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ABSTRACT Online sequential extreme learning machine (OS-ELM) has become a popular online learning
strategy for single-hidden layer feedforward neural networks, and complex-valued signals are ubiquitous
in real applications. In order to cater for complex-valued signals, especially for noncircular signals, in this
paper we extend OS-ELM to complex domain, and propose two augmented online sequential complex ELM
models by incorporating the conjugates of the network input and the hidden layer respectively. In this way,
the proposed models are equipped with the capability to capture the complete second-order statistics of
noncircular signals, which results in the enhanced generalization ability. The corresponding regularized
models are derived to avoid the possible overfitting problem. By exploiting the algebra structure resulted
from the augmented architecture, several approaches to reducing the computational complexity are also
proposed. Simulation results validate the efficiency of the proposed algorithms.

INDEX TERMS Complex extreme learning machine (CELM), online sequential learning algorithms,
noncircular signals, augmented complex statistics, computational complexity.

I. INTRODUCTION
Neural networks have become powerful tools which imitate
the human brain’s hierarchical architecture to learn compli-
cated representation, and have been successfully applied to
various fields [1]. Neural networks can usually be trained
in two modes: batch learning and online learning [2], [3].
The batch learning approach accumulates the weight correc-
tion over all training samples before actually performing the
update, nevertheless the online learning approach updates the
network weights immediately after a block of training sam-
ples are fed. Gradient learning used to be a popular training
method. However, it suffers from slow convergence and easily
gets trapped in local minima. Thus, gradient-free methods are
desired for fast training.

Extreme learning machine is a promising learning strat-
egy for single-hidden layer neural networks, which have
been proved to be universal approximators [4]. By ran-
domly choosing hidden nodes and analytically determining
the output weights with least-squares solution, ELM retains
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the merits such as fast learning and good generalization abil-
ity [5]. ELM was first proposed by Prof. Huang, and then
extended to online sequential learning [6]. In order to cater
for various application scenarios, many variants of ELM have
been proposed, such as convex ELM [7], ordinal ELM [8],
semi-supervised ELM [9], Bayesian ELM [10], voting based
ELM [11], PCA-ELM [12], robust ELM [13], microgenetic
ELM [14], fuzzy ELM [15], hierarchical ELM [16], ker-
nel ELM [17], ELM for multilayer perceptron [18], stacked
ELM [19], wavelet ELM [20], graph embedded ELM [21],
ELM for interval neural networks [22], memetic ELM [23],
and ELM with binary output layer [24], ELM for imbalance
learning [25], and ELM for residual learning [26]. The read-
ers can refer to [27]–[29] for a thorough review of the essence
and trends of ELM. Recently online sequential ELM has been
applied to various fields such as fault diagnosis [30] and air
quality forecasting [31].

In applications such as array signal processing, radar and
magnetic resonance data imaging, communication systems,
and interval data processing, signals are usually represented
as complex numbers; this motivates the extension of neural
networks from real domain to complex domain. Two main
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superiorities of complex-valued neural networks (CVNNs)
have been identified: (i) The XOR problem and the detection
of symmetry problem that cannot be solved with two-layered
real-valued neural networks, can be solved by two-layered
complex-valued neural networks due to the orthogonal deci-
sion boundaries [32]; (ii) CVNN exhibits smaller general-
ization error in particular for signals having high coherence
due to the enhanced capability in capturing the correlation
between channels [33]. Other advantages of CVNNs have
also been reported in models such as complex-valued recur-
rent neural networks [34] and complex independent compo-
nent analysis [35].

As a gradient-free CVNN model, complex ELM
(CELM) [36] naturally avoids the restriction caused by
Liouville’s theorem on the choice of activation functions,
and outperforms several other CVNN models. CELM has
been proved to be a universal approximator in complex
domain through the approximation theory of the incremental
CELM [37]. By performing a one-to-one transformation
of real-valued features to the complex plane, CELM also
exhibited better performance for real-valued classification
problems than traditional real-valued neural models, espe-
cially when data sets are highly unbalanced [38].

From the point of view of statistics, the essence of the
learning of neural networks is to extract the statistical fea-
tures from the input signals and encode them with net-
work weights [39]. As revealed by the statistical theory,
complex-valued random signals can be categorized into two
types according to the second-order statistics: proper sig-
nals and noncircular signals [40]–[42]. Probability distribu-
tions of proper signals are rotation invariant, and then the
second-order statistics can be characterized by the convari-
ance matrix, which coincides with the case of real-valued
signals. However, in real applications the signals usually
exhibit noncircularity, for which both the covariance and
the pseudo-covariance matrices should be collaboratively
considered. The above so called augmented statistics for
noncircular signals have been introduced into several impor-
tant learning models, such as the augmented complex least
means square algorithms [43]–[46], augmented echo state
network [47], augmented algorithm for fully complex-valued
neural networks [48], and augmented CELM [49]. However,
it is still unknown how the augmented statistical theory ben-
efits the online sequential learning of CELM for noncircular
signals.

