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ABSTRACT Eye state evaluation is crucial for vision-based driver fatigue detection. With the outbreak
of COVID-19, many proposed models for eye location and state evaluation based on facial landmarks are
unreliable due to mask coverings. In this paper, we proposed a robust facial landmark location model for eye
location and state evaluation. First, we develop an existing lightweight face alignment model for eye key point
locations that is robust in large poses. Then, to develop the performance of our model in a complex driving
environment such as an environment with mask coverings, changing illumination, etc., we design a method
to augment the training data set based on the original landmark data set without any extra cost. Finally, some
facial landmarks around the eyes are extracted, and the eye aspect ratio (EAR) is introduced to evaluate the
eye state based on eye key points. The experiment shows that our model achieves significantly improved
landmark location performance on a driving simulation data set due to data augmentation. We tested our
model on the BiolD data set to measure the eye state evaluation performance, and the results showed that
our model obtained satisfactory performance with an accuracy of approximately 97.7%. Further testing on
the driving simulation data set shows that our model is robust in different driving scenarios with an average

accuracy of approximately 93.9%.

INDEX TERMS Eyes state evaluation, eye location, driver fatigue detection, data augmentation, EAR.

I. INTRODUCTION

Eye detection and state estimation are important in our
daily lives for their wide use in eye gaze estimation, driver
fatigue detection, human-robot interaction, and other appli-
cations [1], [2]. Research studies show that approximately
1/5 of traffic accidents in China occur due to fatigue [3],
and more than 30% of divers experience fatigued driving
each month [4]. Traffic accidents have a high correlation with
fatigued driving in our daily lives [5]-[7]; and many meth-
ods have been developed to detect fatigued driving, mainly
including physiological features, vehicle running character-
istics, and facial features [8]-[10]. With the development
of computer technology, driver fatigue detection based on
vision has become increasingly popular due to its real-time
performance and reliable detection results [11], [12]. Drowsy
drivers often have intrinsic visual characteristics across their
faces, especially related to eye states, blinking, and yawning.
Therefore, it is crucial to locate eye and analyze eye states
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for fatigue detection. With the outbreak of COVID-19, there
are many new challenges for all walks of life. many pro-
posed models for eye location and state evaluation based on
facial landmarks are unreliable due to mask coverings. Robust
model structure and enough data are important to develop the
performance on complex conditions. However, though lots of
public datasets for face alignment, few of them specialize in
this scenario. Thus, it is significant to develop suitable model
and proposed an effective method to augment existing dataset
without extra costs.

A. METHODS FOR EYES LOCATION

Many research studies on eye location have been conducted.
Traditional techniques for eye localization can be categorized
as eye characteristic models, statistical appearance models,
and structural information.

An eye characteristic model mainly exploits the shape
feature or intensity contrast between the eyeball and eyes
white to locate the eyes. Yuille et al. [13] proposed a method
to detect faces and features of faces by using deformable
templates. They use a parameterized template to describe
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different features of interest and incorporate edges, peaks, and
valleys in their model. They have to use a large continuous
parameter space to fit the model to a testing image. The
Hough transform technique was used to detect the circular
shape of the iris in [14], and O. Jesorsky er al. [15] use
the Hausdorff distance to fit the test image to the general
model. Dynamic template [16], radial symmetry [17], and
other developed characteristic methods have been proposed
to locate eyes, and most of them perform well in controlled
environments. However, their robustness is poor in complex
and uncontrolled environments due to a lack of information
on eye appearance.

Eye appearance-based approaches obtain proper appear-
ance features of cropped eye patches using different methods
and build a statistical model to locate eyes. Many popular
feature sets, such as Haar-like features [18], Harr wavelet
features [19], Gabor features [20], and gradient-based fea-
tures [21], are used. Based on these feature sets, the Support
Vector Machine (SVM) [18], [22], [23], Principal Component
Analysis (PCA) [24], AdaBoost [18], [25] and neural net-
works [26] are most commonly used to build classification
models. In [18], a hybrid eye location model was proposed.
First, a couple of AdaBoost classifiers trained with Haar-like
features were used to select possible eye locations, and then
an SVM was used to select the best pair of eyes among
all candidate locations. Though these approaches are more
robust than an eye characteristics model, they cannot perform
well in complicated environments such as those with poor
illumination and low-resolution images.

The structural information among eyelids, pupils, irises,
and these components is less affected by the environment,
and many research studies based on structural information
have been proposed. In [27], the Active Shape Model (ASM)
was proposed based on the structural information of objects.
In [28], Hough-transform technique was used to locate the
eyes. In [29], an enhanced pictorial structure model was
proposed. A discriminative pictorial structure model and a
series of global constraints were introduced to develop the
performance of proposed model in eye location. Compared to
eye appearance-based approaches, the structural information
is usually integrated into a statistical eye model and has
more reliable detection results in complicated uncontrolled
conditions.

