSE NETWORK
Generally, high-scale feature maps have rich semantic infor-
mation but lack spatial geometric features. More importantly,
many objects will lose in high scale feature maps for the
multi-scale pooling layers, which will lead to a bad result
in depth prediction. This issue is severe especially in indoor
environments that contain many objects and the scene is more
complex than outdoor. To deal with this problem, a dense
feature fuse network is proposed and we use a novel prepro-
cessing strategy to the upsampling of low-resolution feature
maps in the fusion network and the upsampling method we
following [7]. When we upsample the low-resolution feature
map, we do not directly perform upsampling, but we first
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FIGURE 1. The architecture of our network. In our encoder module, we proposed a Dense Feature Fusion Network(DFFN) to
fuse a multi-scale feature and build an FFP(Feature Fused Pyramid). In the decoder module, we propose the Depth Adaptive
Fusion Module to obtain fine depth map by adaptive fuse multi-scale depth maps.

down-sample the high-resolution feature map of the target,
and then we connect it with the low-resolution feature map.
Finally, the connected feature block is upsampled. However,
if each low-resolution feature map upsample using this strat-
egy, that will add too many redundant features and additional
computation. Therefore, in the fusion network, we only use
this strategy in perform sampling on non-adjacent scale fea-
ture maps. Specifically, we note the ith scale feature map
upsampling to kth scale as F i→k i ∈ {1, 2, 3 · · · n}. We only
use the preprocessing strategy when k − i ≥ 2. We directly
upsampling the featuremapwhen k−i ≤ 2. Thenwe concate-
nate {F i→k

} that the k is the same as a feature map. Through
this strategy, we can ensure that the low-fused map includes
more object information. Finally, we use a channel attention
mechanism to enhance the dependence of these concatenated
feature maps and express it as Fkf . We show the fusion sub-
module in DFFN to create F1

f in FIGURE 2 (a). The module
structure of channel attention is shown in FIGURE 2 (b).
In our attention mechanism module, we use average pooling
to shape the concatenated fused map to become C × 1 × 1.
Then, we utilize a 1×1 convolution operation to reduce their
number of channels to half Fkori (F

k
ori indicating the original

feature maps at the kth level of the pyramid of the backbone)
channels and use Relu to activate. After that, we use 1 × 1
convolution again but without changing the channels and use
sigmoid as activate function and express it as attk . On the
other hand, we use the 1 × 1 convolution to compress Fkori
to half channels and multiply it with attk . Finally, we use a
3×3 convolution to process the multiplied feature map to get
the fused feature Fkf .

C. ADAPTIVE DEPTH FUSION MODULE
In this section, we propose an adaptive depth fusion module.
As we know most of the traditional decoding module uses a

step-by-step decoding method and the feature map generated
by the previous decoding will be passed up and participate
in the next step of decoding [2], [3], [19], [22]. The step-by-
step not only increase the parameters of the decoding module
but also show a low ability in multi-scale feature fusion.
Different scale depth maps have different characteristics.
High scale deep maps show a good performance in depth
information prediction, but there is almost without spatial
information and object information of the scene, whether
object position or object outline. Rich scene information and
detailed information exist in the low-scale depth map but
hardly include any depth information. The comparison of
different scale depth maps is shown in FIGURE 3. As we can
see in FIGURE 3 that the 1th and 2th scale depth map has
rich spatial information but they have not depth information
or the depth information is inaccurate. Furthermore, there is
depth information and without any object information in the
5th scale depth map. If we can fuse different scale depth
maps, we can get a depth map including depth value and
scene and objects information through fuse depth maps of
multi-scale. Inspired by [32], we proposed an adaptive depth
fusion module to fuse multi-scale depth maps by weighted
summation. The architecture is shown in FIGURE 4. First,
we perform channel compression on all the original feature
maps and connect the compressed feature maps with the
fused feature maps of the corresponding scale. By connect-
ing the fusion feature maps which include all scale features
with the original feature map of the corresponding scale, the
information gaps between the depth maps of different scales
are reduced and improve the fusion effect. If we use the
original feature map alone, the fusion effect will be impacted
because the features between different scales have too large
gaps. The corresponding ablation experiment is in Sec IV.
Through these operations, wewill get multiple feature blocks.
Then we perform channel compression on each feature block
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FIGURE 2. The architecture of the submodule and attention module in our dense feature network. (a) Our submodule
was used to calculate the first-scale fused feature map in DFFN. DFFN includes 5 submodules similar to (a). These
submodules are used to fuse the feature maps of scales 1-5. (b) Our channel attention module.