In this paper, motivated by the augmented statistical the-
ory, we aim to establish a framework for online sequential
learning of CELM to deal with noncircular signals. The key
contributions of our work are as follows:

(i) In order to capture the full second-order statistics of the
input signals and the hidden layer signals, we propose two
augmented online sequential CELM (OS-CELM) models by
incorporating the conjugates of the network input and hidden
layer, respectively. In this way, the improved performance
can be observed compared with the original OS-CELMwhen
dealing with noncircular signals.

(ii) In order to avoid the overfitting problem, the regular-
ized algorithms for the proposed models are mathematically
derived.

(iii) By considering the algebraic structure resulted from
the augmented networks, we propose several computational
tricks to reduce the computational complexity.

The remainder of this paper is organized as follows.
We give a brief review of CELM and OS-CELM in the next
section. In Section III, we propose two augmented OS-CELM
models, namely, OS-CELMAI and OS-CELMAH. The cor-
responding regularized algorithms are derived in Section IV.
In Section V, we discuss how to use the algebraic structure
to reduce the computational complexity. The superiority of
the proposed models is illustrated with simulation results in
Section VI. Finally, this paper is concluded in Section VII.

The following notations are adopted: Bold-faced quantities
with uppercase and lowercase letters denote matrices and
vectors respectively, R the set of real numbers, C the set
of complex numbers, ‖ · ‖ the Euclidean norm of a vector,
 =

√
−1, (·)∗ the complex conjugate, (·)T the transpose

of a vector or a matrix, (·)−1 the matrix inversion, (·)H the
Hermitian transpose of a vector or a matrix, <(·) the real part
of a complex number or a vector, and =(·) the imaginary part
of a complex number or a vector.

II. COMPLEX-VALUED ELM MODEL
In this section, we first give a brief review of the complex-
valued extreme learning machine (CELM), then we extend
the online sequential ELM from real domain to complex
domain to establish the online sequential CELM (OS-CELM)
model, which serves as a basis of the two augmented models
proposed in the next section. CELM and OS-CELM basically
inherit the network structures and the learning procedures
of their real-valued counterparts, while the network param-
eters and the activation functions are all complex-valued, and
the algebraic manipulations are performed in the complex
domain.

FIGURE 1. Architecture of CELM.

A. CELM
CELM is a training strategy for complex-valued feedforward
neural networks with single hidden layer (CFNNSL), whose
architecture is illustrated in Fig. 1.
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Suppose that a CFNNSL consists of n input nodes,
L hidden nodes, and m output nodes. Write wp =

[w1p,w2p, . . . ,wnp]T ∈ Cn×1 as the input weight vector
connecting the pth hidden node and the input nodes, and
bp ∈ C as the threshold (bias) of the pth hidden node. For
an input vector x ∈ C1×n, the output of the pth hidden node is
h(xwp + bp), where h(·) is a fully complex-valued activation
function.

Suppose that complex-valued training samples ℵ =

{(x(k), t(k)}Nk=1 are provided, where x(k) ∈ C1×n is a network
input vector and t(k) ∈ C1×m is the corresponding target
output vector, for k = 1, · · · ,N . Then the functionality of
a CELM can be mathematically modelled by

L∑
p=1

h(x(k)wp + bp)βp = t(k), k = 1, . . . ,N , (1)

where βp = [β1p, β2p, . . . , βmp] ∈ C1×m is the output
weight vector connecting the pth hidden node and the output
nodes.

Formula (1) can be reformulated in a compact form

Hβ = T, (2)

where the hidden layer input matrix H = h(Y),

Y =

 x(1)w1 + b1 · · · x(1)wL + bL
... · · ·

...

x(N )w1 + b1 · · · x(N )wL + bL


= XW⊕ b, (3)

X = [x(1)T , · · · , x(N )T ]T , W = [w1, · · · ,wL], b =
[b1, · · · , bL],

β =

 β1
...

βL


L×m

, T =

 t(1)
...

t(N )


N×m

, (4)

and the notation ⊕ indicates that the vector b is added
elementwise to each row of the matrix XW.
The input weight vectors wp and the hidden layer bias

bp(p = 1, · · · ,L) of CELM are randomly generated and need
not to be tuned. Thus we only need to determine the output
weight matrix β to satisfy (2). By solving the least-squares
problem min

β
‖Hβ − T‖2, we obtain an explicit solution

β̂ = H†T, (5)

where H†
= (HHH)−1HH is the Moore-Penrose generalized

inverse of the matrix H.