Compared to traditional techniques, models based on con-
volutional neural networks are becoming increasingly more
popular due to their powerful feature extraction abilities.
Sun et al. [30] design a three-level convolutional network
(DCNN) to detect 5 facial landmarks. Zhou et al. [31] pro-
posed a four-level convolutional network cascade based on a
DCNN to detect 68 facial landmarks. Zhang et al. [32] pro-
posed a multitask cascaded convolutional network (MTCNN)
to locate the face and 5 facial landmarks at the same time.
In [33], a deep alignment network (DAN) was proposed, and
landmark heatmaps were used to increase the accuracy of the
model. To improve the detection speed and reduce the storage
size of the model, Liu et al. [34] propose a weight binarization
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cascade convolution neural network. Compared to conven-
tional models for eye location, eye location methods based
on deep learning are more robust in complex environments.

B. METHODS FOR STATE ESTIMATION AND FATIGUE
DETECTION BASED ON EYE STATES

Eye state estimation can be achieved based on precise eye
locations, and traditional eye estimation methods can be
classified as (1) shape-based, (2) template-based, and (3)
learning-based. Regarding shape-based models, in [35],
the shape of the eye edge was used to detect the eye state; and
in [36], the eye contour information was used to evaluate the
eye state. An eyes open template and an eyes close template
are used to detect eye states in [37], and rich eye patch infor-
mation is used in [38]. Regarding learning-based methods,
the neural network, Support Vector Machine (SVM) [39], and
AdaBoost were used to learn eye state features in the training
phase and classify eye states in the testing phase.

For driver fatigue detection based on eye states, increas-
ingly more eye location and eye state evaluations based on
facial landmarks have been proposed. In [40], the MTCNN
was used to detect the face, and a Convolutional Experts
Constrained Local Model (CE-CLM) [41] was used to locate
68 facial landmarks and obtain eye states and fatigue param-
eters. In [42], the AdaBoost algorithm was used to detect
the face, and facial landmarks were detected by a cascade
regression. A CNN model was used to classify eye states
based on extracted eye regions. In [43], the MTCNN was
used to locate the face and eyes, and a fatigue detection con-
volutional network (FDCN) was designed to detect fatigue.
In [12], [44]-[47], the OpenCV DIib toolkit [48] was used
to detect 68 facial landmarks, and eye states were evaluated
based on it.

C. METHODS FOR DATA AUGMENTATION

Data augmentation has been proven to be an effective method
to improve the performance of deep learning models in
many research studies [49], [50]. Many technologies such
as flipping, rotation, scaling, cropping, translation, and deep
learning technology [51], [52] are used to expand datasets
to improve the performance of models in complex envi-
ronments. With the development of GAN [53], more and
more data augmentation technologies based on developed
GAN have been proposed. In [54], a framework that converts
daytime images into synthetic nighttime images based on
a generative adversarial network was proposed, the gener-
ative adversarial network was trained on a public dataset
and the experiment in a real nighttime dataset demonstrated
that the performance of the model develops a lot due to
augmented dataset. In [55], a generative adversarial network
was used to generate real traffic sign images and the experi-
ment demonstrated that the augmented dataset could develop
the performance of the model, however, compared to GAN
data augmentation, some traditional augmentation techniques
could have a better performance which means that GAN is
can be naively used for data augmentation but is not always
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the best choice. There are also some novel techniques for data
augmentation. In [56], infrared and visible images were fused
based on multi-scale transformation and norm optimization,
and the experiment on different public datasets showed that
the newly proposed method has better performance in terms
of highlighting targets and retaining effective detail informa-
tion. In [51], a new data generation pipeline was proposed
to generate low-light paired images from the daytime images
and a light enhancement net (LE-net) based on a convo-
lutional neural network was trained by the paired images.
The results demonstrated that the generated low-light images
based on LE-net are satisfactory both in quality and quantity.

With the outbreak of COVID-19, there are many new chal-
lenges for all walks of life. Masks are essential to protect us,
especially for public transport drivers, from the risk of virus
infection. However, none of the existing methods consider
a large covered area. It is difficult to precisely locate facial
landmarks because of masks sheltering the face and masks’
ability to reflect light at night. Increasingly more complex
network structures result in high computational costs and
memory capacity as well. Generally, there are two main
challenges for eye location and eye state evaluation based on
facial landmarks: (1) Robust landmark location performance
under complicated scenarios, such as large poses, mask cov-
erings, illumination, etc. (2) Finding a simple model network
structure with low computational costs and high detection
speed.

In this paper, we proposed a robust method to locate eyes
and monitor the changes in eye states based on facial land-
marks for fatigue detection. First, we introduce a face land-
mark localization algorithm that has a lightweight structure
and is robust under larger poses. Then, we design an efficient
method to enlarge the face landmark training dataset without
any extra costs and obtain a more robust model based on
the extended data set. Finally, the eye aspect ratio (EAR)
is used to monitor the state of the eyes based on precise
facial landmarks. The main contributions of this paper are
summarized as follows:

1. A developed face landmark location algorithm that is
robust in large poses is introduced to obtain eye key points
and locate eye positions.

2. We proposed an effective method to expand existing
training datasets without any additional labor costs and obtain
a more robust and accurate eye key points location, which
decreases the influence of mask coverings and reflected light
at night.