FIGURE 3. Different scale depth map. From top to bottom are the original
image, the first-scale depth map, the second-scale depth map,
the fifth-scale depth map, and the ground truth. First-scale and
second-scale depth maps include rich object information. The fifth-scale
depth map includes depth information.

separately to obtain a rough depth map. To improve the
presentation ability of the network, we adopted a stepwise
compression strategy when compressing the feature map to
predict coarse depth maps. We use the 3 × 3 convolution to
compress their channel to half and use batch norm and Relu to
deal with these feature maps. After these operations, we use
the 3× 3 convolution to compress the feature map to a single
channel. Finally, we use bilinear interpolation to resize the
multi-course depth maps to the same size and set a learnable
weightwk for each depth map dk . The final depth mapDf can
be expressed as (1).

Df =
∑

k∈l
wk ∗ dk (1)

where n is the number of the scales, the k express the kth scale,
l = [1, 2, 3 · · · n]. In this paper, we set n = 5. Df is the final
depth map. The depth value in (i, j) can be denoted as (2)

Yi,j = αi,jy1i,j + βi,jy
2
i,j + γi,jy

3
i,j + δi,jy

4
i,j + εi,jy

5
i,j (2)

where yki,j is the depth value of (i, j) in dk , αi,jβi,jγi,jδi,jεi,j is
the weight of yki,jk ∈ {1, 2, 3, 4, 5}. Furthermore, we set two
mathematical constraints to the weight as (3) and (4)

αi,j, βi,j, γi,j, δi,j, εi,j ⊂ [0, 1] (3)

And

αi,j + βi,j + γi,j + δi,j + εi,j = 1 (4)

Furthermore, we define (5)

αij =
eλaij

eλaij + eλβij + eλγij + eλδij + eλεij
(5)

where αij, βij, γij, δij and εij are defined by using the softmax
function and they are used to control parameters. We use the
1 × 1 convolution layer to compute the multi-scale coarse
depth map’s weight, and these weights can learn through
standard back-propagation. Experiments have proved that
the adaptive module can make the depth map include more
detailed structural information.

D. LOSS FUNCTION
In our paper, we use the multiple loss functions proposed by
Hu et al. [3] rather than the single loss function. The total loss
L consists of three parts ldepth lgrad and lnormal shows as (6)

L = ldepth + lgrad + lnormal . (6)
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FIGURE 4. The architecture of our DAFM(depth adaptive fusion module). We perform channel compression on each
feature block through two 3∗3 convolutions to obtain the coarse depth map, and then give each depth map a learnable
weight, and then sum the weighted depth maps to obtain a fine depth map.

IV. EXPERIMENT
In this part, we will first introduce the evaluation indicators
of the experiment. Then we will introduce the datasets used
in the experiment, and conduct various experiments on the
datasets to prove the effectiveness of the model.

A. EVALUATION QUANTITATIVE
We use the six metrics propose in prior work [2] to evaluate
our model’s performance. The six error metrics are defined
as
• Root mean squared error (RMSE):

RMSE =

√√√√ 1
|T |

∑
y∈T

∥∥ĝi − gi∥∥2 (7)

• Absolute relative difference (AbsRel):

AbsRel =
1
|T |

∑
y∈T

∣∣ĝi − gi∣∣/gi (8)

• log10:

log 10 =
1
|T |

∑
y∈T

∣∣log10 ĝi − log10 gi
∣∣ (9)

• Threshold (δ):

% of yi s.t. max(
ĝi
gi
,
gi
ĝi
) = δ < thr (10)

where thr = 1.25, 1.252, 1.253 the gi is ground truth, ĝi
predict depth value, and T is the available pixels in the
ground truth.

B. DATASET AND EXPERIMENTAL SETTING
Wemainly conduct experiments on NYUDepth V2 [42]. The
NYU-Depth V2 contains a variety of indoor scenes that are
most widely used for depth estimation and semantic segmen-
tation. This dataset has 654 aligned RGB-Depth pairs sup-
ported to evaluate the model of depth estimation for indoor
scenes captured with Microsoft Kinect. In our experiment,
we use the training dataset that contains 50K RGB-D images
and was preprocessed by Hu et al. [3].

