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ABSTRACT Aydogdu ef al. studied the standard forms of generator and parity-check matrices of Z»Z[u’]-
additive codes, and presented generators of Z,7Z,[u?]-additive cyclic codes (Finite Fields Appl. 48: 241-
260, 2017). In this paper, we investigate some other useful properties of Z,7Z,[u?]-additive codes, including
asymptotically good ZoZ[u3]-additive cyclic codes and 7o 7o [u3]-additive complementary dual codes. The
present paper can be viewed as a necessary complementary part of Aydogdu’s work.

INDEX TERMS Additive cyclic codes, asymptotically good codes, additive complementary dual codes,

binary gray images.

I. INTRODUCTION

In recent years, coding scholars proposed a class of codes
over additive structures, which are called additive codes
[1]-[10]. Abualrub ez al. studied the structural properties of
ZoZ4-additive cyclic codes [11], and Fan et al. proved that
this class of codes are asymptotically good [12]. In fact,
in 1966, Assmus et al. had studied the asymptotic properties
of cyclic codes [13]. Afterwards, the asymptotic properties of
quasi-cyclic (QC) codes, as a generalization of cyclic codes,
had also received widespread attention of the asymptotic
properties [14]-[18].

Aydogdu et al. studied Z,Zys-additive codes and Zyr Zps-
additive codes in [3] and [4], respectively. Yao et al
proved that Z,rZ,s-additive cyclic codes are asymptotically
good [10]. Aydogdu et al. also introduced Z,Z,[u]-additive
codes [1], where > = 0. In 2017, they studied some
structural properties of ZoZ[u3]-linear codes and cyclic
codes [2], where u?® = 0. In 2020, Diao et al. studied some
structural properties of Z,Z,[v]-additive cyclic codes [5],
where v = v. In [6], we proved that Z,Z,[v]-additive cyclic
codes are asymptotically good.

Linear complementary dual (briefy LCD) codes are impor-
tant linear codes due to their applications in implementa-
tions against side-channel attacks. Recently, Carlet et al.
used LCD codes to improve the security of the information
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processed by sensitive devices, especially against so-called
side-channel attacks and fault non-invasive attacks on embed-
ded cryto-systems [19].

For a linear code %, if € N €+ = {0}, then we called it an
LCD code. LCD codes over finite fields were mainly studied
in [?], [20]-[26], [28], [29]. Shi et al. studied LCD codes over
Galois rings, and obtained some classes of asymptotically
good LCD codes [30]. Dinh et al. studied the construction of
LCD codes from F; x (IF, +ulfy) x (Fy +ulFy +vF, +uvF,)-
additive cyclic codes [31], where W =1,V =1, w =
vu. Recently, Benbelkacem et al. studied some results on
Z,7.4-additive complementary dual (brief ACD) codes [32].
It is the first paper to study ACD codes over additive struc-
tures. To be the necessary complementary part of the work
[2], it is interesting to study the asymptotic properties of
7,75 u’]-additive cyclic codes and the structural properties
of Z»Z»[u3]-ACD codes.

The rest of this paper is organized as follows. In Section 2,
we give some well known results on 7o 7 [u3]-additive codes
and additive cyclic codes. In Section 3, we construct a class of
77 [u?]-additive cyclic codes. By the probabilistic method,
we prove that this class of T 7 [u3]-additive cyclic codes are
asymptotically good. In Section 4, we give some sufficient
conditions to show that Z,Z,[u3]-additive codes are ACD
codes, and discuss the complementary duality of other sub-
codes. Particularly, we give a class of ZzZz[uS]-ACD codes,
which binary Gray images are also LCD codes. In Section 5,
we summarize the main results in this paper.
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Il Zzzz[u:’]-ADDITIVE AND ADDITIVE CYCLIC CODES

Let Z, = {0, 1} be the binary finite field, and Z[1®] = Z, +
uZo+utZy = {0, 1, u, 14u, u?, 1+u?, u+u?, 1+u+u?}bea
finite chain ring, where u? = 0. For any element d € Zolu?],
d can be written as d = a + bu + cu®, where a, b, ¢ € Zs.
Further, d is a unit of Z»[13] if and only if a # 0. Let Zo[u3]*
be the unit group of Zs[13]. Clearly, Z>[u?]* = {1, 14u, 1+
u?, 1 + u + u?}. The Lyox = {0, u, u?, u + u?} is the only
maximum ideal of Z,[u?].

Let

ZoZou) = {(WV)|v € Zy and V' € Zo[u’]}.
Define a map

0 : Zolu’
d = a+ bu+ cu?

— 7
— 0(d) =a.

Clearly, 6 is a well defined surjective ring homomorphism.
Let Zg‘ be a a-tuple over Z, and Zz[u3]ﬂ be a B-tuple over
Za[u?], where « and B are positive integers. Let v = (v|V/) €
75 x Za[u?1® be a vector, where v = (vg, v1, . .., Vg—1) and
= Vi, v;S_l). For any d = a+ bu+ cu® € Z[u?],
define a Z,[u3]-scalar multiplication on Z§ x Zo[u?1P as

,dv},_l).

The Z§ x Zo[u?1P forms a Z;[u?]-module under the above
Zo[u?]-scalar multiplication and the usual addition of vectors.

Definition 1: A non-empty subset ¢ of Z5 x Zo[u?1? is
called a Z,Z,[u3]-additive code of lengthn = o + Bif € is
a Zo[u3]-submodule of 75 x Zo[u1P.

Definition 2: A 727, [u?]-additive code ¥ is called a
o7 [u3]-additive cyclic code of length n = o + B if for
any codeword

d-v =)o, 01, ...,0d)We]dvy,dv), ...

v=©W)=o,vi, ..., Va-1lVy, Vs ..., ngfl) €%,
the (Vo—1, V0, - - . » Va— 2|v}5 T /S ;3 ) ETC.