B. ONLINE SEQUENTIAL CELM (OS-CELM)
The CELM reviewed above is really a batch learning model,
as it needs the training samples to be available before-
hand. However, in many real-world applications, the training
data may arrive one-by-one or chuck-by-chuck. Thus CELM
should be extended to online sequential learning mode to
cater for these situations.

Suppose that an initial complex-valued training data set
ℵ0 = {(x(k), t(k))}

N0
k=1 is provided, where N0 ≥ L. By solv-

ing the least-squares problem min
β
‖H0β − T0‖

2, we obtain

an initial estimate of the output weight matrix β(0)
=

K−10 HH
0 T0, where K0 = HH

0 H0, H0 = h(Y0),

Y0 =

 x(1)w1 + b1 · · · x(1)wL + bL
... · · ·

...

x(N0)w1 + b1 · · · x(N0)wL + bL


N0×L

= X0W⊕ b, (6)

X0 = [x(1)T , · · · , x(N0)T ]T , and

T0 =

 t(1)
...

t(N0)


N0×m

. (7)

Suppose that another chunk of data ℵ1 = {(x(k),

t(k))}N0+N1
k=N0+1

are provided, where N1 denotes the number of
observations in this chunk. We try to solve the least-squares
problem of minimizing∥∥∥∥[H0

H1

]
β −

[
T0
T1

]∥∥∥∥2 , (8)

where

H1(w1, · · · ,wL , x(N0 + 1), · · · , x(N0 + N1), b1, · · · , bL)

=

 h(x(N0 + 1)w1 + b1) · · · h(x(N0 + 1)wL + bL)
... · · ·

...

h(x(N0 + N1)w1 + b1) · · · h(x(N0 + N1)wL + bL)


= h(X1W⊕ b), (9)

X1 = [x(N0 + 1)T , · · · , x(N0 + N1)T ]T , and

T1 =

 t(N0 + 1)
...

t(N0 + N1)


N1×m

. (10)

Noticing that this problem depends on the training sets ℵ0
and ℵ1, the solution can be obtained as

β(1)
= K−11

[
H0
H1

]H [T0
T1

]
, (11)

where

K1 =

[
H0
H1

]H [H0
H1

]
. (12)

Instead of computing β(1) from scratch according to (11),
we try to obtain it based on β(0). By (11) and (12), we have[

H0
H1

]H [T0
T1

]
= HH

0 T0 +HH
1 T1

= K0K−10 HH
0 T0 +HH

1 T1

= K0β
(0)
+HH

1 T1

= (K1 −HH
1 H1)β(0)

+HH
1 T1

= K1β
(0)
−HH

1 H1β
(0)
+HH

1 T1 (13)
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and

K1 = [HH
0 ,H

H
1 ]
[
H0
H1

]
= K0 +HH

1 H1. (14)

Combing (11), (13), and (14), we arrive at

β(1)
= K−11

[
H0
H1

]H [T0
T1

]
= K−11 (K1β

(0)
−HH

1 H1β
(0)
+HH

1 T1)

= β(0)
+K−11 HH

1 (T1 −H1β
(0)). (15)

In this way, when the (l + 1)th chunk of data set

ℵl+1 = {(x(k), t(k))}
∑l+1

j=0 Nj

k=(
∑l

j=0 Nj)+1

is available, where l ≥ 0 and Nl+1 denotes the number of
training samples of this chunk, we have

β(l+1)
= β(l)

+K−1l+1H
H
l+1(Tl+1 −Hl+1β

(l)),

Kl+1 = Kl +HH
l+1Hl+1. (16)

We apply the Woodbury identity formula to avoid directly
calculating K−1l+1 and obtain that

K−1l+1 = (Kl +HH
l+1Hl+1)−1

= K−1l −K−1l HH
l+1(I+Hl+1K−1l HH

l+1)
−1Hl+1K−1l .

(17)

Based on (17), K−1l+1 can be obtained recursively from K−10 .
Let Pl+1 = K−1l+1, then the update formulae for β(l+1) can

be rewritten as

Pl+1 = Pl − PlHH
l+1(I+Hl+1PlHH

l+1)
−1Hl+1Pl,

β(l+1)
= β(l)

+ Pl+1HH
l+1(Tl+1 −Hl+1β

(l)). (18)

Remark 1: It used to be a difficult problem to choose the
activation functions of CVNNs due to the conflict between
the boundedness and analyticity of a complex-valued func-
tion. Benefited from the gradient-free nature, such a conflict
does not remain a restriction for CELM. Thus, the popular
activation functions for RVNNs could work well for CELM
when they are extended to the complex domain.
Remark 2: Online sequential learning may face the con-

cept drift problem when the distribution of the data steaming
is non-stationary. By considering the forgetting factor into the
algorithm design, this problem can be avoided for OS-ELM.
For more details, readers can refer to [50].