3. The EAR is introduced to monitor eye states based on
eye key points.

The structure of the remainder of this paper is organized
as follows. We present our methods and model in Section II,
and the experimental results and evaluation are included in
Section III. In Section IV, we present the conclusion.

Il. APPROACH
In this section, we introduce our main methods and models
for eye location and state evaluation. They mainly include
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PFLD-eyes, an effective method to augment the training
dataset, and eye state evaluation with the EAR.

A. PFLD-EYES

Although many face landmark location algorithms are used
for eye detection and state evaluation in driver fatigue detec-
tion and perform well in ideal environments, few of them have
a satisfactory landmark location with the influence of large
poses, changing illumination, and mask coverings. Moreover,
many proposed face landmark location models cannot be used
in real life due to their detection speed. The main defects
of existing models can be summarized as follows: (1) Lack
of robustness in a real environment. (2) Prolonged detection
speed.

Deep learning has been widely used in image processing
due to its powerful feature extraction ability and outstanding
performance. With the development of lightweight frame
structures such as SqueezeNet, MobileNets, ProjectionNet,
etc., increasingly more models achieve real-time detection
speed without any loss of accuracy. The Practical Facial
Landmark Detector (PFLD) [57] is a robust facial landmark
location model with a lightweight structure. It performs well
under large poses with a real-time detection speed. Its excep-
tional performance is due to the novel loss function and light
structure. The conventional quadratic loss function is:

| MoN
2
Lioss = 72> D valld'll3 e
m=1 n=1
where ||| designates a certain metric to measure the dis-

tance/error of the nth landmark of the mth input. N is the
number of landmarks to predict per face, and M presents the
sample number of each batch size. y;, is a parameter that is
always set to 1.

Howeyver, the novel function loss is:

1 M N K
L= 3 Q- (—cosgOldlls @

m=1n=1 k=1

where y,, was replaced with Zszl (1 —cos 9,’1‘) in the novel
loss function, which represents the head pose angle deviation
value in the pitch, yaw, and roll between the estimated value
and the ground truth value. In the training phase, the branch
structure of the novel loss function could measure facial
gestures O and supervise the backbone network to learn extra
facial geometrical features. Therefore, it would experience
substantial improvements in larger poses.

Although PFLD performs well under large poses, the influ-
ence of mask coverings and the illumination intensity cannot
be neglected in real environments. The detection results in
different simulated driving scenarios with 106 landmarks are
shown in Figure 1. It is obvious that PFLD with 106 land-
marks is robust in large poses but affected by mask coverings
and changing illumination.

To develop the robustness of existing PFLD to locate eyes
and monitor the state in real scenarios, we design more
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FIGURE 1. The detection results with 106 points in green and 8 eye key points in red. In (a) and (b), precise landmark location-based PFLD is applied
to both frontal and large poses. In (c), both the 106 landmarks and 8 eye key points are deflected due to the mask covering. In (d), the location of the
106 landmarks is precise, but the 8 eyes key points are deflected because of the influence of illumination.

FIGURE 2. The 106 landmarks in (a), and the 46 landmarks based on
106 landmarks in (b).

reasonable face landmarks based on an existing dataset with
106 landmarks. The main structure of the developed PFLD is
shown in table 1, and we call it PFLD-eyes. The landmark
distributions of our PFLD-eyes and PFLD eyes are shown
in Figure 2. Compared to PFLD, note that our PFLD-eyes
decreases the number of landmarks to 46 landmarks based
on the original 106 landmarks, that is, we could use existing
datasets with only a little preprocessing. And we would train
PFLD-eyes by the augmented dataset which is enlarged by
the method proposed in the next section. We use the novel
loss function in (2) to train PFLD-eyes. The robustness of our
model would improve considerably due to the more reason-
able face landmarks and augmented dataset, which will be
verified in the next section.

B. AN EFFECTIVE METHOD FOR TRAINING DATASET
AUGMENTATION

Although the existing algorithm is robust in large poses,
it is not practical in real environments with mask cover-
ings or changing illumination, as shown in Figure 1. Many
research studies have demonstrated that the dataset and struc-
ture are crucial to the performance of deep learning mod-
els [49], [58], [59]. To the best of our knowledge, there are
many public datasets for face alignment, but few of them
specialize in our scenario. Moreover, it is difficult to annotate
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TABLE 1. The main model structure of the PFLD-eyes.

Input Operator t ¢ n s
1122x 3 Conv3 x 3 - 64 1 2
562 x 64 Depthwise Conv3 x 3 - 64 11
56°% 64 Bottleneck 2 64 5 2
282 % 64 Bottleneck 2 128 1 2
14%x 128 Bottleneck 4 128 6 1
14%x 128 Bottleneck 2 16 1 1
(s1)14*x 16 Conv3 x 3 - 32 1 2
(s2) 7*x 32 Conv7 x 7 - 128 11
(s3) 1% 128 ) o128 1 -
sl,s2,s3 Full Connection - 92 1 -

The t represents the expansion factor, ¢ represents the dimensionality
of outputs, n represents the number of repetitions of the operator, and s

represents the stride.