Let Ry p = Zo[x]/(x% — 1) sz[u3][x]/ x# —1). Define
a map

W 73 x Zol’P — Rep

s =(cle) = sx) = (cx), (),

where (c|c) = (co,c1, ..., Ca—tlcy €yt C:s—l)’ c(x) =
co+cix+ -+ cgo1x*Land d(x) = x4+ +
¢, xP1
B-1 )

For any e(x) = ep + e1x + --- + e;x' € Zo[u’][x] and
c(x) = (c(x),c'(x)) € Rg,p, define the Zs[u?][x]-scalar
multiplication

(Be(x)c(x), e(x)c'(x)),

where 6(e(x)) = 0(ep)+0(e1)x+- - -+0(e;)x'. Clearly, under
this scalar multiplication and the usual addition of polynomi-
als, Ry, g forms a Zs[u?)[x]-module. Therefore, we have that
€ is a ZoZo[u’]-additive cyclic code if and only if W(%) is
a Zo[u?][x]-submodule of Ry, g. In this paper, we identify ¢’
with W (%).

e(x) * ¢(x) =
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Define a map

T Zg[u3] — Zg
d=a+bu+cu® — (a, b, c).

Clearly, the ring Z,[u?] is isomorphic to Zg as an additive
group. If € is a ZZs[u 3] additive code then it is additively
1som0rph1c to a group of the form Z2° X Z3k1 X ngz X
7k Therefore, € is of type («, B; ko; kl,kz,k3) and has
2"20 2312220k codewords. Let X (respectively Y) be the
set of Z (respectively Zz[u3]) coordinate positions. Then
|IX| = o and |Y| = B. We call ¥x (respectively %y) the
punctured code of € by deleting the coordinates outside
X (respectively Y). Note that € is said to be separable if
C = 6x X Gy.

Generally although ¥ is not a free Zs[u?]-module, there
exist {w;}; 01 and { ]}k1 ket guch that for every codeword
of € it can be uniquely expressed in the form Zfi | Aiwi +
Zk‘+k2+k“ wjvi, where A; € Zy, ju; € Zo[u?]. Furthermore,
the vectors w; and v; form a generator matrix G of size (ko +
ki + ko +k3) x (e + B) for the code € and ko + k| + ko + k3 is
called the rank of % denoted by ko + k| + k2 + k3 = rank(%).
Further, G can be written as G = (Gx|Gy), where Gy is a
matrix of size (kg+k1 +ko—+k3) x @ over Z and Gy is a matrix
of size (ko+k1 +ko+k3) x B over Z>[u3]. Note that Gy is the
generator matrix of ¥ and Gy is the generator matrix of Gy .

Define a Gray map ¢ : Zo[u’] — Z3 as ¢(0) = 0000,
#(1) = 0101, p(u) = 0011, (1 +u) = 0110, p(u?) = 1111,
o1 + u?) = 1010, p(u + u*) = 1100 and ¢(1 + u + u?) =
1001. Clearly, ¢ is a Z,-linear map. Extend this Gray map as
follows

@ 7§ x Lolu’)P — 78
Va-1l90), #OV), - .., d(Vg_1)),

where v = (v, ..., ve—1) € Z§ and V' = (v, ...,
Zo[u?1P. Then the Gray image ®(%) =
code of length n = o + 48.

From the Ref. [33], for x € Z,[u®], define the homoge-
neous weight of x

o) = (o, vi, ...,

v/ﬂ—l) €
C is a binary linear

0, ifx=0,
Winom(x) = {4, if x € (u?)\{0},
2, if x € Zo[uP\(u?).
Note that, for x € Zo[u’], Winom(x) = witn(¢p(x)). For

wo= (W, Wi, ..., W%*l) € Zo[u?1P, define the homoge-
neous weight the of w' as wije, (W) = Zf:o] Winom(W}). For
any two vectors w', v € Zo[u]?, define the homogeneous
distance djorm (W, V') as dpom(W', V') = wipom(w' —V). Clearly,
we have wiom(w') = wig(®w') = Y7 wig(¢(w))) and
dpomW V') = dg(P(W'), (V).

For a vector w = (wlw') € Z§ x Zo[u31P, define
the weight of w as wr(w) = wig(w) + whom(W) =
wtg(w) + wtg(®(W)) = wiy(P(w)) and for two vectors
w,v € Zg‘ X Zg[u3]ﬂ , define the distance of w and v as

65915



IEEE Access

X. Hou et al.: On Z,Z,[u3]-Additive Cyclic and Complementary Dual Codes

dw,v) = wit(w — v). Denote d(%) to be the minimum
distance of % Clearly, the Gray map & is an isometry from
(2% x ZoluP1P, d) to (22 dyy).

Letw = (Wlw') = (wo, wi, ..., wa—1lwy, Wi, ..., W;‘}—l)
and v = (V) = (vo, vi, .. .,v:g_l), where
w,v € Z5 X Zo[u?1P. Define an inner product of w and v
as [w, v] = u?[w, vlo + W, V1 € Zo[u?], where [w, v], =
Z?‘;Ol w;V; is the inner product of w and v over Zy, [w', V'], =

/ /
© Va—1lvy, vis -

Zf}:_ol wj’.v]’- is the inner product of w’ and v/ over Z,[u?]. With
respect to the above inner product, we can define the dual
code of Z,Z,[u?]-additive code % as

Ctr={ve 75 x Zol®1P | [w, v] = 0 for all w € ©}.

It is easy to prove that €+ is also a Z,Z,[u3]-additive code.
Particularly, if € is a separable code, then €+ = (¥x)" x
(€y)*. Further, € is self-orthogonal if € C € and self-dual
if ¢ =¢+.

Let € be a Z,Zs[u’]-additive code with the generator
matrix G = (Gx|Gy). Define the product

G-G' =u*GxGy + GyGy € M(Za[u’)), 6]

where all elements in Gy are taken from Z,, all elements in
Gy are taken from Zs[u3], M (Zz[u3]) denotes the matrix ring
over Z,[u?]. Note that we can use usual matrix multiplication
in matrices Gy G; and Gy G;, but we can not use usual matrix
multiplication in matrix G - GT.