III. AUGMENTED OS-CELM
A. SECOND-ORDER STATISTICS OF COMPLEX SIGNALS
The recently introduced augmented complex statistics
[41], [45] revealed that second-order statistical properties of
complex signals are characterized by both their covariance
matrix Cxx = E[xxH ] and pseudocovariance matrix Pxx =

E[xxT ]. The covariance conveys the information concerning
the total power of the signal, while the pseudocovariance
matrix captures the information about the power difference
and cross-correlation between the real and imaginary parts of

the signal. Processes with the vanishing pseudo-covariance
(i.e. Pxx = 0) are termed second-order circular (or proper).
However, in most real-world applications, complex signals
are second-order noncircular or improper. Thus the traditional
algorithms for complex-valued signal processing which are
only based on covariance matrix may result in suboptimal
solutions for noncircular signal scenarios.

The so-called augmented model is designed to cater for
second-order noncircular signals, whereby an augmented
signal xa is produced by concatenating the original signal x
with its conjugate x∗, that is

xa =
[
x
x∗

]
. (19)

The corresponding augmented covariance matrix then
becomes

Cxaxa = E[xa(xa)H ] = E
[
x
x∗

]
[xH , xT ]

=

[
Cxx Pxx
P∗xx C∗xx

]
, (20)

which contains the full second-order statistical informa-
tion [41] available in the complex domain.

B. OS-CELM WITH AUGMENTED INPUT (OS-CELMAI)
As shown by the aforementioned statistical theory of complex
signals, OS-CELM is insufficient to capture the complete
second-order statistics of training data as it does not incorpo-
rate the conjugate information of signals during the learning
process. That is to say, OS-CELM may lead to suboptimal
solutions for noncircular signal processing problems. To fill
this gap, in the following of this subsection, we propose an
OS-CELM model with augmented input (OS-CELM).

The topological graph of OS-CELMAI is shown in Fig.2.
In order to capture the complete second-order statistics of
training data, we augment the original network input x(k)
with

xa(k) =
[
x(k), x∗(k)

]
∈ C1×2n. (21)

For an initial training data set ℵ0 = {(x(k), t(k))}
N0
k=1, we

solve the least-squares problemmin
β
‖Hai

0 β−T0‖
2, and obtain

an initial estimate of the output weight matrix (βai)(0) =
(Kai

0 )
−1(Hai

0 )
HT0, where Kai

0 = (Hai
0 )

H (Hai
0 ), H

ai
0 = h(Yai

0 ),

Yai
0 =

 xa(1)wai
1 + b1 · · · xa(1)wai

L + bL
... · · ·

...

xa(N0)wai
1 + b1 · · · xa(N0)wai

L + bL


= Xa

0W
ai
⊕ b, (22)

Xa
0 = [X0,X∗0], and Wai

= [WT
1 ,W

T
2 ]
T . Here W1 is the

weight matrix connecting the original input nodes and the
hidden layer, andW2 is the weight matrices connecting other
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FIGURE 2. Architecture of OS-CELMAI.

input nodes of the augmented input layer and the hidden layer,
respectively.

When (l + 1)th chunk of data

ℵl+1 = {(x(k), t(k))}
∑l+1

j=0 Nj

k=(
∑l

j=0 Nj)+1

are received, the output weight matrix can be updated as
follows

Pail+1 = Pail − Pail (H
ai
l+1)

H (I+Hai
l+1

×Pail (H
ai
l+1)

H )−1Hai
l+1P

ai
l , (23)

(βai)(l+1) = (βai)(l) + Pail+1(H
ai
l+1)

H (Tl+1
−Hai

l+1(β
ai)(l)), (24)

where Pail+1 = (Kai
l+1)
−1.

Remark 3: By incorporating the conjugate information of
the network input, OS-CELMAI is equipped with the ability
to capture the complete second-order statistics of training
samples. However, when the number of input features of the
sample is large enough, the augmented input may lead to
information redundancy. This problem can usually be tackled
by applying feature reduction techniques such as PCA to
perform data preprocessing.