/74

i,
\

FIGURE 3. Examples of existing data sets for face landmark alignment.

landmarks when faces are covered with masks or there are
vague outlines due to poor illumination. To obtain a more
robust model, we develop an effective method to expand
datasets based on original datasets.

Before introducing our proposed algorithm, it is necessary
for us to review the challenge of obtaining precise landmarks.
Examples of existing datasets for face landmark alignment
are shown in Figure 3, and the video of driving simulations
and real driving scenarios captured by common infrared cam-
eras are shown in Figure 4. Compared to the images of the
open dataset, the face outline is blurrier due to poor illumi-
nation, and facial features such as the nose and mouth are
covered due to the mask. Thus, to develop the performance of
our model in real scenarios, it is significant for us to generated
similar images based on existing datasets.

1) CHANGING BRIGHTNESS AND ILLUMINATION
Illumination has a non-negligible influence on landmark loca-
tion, and the outline of the face is blurrier due to poor and
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FIGURE 4. Examples of real videos captured in a driving simulation
(a), (b), and (c) and a real driving scenario (d).

uneven illumination. Infrared cameras are widely used in
cars because they do not disturb drivers at night. An infrared
camera has almost the same imaging effect as a normal
full-color camera in the daytime; however, because of poor
illumination, the image is monochromatic at night. Moreover,
the compensatory infrared source diverges due to distance
constraints. Thus, an infrared camera has a focus light, and
the light intensity gradually decreases around it, as shown
in Figure 4. To add the same effect, we propose an effective
method to add the illumination interference factor to existing
images. The core algorithm is shown in Algorithm 1.

LD_FL represents the focus light landmark on the
face, which we select randomly. AL_add represents the
bright-ness deviation value between target image I’ and orig-
inal image I. get_distance is a function to calculate the
distance between each pixel landmark of the image I and
the landmarks of focus light LD_FL. Let us define p(xo, yo)
as the pixel landmark of the image I and p(xi, y;) as the
landmark of the focus light LD_FL. We can calculate the
distance as:

disy = \/(xo = x)? + 50 — y1)? 3)

where dis;; represents the distance between each pixel (i, j)
and the landmarks of focus light LD_FL.

Algorithm 1 Changing_Image_Brightness_and_Illumination
Input: Original image I, the landmark of focus light
LD_FL, the brightness deviation value AL_add
Output: Generated image I’

1: rows <« I. Height, cols <— I. Weight, channel <— I. Depth
2:I’=1. Copy ()
3:fori < 1 to rows do

4: for j < 1to cols do

5: for k < 1 to channel do

6: p< ()

7.  dis < get_distance ( p, LD_FL)
8: if dis == 0 then

9: rate < 1

10:  else

11: rate < 1/dis

12:  color = (I [i,j] [k] + AL_add) * rate *a+ b
13:  if color > 255 then

14: color < 255

15:  elseif color < O then

16: color < 0

17: I i, j] [k]= color

18: Return I’

As shown in Algorithm 1, the LD_FL represent the coordi-
nates of light focus and the dis (Algorithm 1, line 7) represent
the Euclidean distance between the LD_FL with each point
p (Algorithm 1, line 6), the rate (Algorithm 1, line 11) is
inversely proportional to dis, the adjusted color value (Algo-
rithm 1, line 12) is proportionate to rate. Thus, when the point
p is overlapped to LD_FL, it has the maximal color value
which is limited to 255, as the dis increase, the color value of
point p would diminish. After traversing all of the points in
original image I (Algorithm 1, line 1), we would obtain a new
image I’ (Algorithm 1, line 18) with diminishing color value
around the LD_FL.

2) ADD “MASK"” TO FACE

With the outbreak of COVID-19, wearing masks is necessary
to prevent the spread of the virus. For example, many face
characteristics, such as the nose and mouth, would be covered
due to masks. There is no special face alignment dataset for
faces with masks to the best of our knowledge. To develop the
performance of our proposed method in different scenarios,
we artificially add a ““mask™ to the faces based on the existing
dataset.

There are 106 landmarks for each face in the existing
dataset, and the locations of the 106 landmarks are shown
in appendix A. It is obvious that the 106 landmarks contain
almost all facial structures and features. We define FMC =
{(xi,y)},ie (11,12,13,14,15,16,2,3,4,5,6,7,8,0, 24,
23,22,21,20, 19, 18, 32, 31, 30, 29, 28, 27, 74) to represent
the bottom part of the face, and the area encircled by FMC is
aclosed region that covers the mouth and nose. Based on this,
we propose an effective method to add a ““mask’ to faces at
night. The core procedure is shown in Algorithm 2.

There are 13 steps to obtain the face “mask” based
on 106 landmarks. Judge_in_polygon is a function that
judges whether the given point is in a polygon. The detailed
implementation procedure of Judge_in_polygon is shown in
appendix B.