Il Zzzz[us]-ADDITIVE CYCLIC CODES ARE
ASYMPTOTICALLY GOOD

In this section, we mainly study asymptotic properties of
the relative minimum distance and the rate of Z,Z,[u’]-
additive cyclic codes. The relative minimum distance and
the rate of ZZo[u’]-additive cyclic code € are denoted by
AE) = %”’ﬁ) and R(%¢) = %1(%) respectively, where
d(%) is the minimum distance of ¥ and rank(%) is the
rank of %.

Definition 3: A class of Zo 7 [u]-additive cyclic codes
is called asymptotically good if there exist a sequence
of ZyZs[u?]-additive cyclic codes 61,6, ..., E,, ... with
length my, my, ..., m;, ..., when m; — o0, both the rela-
tive minimum homogeneous distance and the rate of %; are
positively bounded from below.

A. A CLASS OF ZZZZ[U3]-ADDITIVE CYCLIC CODES
Let Ry = Zo[x]/(x*™ — 1), Rin = Zo[x]/(x"™ — 1), R}, =
Zolu?[x] /(xl'” — 1), where m, k, [ are positive integers such
that gcd(m, 2) = 1 and 2, k, [ are pairwise prime.

Clearly, u?Z[u3] = u?Zs C Zo[u?]. Let

Im—1
u’R), = !b’(x) = Y bx' € R}, Ibj=ubi, bie Ly .
i=0
It is well known that u’R), C R), is a Z,[u][x]-submodule
of R}, .

65916

For any f (x) € Z>[x] and (a(x), b(x)) € R X Ry, define
the following scalar multiplication

S (alx), b(x))
= (f(x)a(x) (mod X — 1), f(x)b(x) (mod x™ — 1)) .

For the simplify, we write the above equation as
(f @)a(x), f (x)b(x)). Clearly, in terms of the pairwise coor-
dinate addition and the scalar multiplication by the elements
of Rum = Za[x]/(x*™ — 1), the Ry, X Ry, forms an Ryjp,-
module.

Define a map

o: Rm — u’R),
Im—1 ‘ Im—1 ‘
b(x) = Z bix' — b (x) = ulb(x) = Z u2bix’,
i=0

i=0

where b; € Z;. Clearly, o is a Z,[x]-module isomorphism.
Thus, Ry x uR),, also forms an Ryg,-module.
For any (a(x), b(x)) € Ry X Ry and f(x) € Ry, let

Cap = ((F)ax), ”f (X)b(x)) € Rign X Uu*R),,}.

Then 6, is an Ryj,-submodule of Ry, X qu}m generated
by (a(x), u>b(x)). By the Z,[x]-module isomorphism o, Gub
can be viewed as a Z;-linear space.

Proposition 1: Let 6,5 = {(f(x)a(x), uzf(x)b(x)) €
Rim % u’R) |f(x) € Rigm}, where a(x) € Rim, b(x) € R

are monic polynomials. Let g, »(x) = gecd (a(x) xk”’—l) )

s xm_q

ged (b(x), 5=t ) -ged @), b(x), "~ 1) Sr=Cr = and

(D) =1

kim . . .
hgp(x) = ’; - b(;i . Then there is an Ryj,,-module isomorphism:

(ga,b(x»Rk/m = Cga,b
c(x) = (c(x)ak), u*c(x)bx)),

and rank(€,,p) = deg(hqa p(x)).
Proof: Define a map

. 2p/
Xab - Rim — Rim X "Ry,

f@) > (Falx), wf (x)b(x)).

Clearly, xq.5 is a well defined Rjj,-module homomorphism.
For f(x) € Rim, f(x) € ker(x4,p) if and only if

f)ax) = 0 (mod x*™ — 1)
F()b(x) = 0 (mod x'™ — 1)
if and only if

ka -1

f(x)akx)=0 (mod W)
F@bx) =0 (mod %=1 )
f)alx) =0 (mod x™ — 1)
fx)b(x) =0 (mod x™ — 1)
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if and only if

km _
ged (at), 5=

ka7
fx)=0 (mod —11>>

xm_q
x) =0 [ mod —1
f( ) 8¢ d<b(x) 1 1 ))

B I
fx)=0 (mOd g_cd(a(x),b(x),xm—l))

if and only if
f(x) =0 (mod Q1(x) - Q2(x) - Q3(x)),

xkm_y xm—1

where 01(x) = — " 05(x) = — "L and
BT g (aw BE) 5t

x"—1
Q3(x) = cd@), by 1) .
Thus, Eer(xa p) = (hap(X))Ry, - Since ged(m,2) = 1
and 2, k, [ are pairwise prime, then klm is odd. Thus, Ry,
is semisimple and

Rklm = (ga,b(x)>Rk1m @ <ha,b(x)>Rk1m-

Clearly, the above Ry,-module homomorphism y, 5 induces
an Ry,-isomorphism:

(ga,b(x»Rk/m - Cga,b
cx) > (c(o)alx), uc(x)b(x)).

In particular,

rank(6,,p) = rank({8a,5(X))Ryyn)
= klm — deg(g,,p(x)) = deg(hq,p(x)).

By Proposition 1, we can give a generator matrix of Ca.b-
Leta(x) = Y ¥ aix’ € Ry and b(x) = Y10V bix' € Ryp.

Let
ap  ai - Agn-1
Agn—1 AQ *** Am—2
A=
ai a - .- agp
and
by by -+ by
bim—1 by -+ b2
by by --- by
Define the matrix G as
Al u®B
A | u’B
N
ANWB ) s etiom

If the rank of 4, is r, then the first r rows of G form a
generator matrix of €.

ExampleI: Let m = 1, k = 5,1 = 7. Let
Gap be a 7o 7 [u?]-additive cyclic code with generator
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(a(x), u?b(x)) € R5 X qu’7, where a(x) = x3 +x € Rs,
b(x) =x*+x3+x>+1eRy.