C. OS-CELM WITH AUGMENTED HIDDEN
LAYER (OS-CELMAH)
The topological graph of OS-CELMAH is shown in Fig. 3.
Different from OS-CELMAI aforementioned, OS-CELMAH
incorporates the conjugate of the original hidden nodes of
OS-CELM to form a new augmented hidden layer. This
augmented structure contributes to capturing the complete
second-order statistics of the hidden layer, which is a trans-
formation of the network input signal.

Given an initial training data set ℵ0 = {(x(k), t(k))}
N0
k=1,

resulted from the augmented structure, the hidden layer out-
put matrix of the OS-CELMAH appears to be

Hah
0 = [H0,H∗0]N0×2L , (25)

FIGURE 3. Architecture of OS-CELMAH.

whereH0 is defined in (6). Then the output weight matrix can
be initially estimated by solving the least-squares problem
min
β
‖Hah

0 β − T0‖
2 with the solution

(βah)(0) = Pah0 (Hah
0 )HT0, (26)

where Pah0 = ((Hah
0 )HHah

0 )−1.
When the (l + 1)th chunk of data

ℵl+1 = {(x(k), t(k))}
∑l+1

j=0 Nj

k=(
∑l

j=0 Nj)+1

are received, the output weight matrix can be updated as
follows

Pahl+1 = Pahl − Pahl (Hah
l+1)

H (I+Hah
l+1

×Pahl (Hah
l+1)

H )−1Hah
l+1P

ah
l , (27)

(βah)(l+1) = (βah)(l) + Pahl+1(H
ah
l+1)

H (Tl+1
−Hah

l+1(β
ah)(l)). (28)

Remark 4: It can be observed from Equation (27) that the
complexity of computing (I + Hah

l+1P
ah
l (Hah

l+1)
H )−1 mainly

depends on Nl , but not L. Thus this augmented structure does
not increase the complexity for computing this inversematrix.

IV. REGULARIZED MODELS
In this section, we derive the regularized OS-CELM models
based on Wirtinger calculus to avoid the possible overfitting
problem, which may greatly degenerate the generalization
performance of the network in scenarios such as overtraining
and noisy data. The regularized OS-CELMAI and regularized
OS-CELMAH are also provided.

A. REGULARIZED OS-CELM
Suppose that an initial complex-valued training data set ℵ0 =
{(x(k), t(k))}N0

k=1 is provided, whereN0 ≥ L. Instead of solely
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minimizing ‖H0β
(0)
− T0‖, we try to find β(0) to minimize

the following new cost function

J =
1
2
‖H0β

(0)
− T0‖

2
+
λ

2
‖β(0)
‖
2

=
1
2
(H0β

(0)
− T0)H (H0β

(0)
− T0)+

λ

2
(β(0))Hβ(0), (29)

where λ > 0 is the regularization parameter to balance the
tradeoff between the training error and the output weight
norm.According toWirtinger calculus theory [41], [51]–[53],
the solution of this optimization problem can be obtained by
solving

∂J

∂(β(0))∗
= 0. (30)

Since

∂J

∂(β(0))∗
=

1
2

[
((H0)HH0β

(0))− (H0)HT0

]
+
λ

2
β(0), (31)

we obtain the optimal solution

β(0)
= ((H0)HH0 + λI)−1(H0)HT0. (32)

Similarly, when a new chunk of data are received, the optimal
estimation of the output weight matrix is

β(1)
=

([
H0
H1

]H [H0
H1

]
+ λI

)−1 [
H0
H1

]H [T0
T1

]
. (33)

Denote K0 = (H0)HH0 + λI and

K1 =

[
H0
H1

]H [H0
H1

]
+ λI,

then we have K1 = K0 + HH
1 H1. This equation reveals

that the relationship between K1 and K0 here is identical to
Equation (14), and the parameter λ in (33) can be absorbed
into K0. Thus, in the sequel the output weight matrix can be
recursively updated in the form identical to OS-CELM.

The outline for the regularized OS-CELM can be briefed
as follows. Let P0 = ((H0)HH0 + λI)−1. Based on an initial
estimation β(0)

= P0HH
0 T0, the equations for updating β(l+1)

can be written as

Pl+1 = Pl − PlHH
l+1(I+Hl+1PlHH

l+1)
−1Hl+1Pl,

β(l+1)
= β(l)

+ Pl+1HH
l+1(Tl+1 −Hl+1β

(l)). (34)

B. REGULARIZED OS-CELMAI
Let Pai0 = ((Hai

0 )
HHai

0 +λI)
−1. Then the initial estimation for

the output weight matrix is given by (βai)(0) = Pai0 (H
ai
0 )

HT0,
and the recursive estimation for (βai)(l+1) can be given by

Pail+1 = Pail − Pail (H
ai
l+1)