We use the Pytorch to implement our model, and then in
the encoder state, we use the SENet-154 [31] as our backbone
that initialized pre-trained by ImageNet [43].

We set the initial lr = 0.0003 and use the learning rate
decay policy with Adam optimizer, which will reduce to 10%
every 5 epochs, and we set the β1 = 0.9, β2 = 0.999,
epochs = 10, and weight decay as 10−5. Our model will be
trained on 32GB Tesla V 100 with a patch size is 16.

C. PERFORMANCE COMPARISON
In this section, we evaluate the model that we propose
from both qualitative and quantitative points of view on the
NYU-Depth V2 dataset. The result has shown that our model
achieves state-of-the-art performance.

In TABLE 1, we prepare our model with other previ-
ous models to achieve that state-of-the-art evaluation on the
NYU-Depth V2 dataset. The result shows that our model
obtains the second performance on δ1, δ2, and rms the
other metrics result shows that our model achieves gains
competitive approaches. Qualitative results are illustrated in
FIGURE 5. We compare the samples between our model
and the previous state-of-the-art model on the NYU-Depth
dataset. It is observed that [2] and [7] only have the vague
contour of an object. For example, chairs in the (b) [2] and [7]
only predict blurry contour but loss most of the structural
detail. Although [3] can accurately predict the contour of the
chair, it lost some structural detail. For example, the sofa
in (d) [3] predicts the contour of the sofa but can’t pre-
dict the concave-convex of the sofa. Our method not only
can predict the boundary of the object clearly but also has
shown good performer in the detailed structure. Looking at
(c) (d) (f) the bed sofa, and table lamp, our method predicted
results have rich detail information and clear boundary than
other methods.

D. EDGE ACCURACY COMPARISON
In order to prove that our method can predict detailed infor-
mation about objects more effectively, we follow Hu et al. [3]
and use the Precision, Recall, and F1 scores to evaluate the
method performance. The result is shown in TABLE2,we can
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TABLE 1. Evaluation results of depth estimation on the NYU V2 test set. The best results are boldfaced, and the second-best ones are underlined. The
shown values of the evaluated methods are those reported by the authors in their paper.

FIGURE 5. Qualitative results on the NYU-D V2 test set. From left to right: input RGB images, ground-truth depth
maps, results of Eigen et al. [2], Laina et al. [7], Hu et al. [3], and our method, respectively.

see that our F1 score surpasses all other methods under three
different thresholds. As can be seen from TABLE 2. Further-
more, the result shows that our model obtains the second
on Recall when the threshold is 0.25 and Precision when
the threshold is 1 what’s more results show that our model
surpasses almost all the existing state-of-the-art approaches
in other metrics, This indicates our predictions are more close
to the ground truth and have more clear accurate object edges.

E. MODEL TEST IN OTHER DATASET
To further explore the generalization performance of our
proposed network, we test the model in the SUN RGB-D

dataset [44], which model has trained in NYUDepth V2 [42].
SUN RGB-D contains RGB-D images from NYU Depth V2,
Berkeley B3DO [45], and SUN3D [46]. The result is shown
in FIGURE 6.

Even though the data distribution of SUN RGB-D and
NYU Depth v2 is quite different, our method can still show
a good performance. Observed from the (a) group, our esti-
mated not only have clearer edges of the cabinet than other
methods predicted but also have a more complete structure
than the ground truth. In the (b) and (c) group, our method
shows great ability in saving the complete overall scene
information. Especially in the (b) group, there is a significant
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TABLE 2. Accuracy of recovered edge pixels in depth maps under
different thresholds. The best results are boldfaced, and the second-best
ones are underlined.

FIGURE 6. The result that the trained model test in SUN RGB-D dataset.
From left to right: input RGB images, ground-truth depth maps, results of
Eigen et al. [2], Laina et al. [7], and our method, respectively.

change in the depth value of the corner in our estimation. The
results prove that our model has good generalization ability.