Let gap(x) = ged (a(x), ) ged (b, 25 ) -
ged(a(x), b(x),x — 1) - % Then g p(x) = x28 +
X2 X2 a2 x20 10 18 17 xS B X124
x4+ 2% + x8 4+ x0 + x2 + x + 1. Since h(x) = ;‘:1&1) =
x” 4+ x* + x3 + x + 1, then the rank of Gap is 7. Clearly,
the following matrix

01010]u® 0 u®2u?>u®>0 0
001010 w0 u?>u®u®0
10010|0 0 u? 0 u? u®u?
01001|u®0 0 u? 0 u?u?
10100|u2u? 0 0 u? 0 u?
010102 u?>u®>0 0u®0
001010 uW2u®>u®>0 0 u?

forms a generator matrix of € .

B. ASYMPTOTICALLY GOOD 7,7 [u®]-ADDITIVE CYCLIC
CODES

By the Chinese remainder theorem,

Ry = Zolx]/{(x™ — 1)

= Zolx]/(x —1)&® Zz[x]/(xm_l 4o x+1).

Clearly, the rank of cyclic code generated by x”~! 4 ... +
x + 1 is 1. Thus, we only consider the cyclic code generated
by x — 1.

Let

I = (x - 1>Rm7

Jin =

Jm =

/
Jlm =

(F=re-)
Jlm == (X - 1) 5
xm—1 Rin

km
1
27 = (E x—1) .
xm — 1 W2R’

Im
If (a(x), b(x)) € Jim X Jim, itis easy to see that (g, 5(x))r,, S
Jiim by Proposition 1, then the Zo 7 [u3]-additive cyclic code
6a.» can be reformulated as 6, , = {(f (x)a(x), W2f (0)b(x)) €
Riom X u*Ryy}, where £ (x) € Jym.
For any f(x) € J,,;, define

C, 5 = (F)aw), Wf (b)) € Ry x R}, (2)

where (a(x), b(x)) € Jyy X Jyy and R, = Zo[u?]/ (x™ — 1).
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Let u?J;, = (u*(x — 1)),z . Define a map

. 29/ 2/
N JIpxud, = Jun XuJy,

(@), w?hx) = (ato), w?b())

where a(x) = a(x)x 1 and b(x) = b(x)x _1 . It is obvious
that » is an Rklm-module isomorphism and ‘Ka » = (% b)

The sets Ji, X u>J] im and Jy, X uzJ,/n are probability space
of Run x u’R), and Ry, x u*R,, respectively, whose samples
are afforded with equal probability. Further, € ; is a random
code over probability space Ji;, X urJ ,’m. Therefore R(6,,1)
and A(%,,p) are random variables over this probability space.
Thus, by the definition of asymptotically good, the prob-
lem has been transformed into studying the probabilities of
Pr(A(Gap) > 8) and Pr(rank(6,,,) = m — 1), where § is a
real number such that 0 < § < 1.

By the map 7, we have that

wit(a(x), u?b(x)) = wig(@(x)) + Wipom(U*b(x))
= ki (a(x)) + Witnom(u*b(x))

> wi(a(x), u*b(x)).

It means that wi(¢,) > wi(¢} ). Since A(%a p) =
d(Gap) wt(%ab) IM B _ Wi

G+Dm = m and A(% b) = m the
we have A(%,p) > kHA(‘K 5)- Further since |A(<€a b) >
8| = |A(C,5) > 5181 and [Jign X Jim| = [Jm X Jil, then

|AGap) > 8] _ 1A 5) > 155]
|ka X Jlm| |Jm X Jm|

:Pr(A((f 5 > k+l )

Thus, we can transform the problem again into studying the
probabilities of Pr (A(€; 5) > k”S) and Pr(rank(%6,p) =
m—1).

Definition 4: The function hy(x) is called a 2-ary entropy
if for0 < x < 1, hp(x) = —xlogox — (1 — x)loga(1 — x).

Note that for a real number 0 < § < 1, we have that
ha(8) < 1.

Definition 5: The variable Yy over the probability space
Jm X uzJ,;q is called Bernoulli variable if for f(x) € Jp,
(a(x), u?b(x)) € Jy x u? J!, satisfies

Pr(A(Gap) > 08) =

1, 1 <wt(f(x)ax), u’f(x)bx)) < 2ms,

Yf = )
0, otherwise.

Moreover, the set {f (x)a(x) € Ifm|21(x) € Jn} _is anideal of R,
generated by f(x) and {uf (x)b(x) € u® R,,|b(x) € J,} is an
ideal of u’R), generated by uf(x). Let Iy = (f(x))r,, < Jm
and ry = rank(ly). Let I} = (u’f (X)),2p, < uJy,. Since I} is
also a Zjp-linear space, then rank(lf’.) =1y,

Lemma 1 [34]: Letly xIr C Ry x Ry and (Iy x Iy)=*™ =
{(i(x), f2(x)) € Ir x Ir| wi(fi(x),f2(x)) < 2mé}. Then
|(If % If)§2m5| < 4rfh2(5)_
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Lemma 2: E(Yy) < 4771710,
Proof: Let (Iy x 1/;)52"“S = {(it), i’ (x)) € Ir x
I wit(fi(x), uf2(x)) < 2mé}. By Definition 5, the expecta-

. Iy x1)=>"° | ~1
tion E(Yy) = Pr(Yy =1)= I For fi(x), f2(x) €

R, by the definition ®, we have
wi(fi(x), u*2(x)) = wig (1 (X)) + Wihom U f2(x))
= wig (fi(x)) + wig (P fr(x)))
= wig (fi (X)) + 4wt (Fo(x))
> wig(fi(x), f2(x)).
Thus,
U x 1;)52’"5‘ < ‘(If x Ip)<2m |

Moreover, we know that rank(llﬁ) = rank(Iy) = ry. There-
fore, by Lemma 1, we have

| x 1= =1
\ly x I}

- |(If X If)§2m$|

E(Yf) =
(¥) s x I

477hp(8)

< — 47t (@)
T 49

L=l = pi(0)pa(x) - - py(x), where
p1(x), ..., ps(x) are irreducible polynomials in Zj[x] and
pr(x) be the lowest degree polynomial in p;(x), i =
1,2,...,s. Let k;, = deg(px(x)) and r be an integer with
km < r < m — 1. For any non-zero ideal I of R, if I <
Jm, then rank(I) > k; and the numbrer of non-zero ideals
contained in J,, of rank r is at most mkm .