Algorithm 2 Add_Mask_to_Face

Input: Original image I, the bottom half of the face contour

landmarks set FMC

Output: Generated image I’

1: rows <« I. Height, cols <— I. Weight, channel <— I. Depth

2: I’ < I Copy ()

3:fori < 1 to rows do

4: for j < 1 to cols do

5: for k < 1 to channel do
6: p< (@)
7
8

Is_in < Judge_in_polygon (p, FMC)
if Is_in then

9: color < 255

10:  else

11: color < I [i, j] [k]

12: I’ [i,j] [k]= color

13: Return I’
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As shown in Algorithm 2, the p (Algorithm 2, line 6)
presents the coordinates of each point. If p is in the region
which is encircled by FMC, the color value of p would be
adjusted to 255, otherwise, the color value of p would remain
unchanged. Note that the region that is encircled by FMC
has a similar shape to a real mask. After traversing all of the
points in original image I (Algorithm 2, line 1), we would add
a “mask” to the original image I.

3) MAIN PROCESS OF THE PROPOSED METHOD

In this section, we introduce the entire procedure to generate
new images based on our proposed method. The 106 land-
mark locations of the existing dataset per image are shown
in appendix A. Let (X, y) denote a landmark point on image
I. FL represents the 106 landmarks of the face in image
I. FBC = {(x;,y)},i € (1,16,0,32,17,104,49) rep-
resents the basic face contour point of image I. FMC =
{(xi, yi)},i(11,12,13,14,15,16,2,3,4,5,6,7, 8,0, 24, 23,
22,21,20, 19, 18, 32, 31, 30, 29, 28, 27, 74) represents the
bottom part of the face. The overall algorithm is shown in
Algorithm 3. As showed in Algorithm 3, There are 8 steps to
generate a new image:

(1) Transform the original BGR image I to gray image I’,
where BGR_TO_GRAY is a function of OpenCV.l

(2) Obtain the average brightness (AL) of the face in
image I’, and the face is the region encircled by FBC.
Get_average_brightness is a function that is used to calcu-
late the average brightness of the restricted area in the image.
The detailed implementation procedure of Get_average b-
rightness is shown in appendix C.

(3) Obtain the face brightness deviation value (AL_add)
between the brightness of the target image and the brightness
of the original image. The brightness of the target image is a
random number that ranges from 120 to 170.

(4) Randomly obtain the landmarks of focus light
(LD_FL). Because of the distance constraint, the infrared
light is divergent rather than parallel. Selecting an LD_FL
could improve the quality of the image.

(5) Change the brightness and illumination of I’. Chan-
ging_image_brightness_and_illumination is a function
that is used to change the image brightness and Illumination
by the given LD_FL and AL_add. The randomly selected
LD_FLis the light focus of the face, and the light intensity
gradually decreases around it. The detailed implementation
procedure of Changing_image_brightness_and_illumina-
tion is shown in algorithm 1.

(6) Add “mask” to face. A “mask™ is added using the
encircled region of the given FMC. Add_mask_to_face is
a function that is used to add a mask to the restricted area in
the image. In algorithm 2, we list its detailed implementation
procedure.

(7) Smooth image I’ using a Gaussian filter, which is a
function of OpenCV.

(8) Obtain the processed image I’.

1OpenCV is a public library that is widely used in image processing.
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K’

GaussianBlur

Add “mask” to face

Image I’

FIGURE 5. The processing procedure of an image.

FIGURE 7. The 4 points around each eye.

The image processing procedure is shown in Figure 5.
Compared to the original image, the generated image is cov-
ered by a “‘mask”’, and the outline of the face is blurrier, which
is similar to captured images at night.

C. EYES STATE EVALUATION WITH EAR

Eye state assessment is of great importance to driver fatigue
detection. Most visual-based fatigue measurements, e.g.,
blink frequency, PERCLOS, etc., are based on the analysis
of the eye state. Many existing methods to measure the eye
states have been designed, as shown in Figure 6. Three steps
are included: (1) Locating the face in a given image, (2)
Extracting the eye region, and (3) Obtaining the eye state viaa
convolutional neural network (CNN) model. Although it is a
feasible method for eye state evaluation, using an extra CNN
model to measure the state of eyes would requires consider-
able time and computing resources. Moreover, the degree of
eye closure cannot be obtained.

To develop the detection time and obtain the degree of
eye closure. We introduce the Eye Aspect Ratio (EAR) as
a measurement of eye state. Based on the 46 landmarks
we obtained in section A, we select 4 landmarks around
each eye to measure the state of the eyes, as shown in
Figure 7.

The EAR can be calculated as followed:

_ e =p2l

EAR =
[lpo — p3l|

“
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Algorithm 3 Image Generate Frame

Input: Original image I, 106 face landmark set FL, face basic contour landmark set FBC, the bottom half of the face contour

landmark set FMC.

Output: Generated image I’

1: I’ < BGR_TO_GRAY()

image I’

2: AL < G et_average_brightness (I’, FBC)

3: AL_add <« random. radiant (120,170)- AL

4: LD_FL <« FL ( random. radiant (0,60))

5: I’ < C hange_image_brightness_ and_illumination (I’, LD_FL, AL_add)

6: I’ < Add_mask_to_face (I’, FMC)

7: I’ < GaussianBlur(I”’)
8: Return I’

< Transform original BGR image I to gray

< Obtain average brightness of face in
image I’ depending on the basic facial
contour that is formed by FBC.