H (I+Hai
l+1P

ai
l (H

ai
l+1)

H )−1

×Hai
l+1P

ai
l ,

(βai)(l+1) = (βai)(l) + Pail+1(H
ai
l+1)

H (Tl+1
−Hai

l+1(β
ai)(l)). (35)

C. REGULARIZED OS-CELMAH
Let Pah0 = ((Hah

0 )HHah
0 + λI)

−1. Then the initial estima-
tion for the output weight matrix is given by (βah)(0) =
Pah0 (Hah

0 )HT0, and the recursive estimation for (βah)(l+1) can
be given by

Pahl+1 = Pahl − Pahl (Hah
l+1)

H (I+Hah
l+1P

ah
l (Hah

l+1)
H )−1

×Hah
l+1P

ah
l ,

(βah)(l+1) = (βah)(l) + Pahl+1(H
ah
l+1)

H (Tl+1 −Hah
l+1

× (βah)(l)). (36)

V. APPROACHES TO REDUCING THE
COMPUTATIONAL COMPLEXITY
The augmented structures ofOS-CELMAI andOS-CELMAH
contribute to capturing the complete second-order statistics
of noncircular signals. At the same time, these specified
structures may be exploited in reducing the computational
complexity of the proposed learning algorithms [54]. In this
section, we introduce several techniques to reduce the com-
putational complexity of the proposed learning algorithms by
utilizing the algebraic structure resulted from the augmented
network structures.

A. A TECHNIQUE FOR OS-CELMAI
It is well known that the real part and imaginary part of a
complex vector x can be expressed by

<(x) =
1
2
(x+ x∗), =(x) =

1
2

(x− x∗). (37)

We expand Xa
0W

ai in Equation (22) as follows

Xa
0W

ai
= X0W1 + X∗0W2. (38)

Applying (37) to (38), we obtain

<[Xa
0W

ai] = <[X0Wr ],

=[Xa
0W

ai] = =[X0Wi], (39)

where Wr = W1 + W∗2,Wi = W1 − W∗2. Combining
(39) and (22), we have

Yai
0 = (<[X0Wr ]+ =[X0Wi])⊕ b. (40)

Similarly, for any l > 0, we have

Yai
l = (<[XlWr ]+ =[XlWi])⊕ b. (41)

Remark 5: An operation of complex-complex multiplica-
tion, ab, requires 4 real multiplications and 2 real sums,
whereas an operation <[ab] (or =[ab] ) only needs 2 real
multiplications and 1 real sum. Thus, computing Xa

0W
ai via

(40) only require a half of computations compared with that
via (22).
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B. DUAL-CHANNEL OS-CELMAH (DC-OS-CELMAH)
In this subsection, we reformulate the update equations for the
augmented output weight matrix of OS-CELMAH in order to
reduce the computation complexity.

We have derived the initial estimate for the output weight
matrix (β(ah))(0) = Pah0 (Hah

0 )HT0, where Pah0 = (Kah
0 )−1 =

((Hah
0 )HHah

0 ])−1, and Hah
0 = [H0,H∗0]. Now we represent

Kah
0 as a block matrix

Kah
0 =

[[
H0 H∗0

]H [H0 H∗0
]]

=

[(
HH

0
(H∗0)

H

) (
H0 H∗0

)]
=

[
HH

0 H0 HH
0 H
∗

0
(H∗0)

HH0 (H∗0)
HH∗0

]
=

[
A0 B∗0
B0 A∗0

]
. (42)

Recalling Pah0 = (Kah
0 )−1, Pah0 can also be represented as a

block matrix with the same block structure

Pah0 =
[
S0 T ∗0
T0 S∗0

]
. (43)

Combining (25), (26), and (43), we have

(β(ah))(0) =
[
S0 T ∗0
T0 S∗0

] [
HH

0
(H∗0)

H

]
T0

=

[
δ0
δ∗0

]
T0

=

[
h0
g0

]
, (44)

where

h0 = δ0T0, g0 = δ∗0T0, (45)

and δ0 = S0HH
0 + T ∗0 (H

∗

0)
H . Accordingly, Pahl can also

be represented as a block matrix, for l > 0. In this way,
the recursive update formula for the augmented output weight
matrix can be reformulated as