Lemma 4: Pr(A(€, ) < 8) < Yl 47 (4
where 0 < § < 1 is a real number such that £,(8) < 5 L and
ky, is defined as in Lemma 3.

Proof: Let Y = 3} r,; Y denote the num-
ber of f(x) € J, such that the non-zero codeword

(f ()alx), u*f (x)b(x)) of & b with weight at most 2ms. Since

d %o (@”
NGy ) = Loud = 0D hen

hz(a)f lngzm )

Pr(A(€, ) < 8) = Pr(wt(%, ;) < 2ms) =

Z E(Y)).
f)eIm
For any ideal I < Jy, let I* = {f(x) € I|ly = I}, where
Iy = (f(X))R, S Jm and rank(Ils) = ry. Then I* = {f(x) €
Ilry = rank(I)}. Clearly, J,, = U1<Jm I*, where I runs
through the ideals contained in J,,. By Lemma 3, we have
km < rank(I) < m — 1 and the number of I < J, with

rank(I) = j is less than mﬁ Therefore,

Yo Ed)=)Y > EX)

f)edm I<Jp f(x)el*

Pr(Y > 0)

< E(Y)=

E(Y) =
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Y

J=km I<Jm, fQ)el*
rank(l) =j

m—1

= Y om Y E(p.
J

=kn  f)El*
By Lemma 2 and the fact that [I*| < |I| = 2/, we have
Z E(Yy) < Z 4T +ih2(8)
floer* fx)er*
< 2gTHI®) — 4= 3+ )

Since j > ky,, then logom < . Thus, we have

m—1 .
E¥)< Y o 4= 272 ()
J=km

m-1 Jjlogym 1.+
— Z 2 Tk 4~ 2/ H2(9)
J=km

)

J=km
For any f(x) € J,;, let
‘-;,—, {(Fax), u’f (Vb)) € Ry, x R}, B )

be a random Zng[u3 ]-additive cyclic code of length 2m;.

In fact, there exist some odd integers mp, my, m3, ... such
that when m; — oo, llm,eool”,fzm’ = 0, where ky,, is defined
as in Lemma 3. Thus, we give the following proposition.

Proposition 2: Let 0 < 6 < 1 be a real number and
hp(8) < 3. Then

5)=1.

Proof When m; — oo, then llm,ﬁoololfzm’ = 0. Since
l

lim;_, 5o Pr (A (‘5‘{[—7) >

hy(8) < E’ then there exist a posmve integer N and a real

number ¢ such that when i > N, 5 — () — log2m’ > e.
Thus, by Lemma 4, "
limi— oo Pr (A (%_" B) < 3)
logzml
—hy(8)— 2
<llm,_>ooz4 ( 2®) )
J=km
m,-—l
< limisoo D 47 < limiscomid™ ¢
j:kml-
logym;
k. (£ — 2821
— limys oot ().
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logom;

limi—s ookm; — 00 since limjsoo—— 0. Thus,
IVI,’

—km,<s—7log2mi)
limi_ood ""\" %mi ) = (. Therefore,

limj_, oo Pr (A (ffé’j) > 5) — 1.

Since Pr (A(% b) > 8) = Pr (A%, ;) > L), then if
hg(k'H d) < 5, we have the following corollary.
Corollary 1: Let0 < § < 1 and h,,(k'HB) < —. Then

Pr (A(%a{b) > 8) =1.

In the following, we study the Pr (rank(‘f‘i p) =M — 1).
We need the following lemma.

Lemma 5 [12]: For any (a(x), b(x)) € Jp X Jp, let G5
be given as in (2). Then rank(%. a5) = m — 1. Note that
rank(¢; b) = m—1if and only if there is no irreducible factor
p(x)o

Proposition 3: Let ‘5; 5

be given as in (3). Then
lim;_, 5o Pr (rank(‘fai E) =m; — 1) =1.

Proof: Let x™ — 1 = (x — Dpa(x)pn(x)- - pir(x),
where p;1(x), ..., pir(x) are distinct irreducible polynomials
in Z>[x]. By the Chinese remainder theorem,

Imi = Lolx]/{pir(x)) x -+ x ZLo[x]/{pir(x))

f&) = (i), ... fir(x),

where fi;(x) = f(x)(mod p;(x)), j=1,2,.

Let (a(x), uzb(x)) € Jm; X uz.// where a(x) b(x) € I -
By Lemma 5, rank(‘fé b) =m;—1 1f and only if p;;(x) { a(x)
and p;j(x) { b(x) if and only if (a;j(x), b;i(x)) # (0,0). Let
deg(pij(x)) = hjj. Then |Zy[x]/{p;(x))| = 2" and

2hij . ohij—1 _n
Pr (@), b)) # 0,0) = ——p— = 1—47"
Thus,
,
Pr(rank (¢! .)=mi—1) = H(l — 47 M)y,
(i ()= =1) =11

Foranyj = 1,2,...,r, hjj > ky,, where k;,, is the degree
of lowest degree polynomlal in pi1(x), pinx), ..., pirx).
Clearly, r < m’711 < . Thus,

Pr (mnk (%M) = m; — 1) = lL[(l — 4~y
=1

Z <1 _ 4_kmi)mi

4’(/11 i M

- (1 —4"""1‘) b
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Since
gkm; M

kim; 4km;

limys oo (1 - 4—’%)

g \!
= (limi_mo (1 _ 4*’%') )

mi

im;—co I
km,~4 i

then lim;_, oo Pr (rank (ngiiz) =m; — 1) =1.

Since 1 is an isomorphism and Cga,i; = 1n(%ap), then we
have the following corollary directly.

Corollary 2: lim;_, - Pr (rank(%;b) =m; — 1) =1.

According to Corollaries 1 and 2, we obtain the following
main theorem.