< Obtain face brightness deviation value
AL _add between the brightness of the
target image and brightness of the original
image AL

< Randomly select a face landmark
LD_FL.

< Change the brightness of image I’

< Add a ‘mask’ to the face in

image I’

< Smoothing I’ with a Gaussian filter

< Obtain generated image I’

where pg, p1, p2, and p3 represent the landmarks of eye key
points in Figure 7. It is obvious that the EAR is sensitive to
the eye state and that the EAR decreases gradually as we close
our eyes.

lll. EXPERIMENTS

In this section, we first introduce our data set and experimen-
tal environment. Then, we evaluate the performance of the
proposed algorithms from different aspects.

A. DATA SET AND ENVIRONMENT

We use the open-source data set as our training set.” It con-
tains 21080 faces, and there are 106 landmarks in each face,
as shown in appendix A. To evaluate the performance of our
model on the landmarks of eye key points, we develop a spe-
cialized driving simulation dataset for eye key point detection
(EKPDD), which contains 815 images including 15 different
subjects, and each image was artificially labeled with 8§ eye
key points. There were 4 different simulated driving scenar-
ios, including daytime driving with a mask, daytime driving
without a mask, night driving with a mask, and night driving
without a mask. The examples of the EKPDD data set are
shown in Figure 8. BioID [15] is a public database that is
widely used in eye state evaluation. It contains 1521 gray
images, and it is challenging due to its various illuminations
and large poses. To further verify the robustness of eye state
evaluation, we also test our model on EKPDD.

Our experimental platform is an Intel Core i5-8500 (main
frequency: 3.0 GHz) with the x86 architecture, GTX 1050ti
(CUDA: 10.0 and CUDNN: 7.4) with the Pascal architecture,
16 GB of DDR4 memory, the opencv4.3.0 image library, and
the TensorFlow 1.13.0 deep learning computing framework.

2 https://github.com/JACKYLUO1991/106-landmarks-dataset
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FIGURE 8. Examples of eye key point detection data set (EKPDD). Four
different simulated driving scenarios are included: daytime driving
without a mask in (a), daytime driving with a mask in (b), night driving
without a mask in (c), and night driving without a mask in (d).

TABLE 2. The MNE of different models.

l"l?(l)i(t)lkit PFLD PFLD-eyes
Daytime without mask  4.75 3.71 4.20
Daytime with mask 6.91 6.42 5.90
Night without mask 6.45 5.45 5.20
Night with mask 10.45 9.79 8.85
all 6.86 6.07 5.83

There are 4 different scenarios in the EKPDD data set. There are 241,
228,179, and 167 images in each scenario, respectively. Some examples
are shown in Figure 8.

B. EYES KEY POINTS LOCATION

1) EVALUATION OF PFLD-EYES

a: EVALUATION INDICATORS

In this section, we evaluate the location performance of the
improved model on the eye key point detection data set
(EKPDD). The interocular distance normalized error (ION)
and the mean normalized error (MNE) are important mea-
surements of landmark locations. ION is the ratio of the
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distance between ground truth landmarks and predicted land-
marks to the distance between the outer corners. It can be
computed as follow:

”xprei — Xgt; [l2
diod
where xpr; and xg, denote the predicted landmarks and
ground truth landmarks, respectively; and d;,q represents the

distance between the outer corners. The MNE is the average
ION of facial landmarks and is calculated as follows:

ION; = &)

N
> ION;
i=0

N (6)
where N denotes the total number of face landmarks. MNE
is an important parameter that is widely used to evaluate the
average location error.

MNE =

b: EVALUATION USING THE MNE

We pay more attention to the accuracy of locating the eyes;
thus, different from many face alignment algorithms that
average all face landmarks’ IONs as MNEs, we select 8 eye
key points, which are shown in Figure 7, to calculate the
MNE. To verify the excellent performance of our proposed
PFLD-eyes, we compare it using the original PFLD and
OpenCV Dilib toolkit that is widely used in many research
studies. Note that the eye key points predicted by the Dlib
toolkit do not all overlap with the 8 manually labeled eye
key points in EKPDD. Therefore, we selected 4 overlapping
points to calculate the MNE. We train PFLD and PFLD-eyes
by the original data set,’ and we evaluate our model on
EKPDD. The results are shown in table 2.

As shown in table 2, compared to the OpenCV Dlib toolkit,
the PFLD has a better performance in all scenarios. This
is because the PFLD is more robust in larger drive poses
due to the novel loss function. Compared to PFLD, our
developed PFLD-eyes has poor performance in the first sce-
nario but better performance in other scenarios, especially for
the scenarios where the driver wears a mask. It is obvious
that PFLD-eyes has almost the same performance as PFLD
when the driver does not wear a mask; however, PFLD-eyes
achieves a prominent improvement in eye key point loca-
tion compared to PFLD when there is a mask covering the
driver’s face. This is because 46 landmarks could reduce the
characteristic dependence of the lower part of the face and
would reduce the interference of the covering compared to
106 landmarks.

c: EVALUATION ON SPEED

The speeds of different models are shown in table 3. It is
obvious that the OpenCV Dlib Toolkit has the best FPS of
approximately 502; however, the frequently used camera has
an image capture speed of approximately 30 fps. Therefore,
both PFLD and PFLD-eyes are fast enough to conduct real-
time detection.