(β(ah))(l+1) =
[
hl+1
gl+1

]
=

[
hl
gl

]
+

[
δl+1
δ∗l+1

]
eahl+1, (46)

where δl+1 = Sl+1HH
l+1 + T ∗l+1(H

∗

l+1)
H ,

hl+1 = hl + δl+1eahl+1, gl+1 = gl + δ∗l+1e
ah
l+1, (47)

and eahl+1 = Tl+1 −Hah
l+1(β

ah)(l).
Equation (45) can be reformulated as

ωr,0 = h0 + g∗0 = 2δ0<[T0],

ωi,0 = h0 − g∗0 = 2δ0=[T0], (48)

and (47) can be reformulated as

ωr,l+1 = hl+1 + g∗l+1 = ωr,l + 2δl+1<[eahl+1],

ωi,l+1 = hl+1 − g∗l+1 = ωi,l + 2δl+1=[eahl+1], (49)

where eahl+1 = Tl+1 − (<[Hl+1ωr,l] + =[Hl+1ωi,l]).
Equations (48) and (49) are equivalent to (44) and (46), thus

they can also be used to adjust the output weight matrix.
When a chunk of data are available, we update ωr,l and ωi,l
separately. We name this learning strategy as dual-channel
OS-CELMAH.
Remark 6: Compared with OS-CELMAH, the dual-

channel OS-CELMAH could effectively save the compu-
tational cost of (28) due to the following two aspects:
(i) Computing δl+1 only needs one half of computations
for Pah0 (Hah

0 )H ; (ii) Since <[eahl+1] and =[eahl+1] are real-
valued vectors, the matrix multiplications δl+1<[eahl+1] and
δl+1=[eahl+1] only need no more than one half computational
cost of the corresponding multiplication operations δl+1eahl+1
and δ∗l+1e

ah
l+1 in (46), which is identical to (28).

C. SIMPLIFIED CALCULATION OF THE INVERSE OF
COVARIANCE MATRIX
As illustrated by (42), the covariance matrix Kah

0 enjoys a
particular structure. In the following we utilize this structure
to simplify the computation of its inverse Pah0 .
Combining (42), (43) and Kah

0 Pah0 = I, we have[
A0 B∗0
B0 A∗0

] [
S0 T ∗0
T0 S∗0

]
=

[
I 0
0 I

]
, (50)

which leads to

A0S0 + B∗0T0 = I, A0T ∗0 + B∗0S
∗

0 = 0,

B0S0 +A∗0T0 = 0, B0T ∗0 +A∗0S
∗

0 = I. (51)

Solving the above equations, we have

S0 = (A0 − RB0)−1, T ∗0 = −S0R, (52)

where R = B∗0(A
∗

0)
−1.

In this way, the computation of the inverse of a 2L × 2L
complex matrix has been reduced to that of two L × L com-
plex matrices. Thus, great computational cost can be saved
especially when L is considerable large.

VI. SIMULATION RESULTS
In this section, we compare the performance of the proposed
augmented OS-CELM models with the original OS-CELM
model in dealing with complex-valued signal processing
problems. Two benchmark problems are used to evaluate the
performance: (1) Noncircular chaotic Ikeda map signal and
(2) Complex nonminimum-phase channel model.

The degree of noncircularity of complex-valued signals
can be measured by the index [55]

ρ = 1− det(Cxaxa )det−2(Cxx), (53)

where det(·) denotes the matrix determinant operator,
the augmented covariance matrices Cxaxa and Cxx are defined
in Section III.A, and the index ρ is normalized within [0, 1]
with the value 0 indicating perfect circularity. According
to (53), it can be calculated that the noncircularity of the
two benchmark problems are 0.8936 and 0.4253 respectively,
which indicates that the noncircular chaotic Ikeda map signal
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is of great noncircularity, whereas the other one is of less
noncircularity.

The CFNNSLs used in simulations are single output net-
works, and input weights and hidden biases are randomly
generated by drawing the real parts and imaginary parts
from a uniform distribution U (−0.1, 0.1). As reported by
[56]–[58], such a setting for random weights following a uni-
form distribution with small variance can ensure the stability
of ELM models. As shown in Table 1, where the experiment
results for a sensitivity analysis of the proposed models based
on 50 independent tests are reported, the stability of ELMs
with this setting can be observed. The activation function
was chosen to be the complex inverse hyperbolic function
arcsinh(·), which is nonlinear and piecewise continuous in the
complex domain. The number of hidden nodes was adjusted
by gradually increasing its value and the almost optimal
number of the hidden nodes is determined based on cross-
validation method.

The performance of each model was measured using
the normalized root mean square error (NRMSE) which is
defined by

NRMSE =

√∑N
k=1((t(k)− y(k))H (t(k)− y(k))

N
, (54)

where N is the number of testing samples. For each prob-
lem, the average performance curves were plotted based on
50 independent trials.