Theorem 1: Let 0 < § < 1 be a real number such that
hp(%é) < % Then there exist a sequence of ZoZo[u3]-
additive cyclic codes 61, 63, - - ., 6, ... with block length

(kmy, Imy), (kmy, Imyp), . .., (km;, Im;), ..., when m; — 00,
the A(%;) > 6 and lim;—. oR(%7) = 17

Proof: By Corollary 1, lim;_, .oPr(A(%;) > §) = 1,
which implies that there is a positive integer N; such that,
when i > Nj, A(%;) > §. Therefore, deleting the first
Nj codes and renumbering the remaining codes, we say that
A(%)) > 6.

By Corollary 2, lim;_, s Pr (mnk(%ﬂf’b) =m; — 1) =1,
which implies that there is a positive integer N, such that,
when i > N, rank(%; ) = m; — 1. Therefore,

rank(%;)

km; + Im;
m; — 1 1

ki + Im; k41

limi_, oR(6}) = lim;i_

= limi 0

Theorem 1 indicates that Z,7Z,[u®]-additive cyclic codes
are asymptotically good.

IV. Z57,[u?]-ACD CODES AND RELATED ACD AND LCD
CODES

In this section, we study additive complementary dual-
ity (ACD) codes of 22Z2[u3]-additive codes.

A. 7,7,[u]-ACD CODES
Firstly, we give the definition of 7075 [u3]-ACD codes.

Definition 6: Let € be a ZoZ[u]-additive code of type
(o, B: ko ki, ko, k3). If € N €+ = {0}, then ¥ is said to be a
727 [u?]-ACD code. For the Z,Z[u?]-ACD code %, if g =
0, then it is a binary LCD code of length « and if @ = 0, then
itisa Zz[u3]—octonary LCD code of length 8.

Proposition 4: Let ¢ C 75 x Za[u?1? be an ACD code.
For any v € Z5 x Zs[u?1P, v can be written uniquely as v =
v1 + vp, where v € € and v, € L.

Proof: Since € is a ZoZ,[u’]-ACD code, then € N
¢+ = {0). Thus, Zg‘ x Zo[u?]P can be written as
75 x Zolu’lP = € @ €*. In other word, for any v €

65920

75 x Zo[u’1P, there exist unique v; € % and v, € €+ such
thatv = v| + .

Theorem 2: Let € be a Z»Zo[u’]-additive code with the
generator matrix G. Let nonzero vectors v, v2, ..., v; be the
rows of G such that G = (vi,va, ..., v). Let Zo[u3]* =
{(Lut+1,u®+1,u> +u+ 131 [v;, vj] € {0, u?} and [v;, v;] €
Z2[143]X foralli,j € {1,2,...,k} such that i # j, then ¥ is
a Z»Zo[u?]-ACD code.

Proof: Let w be any nonzero codeword of €. If w ¢
%+, then € is a Z»Z-[u?]-ACD code. Since w € %, then
w=3c;hivi, where J = {1,2, ..., k} and A; € Zo[u’].

Firstly, assume that there exists j € J such that ; €
Z>[u3]*. Then

[w.vil =D dilviovil = Y hilvi vl + Al vil.
ieJ ieJ\{j}
For i # j, since [vi,v§] € {0,u?}, then A;[v;, vj] € {0, u?}.
Since [vj, vj] € Zo[u’]*, then A;[v;,vj] € Z>[u1*. Thus,
[w,vj] #0andw ¢ €.
Further, if A; € Ly, letj € J suchthat A; € {u, u?, u2+u}.
Since [v;, vj] € {0, u?}, then A;[v;, v;] = 0. Thus,

[w,vj]l = Z Ailvi, vil + Ajlvy, vil = Ajlvy, vyl
ieJ\{j)
Since [v;, vj] € Za[u’]*, then A;[v;, vj] # 0. Thus, [w, v;] #
0and w ¢ €. Thus, € is a Z»Z>[u’]-ACD code.

The following corollaries can be deduced from Theorem 2
directly.

Corollary 3: Let € be a ZoZ[u3]-additive code with the
generator matrix G and G - G = (Vipijel1,2,...k}- For all
i,j € {1,2,...,k}suchthati # j, if v € {0, uz} and v; €
Zo[u?]%, then € is a Z»Zo[u?]-ACD code.

Corollary 4: Let € be a 717> [u?]-additive code with the
generator matrix G. If G- G'is nonsingular over Zo[u?), then
€ is a ZpZa[u?]-ACD code.

Note that conditions in Theorem 2, Corollaries 3 and 4 are
only sufficient conditions to prove that € is a ZZ,[u>]-ACD
code. The reverse statements are not true in general.

Example 2: Let € be a 727 [u?]-additive code generated
by

110w +uu+1

G=10101|1 u u
0110 u? 0

By Magma Computational Algebra System [35], ¢ (€+ =
{0}. Thus, % is an ACD code. Let vi = (1, 1,0 | u, u* +
wu+ 1), v = (0,1,0 | I,u,u), v = (0,1,1] 0, u2,0).
Clearly, [v3,v3] = 0 ¢ Zo[u?1%. So it does not satisfy the
conditions of Theorem 2. Further,
0 u*> 0
w1 ou?
0 u?> 0
Clearly, it does not satisfy the conditions of Corollary 3.
Further,

G-G' = € M(Z[u’).

IG-G"| =0,
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which implies that it does not satisfy the conditions of
Corollary 4.

Theorem 3: Let C be a binary [«, k] linear code with basis
{vi,va, ..., vk}, where o is the length of C and k is the
dimension of C. Let ¢ > k and Gy be a ¢ x « matrix, which
non-zero row vectors are vy, va, ..., k. Let G = (Gx | Aly),
where & € Zs[u3]*. Then the Z,7Z,[u’]-additive code €
generated by G is an ACD code.

Proof: Let € be the 727 u?]-additive code generated
by G = (Gx | Al;). By (1), we have
G-G' =uw’GxGy + 2711
uzGXG;(r + )»21; = (Vijijell,2,....t}>

where all elements in Gx belong to {0, 1}. Since all elements
in u>’Gx Gy, are in {0, u?}, then for i # j, v; € {0,u*} and
Vii € {Az, A2+ uz} C Zo[u?]*. Therefore, by Corollary 3, ¢
is a Z»Z»[u3]-ACD code.