3 https://github.com/JACKYLUO1991/106-landmarks-dataset
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TABLE 3. The detection speed of different models.

Dlib Toolkit PFLD PFLD-eyes
Speed (fps) 502 252 262
TABLE 4. The MNE of different models.
PFLD-eyes PFLD-eyes
(Original data set)  (Extended data set)
Daytime without mask ~ 4.20 4.18
Daytime with mask 5.90 5.05
Night without mask 5.20 5.10
Night with mask 8.85 5.79
all 5.83 4.95

TABLE 5. The comparison of different models on BiolD database.

Method Recall Precision Fl Accuracy
O.F.Séylemez ~ 94.50% 97.81% 96.10% 93.30%
Cheng 88.58% 98.00% 93.05% 94.00%
Ours 98.58% 99.45% 99.01% 97.70%
TABLE 6. The comparison of model on EKPDD database.
Recall Precision  F1 Accuracy

Daytime without mask ~ 95.42% 96.15% 95.78% 95.50%
Daytime with mask 94.27% 96.73% 95.48% 94.00%
Night without mask 95.65% 88.89% 93.10% 91.90%
Night with mask 98.25% 92.56% 95.32% 93.50%
All 95.74% 94.03% 94.88% 93.90%

2) EVALUATION ON DATA SET AUGMENT

a: EVALUATION INDICATOR

To verify the effectiveness of the data set augment method,
each image in the original data set is processed by the method
proposed in section II-B, and the augmented data set is
doubled to the original data set. Some examples of original
images to processed images are shown in Figure 9. We train
our PFLD-eyes model using the original data set and extended
data set, respectively. In order to evaluate the performance of
the models in the simulated driving environment, we calculate
the MNE on EKPDD.

b: EVALUATION ON MINE

The decrease of the MNE using 46 facial landmarks with the
number of epochs is shown in Figure 10. We set the initial
learning rate is 0.0001 and decrease it progressively at 0, 200,
and 400 epochs. The final MNE of PFLD-eyes (extended
datasets) is 4.9 whereas the MNE of PFLD-eyes (original
datasets) is 5.3. It is obvious that the extended datasets could
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FIGURE 9. Some examples of images processed from the original dataset.
The top image is the original image and the bottom image is the
processed image.
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FIGURE 10. The decrease in the MNE of 46 facial landmarks with the
number of epochs.

improve the performance of PFLD-eyes. In order to assess the
measurements of models in a driving environment, we test
our models on EKPDD. The results are shown in table 4.
The PFLD-eyes trained by the extended data set has better
performance than PFLD-eyes (original data set). In partic-
ular, there was a significant improvement in the scenario
when the drivers wore a mask at night, and the results were
5.79 and 8.85, respectively. It is obvious that the method used
to enlarge the original data improves the robustness of our
model for mask coverings and changing illuminance, and it
would increase the costs when adding new images or human
annotation.

C. EYE STATE EVALUATION

1) EVALUATION INDICATOR

To evaluate the performance of our model in eye state,
we tested it on BiolD and EKPDD, respectively. We use the
EAR as the eye state evaluation parameter, and we set 0.2 as
the threshold value for binary eye state evaluation which is
used in many researches. This means that if the EAR is greater
than 0.2, the eyes are open; otherwise, the eyes are closed.
Let TP represents the number of times where the predicted
eye state is True and the ground truth eye state is also True,
FN represents the number of times where the predicted eye
state is False whereas the ground truth eye state is True,
FP represents the number of times where the predicted eye
state is True whereas the ground truth eye state is False,
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FIGURE 11. Some examples of the detection results on the BiolD dataset.
PR represents the predicted results based on the EAR, and GT represents
ground truth.

TN represents the number of times where the predicted eye
state is False and the ground truth eye state is also False.
We can calculate the evaluation indicators as follow:

TP + TN
Accuracy = % @)
(TP+ FN + FP+1N)
TP
Precision = ———% ®)
(TP + FP)
TP
Recall = ——% 9)
(TP + FN)
2 x Precision x Recall
Fl = — (10)
(Pr ecision + Recall)

where Accuracy, Precision, and Recall evaluate the perfor-
mance of a model in different aspects and F1 is a comprehen-
sive indicator that is calculated by Precision and Recall.

2) TEST ON BIOID

We compare the performances of different models in eye
state evaluation on BiolD. The results are shown in table 5,
and some examples of the detection results are shown in
Figure 11.