F. GENERATE POINT CLOUD FROM DEPTH MAP
To in-depth discuss our work, we design an experiment that
we project the estimated depth maps as 3D point clouds. The
result has shown in FIGURE 7. The cloud project from our
depth map is the closest to the ground truth and our method
saves relatively complete background information and per-
forms particularly well in large areas. These point clouds
from other methods have more lacks and discontinuities.

G. TIME COMPLEXITY
In this paper, to solve the information loss in the encoder
stage, we build an FFP. And to ensure feature information is

FIGURE 7. The result projects the depth maps as 3D point clouds. From
left to right: input RGB images, 3D point projects from ground-truth depth
maps, results of Eigen et al. [2], Laina et al. [7], and our method,
respectively.

merged as much as possible, we use the up-sample strategy
proposed in [7], instead of pool upsampling, which signifi-
cantly improves the accuracy of the model. Furthermore, to
allow the network to containmore object information, we pro-
pose a fusion strategy and channel attention module. The
detail is in Sec III. These operations significantly improve the
accuracy of the model and enable the estimated depth map to
include more object and scene information. However, they
also increase the time complexity of the network. Reduce the
time complexity and create a lighter model are the goals in
our future work.

H. ABLATION STUDIES
In order to further analyze the dense feature fusion network
and the depth adaptive fusion module, we conduct two sets of
ablation experiments on the NYU Depth V2 dataset. We set
the threshold to be 0.5. The result is shown in TABLE 3.

1) DENSE FEATURE FUSION NETWORK
In this part, we compare two sets of experiments with and
without DFFN. In our original network, we compressed the
original feature map to half of the original amount and then
spliced it with the fused feature map to obtain the feature
block. To more effectively prove the effect of DFFN, in the
network without DFFN, we do not compress the original
feature map to ensure that the feature blocks participate in the
estimation of the coarse depth map in the two networks that
have the same number of channels. As shown in TABLE 3,
the result shows that DFFN significantly improves perfor-
mance. Depth maps were obtained from the two sets of
experiments shown in FIGURE 8. In the fifth-scale depth
map, the depth map with DFFN has a piece of more precise
depth information than without.

TABLE 3. Performance comparison with our module or not. The best results are boldfaced, and the second-best ones are underlined.
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2) DEPTH ADAPTIVE FUSION MODULE
In this part, we introduce the dense feature fusion
network (DFFN) like our complete network. In the decoder
module, we were decoding step by step to get the depth
map. The results are shown in TABLE 3. The result shows
that DAFM significantly improves the depth accuracy. The
reason for the low edge accuracy is that the depth maps of
different scales, directly estimated from the original feature
maps, have large gaps in features, resulting in poor results.
For example, the first-scale depth map contains almost no
depth information, and the fifth scale depth map has almost
no object information as shown in FIGURE 8.We connect the
original feature with the fused feature map before decoding
that to ensure that the feature block of each scale has informa-
tion of all scales, thereby shortening the feature gap between
the depth maps estimated at different scales, and improving
the fusion effect. The experiment proves that DFFN+DAFM
can achieve huge performance improvements.

FIGURE 8. (a), (b) are the comparison results of the two groups with
DFFN and without DFFN. The first row of each group is without DFFN, and
the second row is with DFFN. Each row of pictures from left to right is the
original picture, ground truth predicted depth map, First-scale depth map,
second-scale depth map, and fifth-scale depth map. First-scale and
second-scale depth maps include rich object information. The fifth-scale
depth map includes depth information.

V. CONCLUSION
To deal with the predicted depth lost object information to
obtain the depth map that includes rich object information,
a Dense feature fusion network, and a novel method to
improve the feature fusion effect and reduce the decoder
parameters are proposed in our paper. Our main idea is (1)
using a dense feature fusion network to aggregate the feature
from the encoder to deal with the information lost, (2) design-
ing a new decoder, which can decodemultiple feature maps at
the same time to obtain multi-scale depth maps, and use adap-
tive fusion methods to fuse these depth maps to predict fine
depth maps that include rich object information. Extensive
experimental results demonstrate that the depth maps pre-
dicted by our model with more object information than other
prework and competitive depth accuracy in the NYU-Depth
V2 dataset. However, there are still some problems with our
model. First, the time complexity is high. Second, our model
is based on supervision and requires a large amount of labeled
data. For future work, we will explore a lighter unsupervised
depth estimation based on our module.
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