Example 3: Let C be a binary [3, 3] linear code with the
basis vi = (0, 1,0),v» = (0,0, 1),v3 = (1,0,0). Let { = 4,
and € be a ZzZz[u3]—additive code generated by the matrix

010(1000
001(0100
100{0010
000|0001

Let w; be the rows of G fori = 1, 2, 3, 4. Clearly, [w;, wj] =
0 for i # jand [w;, w;] € {1,1 4+ u?} € Zs[u’]*. Thus,
by Theorem 3, ¥ is an ACD code.

B. COMPLEMENTARY DUALITY OF ¢, 6x AND %y
In this subsection, we discuss the complementary duality
between ¢ and Gx or Gy.

Case 1: € is a ZoZ»[u]-ACD code, %y is a binary LCD
code and Gy is a Zz[u3]-octonary LCD code.

Theorem 4. Let % be a separable ZaZ[u3]-additive code.
Then ¥ is an LCD code if and only if %y is a binary LCD
code and %y is a Zz[u3]-oct0nary LCD code.

Proof: Let € be separable. Then 4’ = %x X 6y, which
implies that €+ = (€x)* x (€y)*. If € is an ACD code, then
for any v = (/) € € N €+ and so v = 0, which implies
that v = 0 and v/ = 0. Therefore, €x is an LCD code and 6y
is a Zs[u?]-octonary LCD code.

Conversely, let €y be an LCD code and %y be a Zo[u?]-
octonary LCD code. Since ¥ is separable, then for any v =
(V) € € N €+, we have that v € €y N (€x)* = {0} and
V' € €y N (Ey)t = {0}, which implies that v = (v|/) = 0,
i.e. € N €+ = {0}. Thus, % is an ACD code.

From Theorem 4, a separable code % is a ZoZ0[u3]-
ACD code if and only if € is a binary LCD code and
Gy is a Zz[u3]-octonary LCD code. However, there exist
non-separable 7277 [u3]-ACD codes such that € is an LCD
code and %y is a Zz[u3]—0ctonary LCD code. Let us look at
the following example.
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Example 4: Let € be a non-separable ZoZ[u]-additive
code generated by

100] 0 wut+u+1
G=1010lu+10 u
001 0 u? u

By Magma Computational Algebra System [35], ¢ (¢+ =
{0}. Thus, ¥ is a Z07,[u?]-ACD code. Moreover, we have
Cx N €+ = {0} and Gy (G = {0}, Thus, Gy is an LCD
code and Gy is a Zz[u3]-octonary LCD code.

Case 2: € is a ZpZ,[u?]-ACD code, either  is a binary
LCD code or 6y is a Zz[u3]—octonary LCD code.

In Theorem 3, we have obtained a class of Z»Z,[1?]-ACD
codes, i.e. € is not an LCD code, but €y is a Zo[u>]-octonary
LCD code since Gy = A2I;.

The following result is a special case of Theorem 3.

Theorem 5: Let C be a binary [«, ¢] self-orthogonal code
generated by the matrix Gx. Let G = (Gx | Al;), where A €
Zo[u?1%. Then €y is a Zz[u3]-oct0nary LCD code generated
by Al, and the matrix G generates a 727, [u?]-ACD code of
type (&, ¢; 05 ¢, 0, 0).

Proof: Clearly, ¢y is a Zolu? ]-octonary LCD code.
By (1), we have

G-G' = M2G)(G; + )\.ZICI; = )»215 = (Vipijel1,2,...c}»

since Gy generates a self-orthogonal code. Since A €
Zo[w1*, then A% € {1,u* + 1}. Thus, fori # j, vj = 0
and v; € {1, uw + 1} € Zz[u3]x. Therefore, by Corollary 3,
% is a ZoZo[u*]-ACD code.

Example 5: Let C be a binary [5, 2] self-orthogonal code
generated by Gy, where

11000
GX_(00101>'

Let G = (Gx | AlL), where A = u + 1 € Z,[u?]*. Then the

matrix
u+1 0
0 u+1

generates a Z,Zs[u’]-additive code. By Magma Computa-
tional Algebra System [35], € N €+ = {0}, which implies
that € is a Zng[u3]-ACD code of type (5,2;0; 2, 0, 0).
Theorem 5 proves that %y is a Zz[u3]-oct0nary LCD code,
%x is not an LCD code, but € can be a Z»Z-[u’]-ACD
code. In the following, we will discuss that ¥y is an LCD
code, €y is not a Z,[u’]-octonary LCD code, but € can
also be a Z»Z,[u?]-ACD code. Similar to the construction of
Theorem 5, let €x be an LCD code generated by Al; and ¢y
be a self-orthogonal (self-dual in particular) code generated
by Gy.Can G = (Al; | Gy) generate a ZzZz[u3]—ACD code?
Let G = (M | Gy). Then, by (1), G- GT = uz)LngICT +
GyGl = MZI;- + GyG/. Since Gy is self-orthogonal, then
GyGI;r =0,ie. G- G¥ = uzlg. Thus, in general, we can
not confirm that whether % is ACD or not. However, we can
find a class of special Z,Z[u*]-ACD codes generated by

11000
00101

65921



IEEE Access

X. Hou et al.: On Z,Z,[u3]-Additive Cyclic and Complementary Dual Codes

= (Gx | Gy) such that %y is an LCD code and %y is not a
Zz[u3]-octonary LCD code.
Proposition 5: Let € be a 77w ]-additive code gener-
ated by G = (I; | u21;). Then % is an ACD code.
Proof: Letw = (wlw') € € N €*. Clearly, for all
v =) e €, wehave 0 = [w,v] = u?[w, vl + W,V ]u.
Since %y is a self-orthogonal code generated by uZI;, then
[W, V], = 0. Since G is an LCD code generated by I,
and [w,v]y € Zo, then u?[w,v]s = 0, which implies that
[w,v], = O and sow = 0. Let v; = (v;|v}) be the i-th row
of G, where v; denote the i-th row of /; and v; = u?v;. Since
w € €, then there exist Ao, A1, ..., ;—1 € Z>[u?] such that

ZQ(A )vl|u ZA Vi

Thus, w = Zf;ol O(ri)v; and w = u? Zi:ol Aivi. Since
V0, V1, ..., V¢—1 are Zp-linearly independent, then w = 0
implying that 0(A;) = Oi.e. A; = biutciu®, where b, ¢ € Zo.
Therefore, w' = u? Zf;o Aivi = 0. It means that w =
(wlw') = 0. Thus, € is ACD.