As shown in table 5, compared to the proposed method,
Cheng [39], and S6 ylemez and Ergen [60], our model obtains
satisfactory results with significant improvements in all indi-
cators. Though the BiolD is challenging due to its various
illuminations and large poses, we obtain satisfactory results
on Precision and Recall metrics, which means our model has
low missing rates and misjudgment rates on eye state detec-
tion. The good performance on F1 also means our model has
a good balance between Recall and Precision. our model also
has prominent performance on accuracy with a value of about
97.70%. As shown in Figure 11, though poor illuminations
and large head pose, the detection results of our model are
reliable and accurate.
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FIGURE 12. Examples of detection results on the EKPDD dataset. PR
represents the predicted results based on the EAR, and GT represents the
Ground Truth.
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FIGURE 13. Eye state estimation examples of failures on the testing
database. PR represents the predicted results based on the EAR, and GT
represents the Ground Truth.

3) TEST ON EKPDD

To further obtain the performance of our proposed model in
a real driving scenario, we test it on EKPDD. Compared to
the BiolD data set, the images contained in EKPDD are more
challenging with mask coverings, changing illumination from
daytime to nighttime, and large head poses. There are four
different scenarios including daytime driving with a mask,
daytime driving without a mask, night driving with a mask,
and night driving without a mask. We label the eye states
manually and test our model in four different scenarios. The
results are shown in table 6. Compared to BiolD, although
there were more challenges with mask coverings, illumina-
tion, and poses in EKPDD. The performance of our model
was satisfactory with an accuracy of approximately 93.9% on
the whole data set, and the model was robust in all scenarios
with little difference in metrics. Some examples of detection
results are shown in Figure 12.

We further analyze the failed samples in the test data set,
as shown in Figure 13. We find that some detections failed
due to the large poses of the head, and the right eyes were out
of sight, as shown in (a). Some detections failed due to the
influence of a thick eyelid together with poor illumination,
which results in it being difficult to recognize the state of
eyes, as shown in (b). Some samples failed because the
images were too seriously blurred to recognize the eye region,
as shown in (c). In (d), the detection failed due to the strong
reflection of the glasses. Most of them failed due to severe
interference.

Generally, our model achieves satisfactory results for
eye state evaluation on both BiolD and EKPDD. EKPDD
contains images in a simulated driving environment with
different scenarios, which are close to real conditions. The
preeminent performance for different evaluation indicators
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such as Accuracy, Precision, Recall, etc. in different datasets
means that our model is precise and robust for eye state
measure. Based on the detection results, PERCLOS, blink
frequency and other fatigue parameters that are appropriate
for fatigue detection could be calculated.

IV. CONCLUSION
Eye location and eye state evaluation are crucial to fatigue
detection. With the outbreak of COVID-19, masks are essen-
tial to protect bus drivers from virus infection. To develop
the accuracy of eye location and state evaluation based on
facial landmarks in complicated environments, we proposed
a more robust model in this paper. First, we develop an
existing lightweight facial landmark model that is robust to
large poses. Then, we propose a method to augment the
training data set based on the original landmark data set to
improve the performance of our model in real driving sce-
narios, such as scenarios with mask coverings and changing
illumination. The experiment shows that the proposed model
obtains better performance in eye key point locations on a
driving simulation data set. Finally, we introduce the EAR
to classify the eye states. The experiment shows that our
model obtains satisfactory performance on the BiolD data set
with an accuracy of approximately 97.7%, and further testing
on EKPDD achieves a satisfactory result with an average
accuracy of approximately 93.9%.

In the future, we will obtain fatigue parameters based
on reliable eye state detection and develop a driver fatigue
detection system.

APPENDIX A

FIGURE 14. The locations of the 106 landmarks.

APPENDIX B
See Algorithm 4.
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Algorithm 4 Judge_in_Polygon

Input: the landmark of p (x, y), the contour landmark set of polygon ((x1 , ¥1 )s (X2 5 ¥2 )y «-)

Output: is_in_polygon

:fori < Otokdo

Return True

X = sX + (py - 8y) * (tx - sx)/(ty - sy)
if x == px then
Return True
10:  if x > px then
11: is_in_polygon = True
12:j «<—i,i<«i+1
13: Return is_in_polygon

if (sy < py and ty >= py) or (sy >= py and ty < py) then

I PX < P.X, py < p.y, is_in_polygon <« False, k «<- FMCl.length,i < 0,j <k — 1

: sx < polygon[i].x, sy < polygon[i].y, tx < polygon[j].x, ty <— polygon[j].y
. if (sx == px and sy == py) or (tx == px and ty == py) then

Algorithm 5 Get_Average_Brightness

Input: Original image I, the face basic contour landmark set FBC,

Output: image_average_brightness

1: rows < I. Height, cols <— I. Weight, channel <— I. Depth, color <-0, m <0

2: for i < 1 to rows do

3: for j < 1 to cols do

4: for k < 1 to channel do

50 p< (i)

6: is_in_polygon = Judge_in_polygon (p, FBC)
7:  ifis_in_ polygon then

8 color =1 [i, j] [k] + color

9: m=m+ 1

10: image_average_brightness = color/m

11: Return image_average_brightness

APPENDIX C
See Algorithm 5.
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