A. NONCIRCULAR CHAOTIC IKEDA MAP SIGNAL
The nonlinear and noncircular chaotic Ikeda map signal is
given by [59]

x(k + 1) = 1+ u(x(k) cos[t(k)]− y(k) sin[t(k)]),

y(k + 1) = u(x(k) sin[t(k)]− y(k) cos[t(k)]), (55)

where u = 0.9 and t(k) = 0.4− 6/(1+ (x2(k)+ y2(k)).
We conducted one-step-ahead prediction of the above

chaotic time series. Based on (55) we obtained 2992 samples,
where 1992 samples were used for training and the remaining
for testing. The number of training samples in the initial
stage was 992, and the chunk size in the sequential learning
was fixed to 40. The CFNNSL for this problem consisted of
8 input units and 1 output unit. The number of the hidden
nodes was initially set as 10, and then gradually increased to
600 with the increment 80.

We first conducted tests to compare the generaliza-
tion performance of the OS-CELM, OS-CELMAI and
OS-CELMAH. The simulation results are plotted in Fig.4.
It can be observed that OS-CELMAI and OS-CELMAH out-
performed OS-CELM due to the enhanced ability in captur-
ing the second-order statistics of the complex-valued signals.
However, with the increase of the number of the hidden
nodes, the models tends to be suffered from the overfitting
problems. We then conducted the tests on regularized models
with the regularization parameter λ = 2−15, and the results
are plotted in Fig.5. It can be observed that the generalization

FIGURE 4. Performance comparison of the augmented OS-CELM models
and the original OS-CELM for Noncircular chaotic Ikeda map signal.

FIGURE 5. Performance comparison of the regularized models for
noncircular chaotic Ikeda map signal.

performance was further improved as regularized models
successfully avoided the overfitting problems, and the regu-
larized OS-CELMAI and the regularized OS-CELMAH still
outperformed the regularized original OS-CELM.

B. COMPLEX NONMINIMUM-PHASE CHANNEL MODEL
Complex nonminimum-phase channel model is of order
3 with nonlinear distortion for 4-quadrature amplitude mod-
ulation signaling. The channel output yn is given by [60]

yn = on + 0.1o2n + 0.05o3n + vn, vn ∼ N (0, 0.01),

on = (0.34− 0.27i)sn + (0.87+ 0.43i)sn−1
+ (0.34− 0.21i)sn−2, (56)

whereN (0, 0.01) is the white Gaussian noise withmean 0 and
variance 0.01. Given two initial values s0 = −0.7− 0.7i and
s−1 = −0.7 + 0.7i, sn (n = 1, 2, · · · ) were then generated
by randomly choosing the real and imaginary parts from
interval [−0.7, 0.7].
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TABLE 1. Sensitivity analysis of the proposed models.

FIGURE 6. Performance comparison of the regularized models for
nonminimum-phase channel.

Based on (56), we obtained 998 training samples and
998 testing samples separately. The number of training sam-
ples in the initial stage was 338, and the chunk size in the
sequential learning phase was fixed to 30. The CFNNSL for
this problem consisted of 3 input units and 1 output unit.
The number of hidden nodes was initially set as 5, and then
gradually increased to 300 with the increment 5.

The simulation results for the regularized CELM models
are illustrated in Fig.6, where the regularization parame-
ter was set as λ = 2−30. It can be observed that both
the regularized augmented models outperformed the regu-
larized OS-CELM, and the regularized OS-CELMAI illus-
trated the best performance in this experiment. Recalling
that (regualrized) OS-CELMAH outperformed (regularized)
OS-CELMAI for noncircular chaotic Ikeda map signal,
the two augmented models can be complementary for differ-
ent applications.

VII. CONCLUSION
In this paper we proposed two augmented online sequen-
tial CELM models for noncircular signal processing.

By incorporating the conjugates of the network input and the
hidden layer respectively into the construction of network and
the learning procedure, the augmented models can capture
the complete second-order statistics of noncircular signals,
which contribute to enhancing the generalization capability of
learning systems. The corresponding regularized algorithms
to avoid overfitting problems were derived, and several tricks
to reduce the computational complexity by exploiting the
algebra structure due to the augmented architecture were also
provided. The simulation results illustrated the superiority
of the proposed models and showed that the two augmented
approaches could be complementary depending on the appli-
cation scenarios.

We should mention that, as the two proposed augmented
models are used to cater for noncircular signals, performance
promotionmay not be observed for circular signals. Addition-
ally, as shown by simulation results, for the two augmented
models, we cannot justify which one is always a better choice
than the other one. Thus, to make clear how to choose the
augmented models for different scenarios will be our future
work. Moreover, the augmented structures introduce more
computation cost. Though in this paper we have introduced
several tricks to reduce the computational complexity, there
is still the potential to further reduce the computation cost,
which is left for our future work.
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