Note that in Proposition 5, € is an LCD code generated
by I; and %Yy is not a Zs[u?]-octonary LCD code since 6y is
a self-orthogonal code generated by u21§

Example 6: Let € beaZyZ) [3]-linear code generated by

100|u? 0 O
G=[010]|0u20
0010 0 u?

By Magma Computational Algebra System [35], ¢ N ¢+ =
{0}, which implies that % is a 7075 [u3]-ACD code.

C. BINARY LCD CODES FROM 7.,7.,[u*]-ACD CODES
Although Z»7Z[u?]-linear codes are ACD codes, their binary
Gray images are not necessary LCD codes. Thus, in the
following, we give a class of 7074 [u3]-ACD codes such that
their binary Gray images are LCD codes.

Theorem 6: Let € be a ZyZ,[u>]-ACD code generated by
the matrix G = (Gx | Gy)mx(a+p8), Where Gy generates a
self-orthogonal code @y and Gy generates a linear code %y.
If the row vectors of Gy are Zz[u3]-linearly independent and
®(%Y) is a binary LCD code, then the binary Gray image
®(%) is an LCD code.

Proof: Let w = (w|w') € % such that ®(w) =
wl®dW)) € CN C+t, where C = ®(%). If we can prove
that ®(w) = 0, then C is a binary LCD code.

Forallv = (W) € &, ®(v) = (v|P()) € &) =
C, since ®(w) = (w|®(W')) € C N CL, then d(w) € C*.
Clearly,

0 =[®(w), PM]2 = [w, V]2 + [®(W), @(N)]2. (D)

Since w,v € %x and ¥x is a self-orthogonal code, then
[w,vls = 0. Thus, by (4), [P(W), ()], = 0. Since
dw), (V') € ®(By) and ®(%Yy) is a binary LCD code, then
[®(W)), ®(V)]> = 0 implying ®(w') = 0. Thus, w’ = 0.
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In the following, we will prove that for any w = (w|w') €
¢,if w = 0,thenw = 0.Fori € {0,1,...,m — 1}, let
v; = (v;[v}) be the i-th row of G, where v; and v; denote the
i-th row of Gx and Gy, respectively. Since w € %, then there
exist Ag, Al - .., Am—1 € Zo[u?] such that

m—1 m—1 m—1
=S = (Z o0l 3 Aiv;) |
i=0 i=0 i=0

Thus, w = Y75 00w and w' = Y 7' A, Since
Voo Visooos Vi, are 7Z[u?)-linearly independent, then w' =
0 implying that A; = Oforalli =0, 1, ..., m — 1. Therefore,
w = Zlm:_ol O(A;)v; = 0. It means that w = 0 and w =
(wjw') = 0. Thus, ®(w) = 0.

Example 7: Let € be a 7075 [u3]-ACD code generated by

11
G= (O 0
where

11 W Hu+l u
Gx—<00)ande—< u2 u+1 .
Clearly, Gx generates a self-orthogonal code ¥x and the row
vectors of Gy are Zz[u3]-linearly independent. The code 6y

has 64 codewords. By applying the Gray map & to each
codeword of 6y, the generator matrix of Cy = ®(%y) is

wHu+1 u
u? u+1

10010011
01011001
00111010
00000110

By Magma Computational Algebra System [35], Cy N Cf; =
{0}, which implies that Cy is a binary LCD code.

Similarly, by applying the Gray map & to each codeword
of €, the generator matrix of C = ®(%) is given by

11/00000110
00[{10010101
00/{01011001
0ojoo111010

By Magma Computational Algebra System [35], we have
C N Ct = {0}. It means that the binary Gray image of €
is an LCD code. More importantly, C is an optimal [10, 4, 4]
binary linear code.

Example 8: Let € be a 7075 [u3]-ACD code generated by

G (1111 w41 u
“\1010| W u+1)
where
1111 W+1 u
GX—(1010>“”d GY‘( 2 u+1)'

Clearly, Gx generates a self-orthogonal code %y and the row
vectors of Gy are Zz[u3]-1inearly independent. The code €y
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has 64 codewords. By applying the Gray map & to each
codeword of €y, the generator matrix of Cy = ®(%y) is

10010000
01010101
00110000
00001100
00000011

By Magma Computational Algebra System [35], Cy N Cy- =
{0}, which implies that Cy is a binary LCD code.

Similarly, by applying the Gray map @ to each codeword
of ¢, the generator matrix of C = ®(%) is given by

1010{00000011
0101{00001111
0000{10011100
0000{01011010
0000{00111001

By Magma Computational Algebra System [35], we have
C N C*+ = {0}. It means that the binary Gray image of ¢
is an LCD code. More importantly, C is an optimal [12, 5, 4]
binary linear code.

V. CONCLUSION

In this paper, we mainly studied Z,Z,[u]-additive cyclic
codes and Z,Z,[u3]-ACD codes. We constructed a class
of asymptotically good Z»Z»[u?]-additive cyclic codes, and
gave some sufficient conditions to show that ZzZz[u3]—
additive codes are ACD codes. Moreover, we gave a class of
7075 [u3]-ACD codes, which binary Gray images are LCD
codes. An computational example showed that this class
of Z2Z»[u?]-ACD codes can produce optimal binary LCD
codes. As an open problem, it is interesting to study ACD
codes over some other additive structures.
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