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ABSTRACT Aydogdu et al. studied the standard forms of generator and parity-check matrices of Z2Z2[u3]-
additive codes, and presented generators of Z2Z2[u3]-additive cyclic codes (Finite Fields Appl. 48: 241-
260, 2017). In this paper, we investigate some other useful properties of Z2Z2[u3]-additive codes, including
asymptotically good Z2Z2[u3]-additive cyclic codes and Z2Z2[u3]-additive complementary dual codes. The
present paper can be viewed as a necessary complementary part of Aydogdu’s work.

INDEX TERMS Additive cyclic codes, asymptotically good codes, additive complementary dual codes,
binary gray images.

I. INTRODUCTION
In recent years, coding scholars proposed a class of codes
over additive structures, which are called additive codes
[1]–[10]. Abualrub et al. studied the structural properties of
Z2Z4-additive cyclic codes [11], and Fan et al. proved that
this class of codes are asymptotically good [12]. In fact,
in 1966, Assmus et al. had studied the asymptotic properties
of cyclic codes [13]. Afterwards, the asymptotic properties of
quasi-cyclic (QC) codes, as a generalization of cyclic codes,
had also received widespread attention of the asymptotic
properties [14]–[18].

Aydogdu et al. studied Z2Z2s -additive codes and ZprZps -
additive codes in [3] and [4], respectively. Yao et al.
proved that ZprZps -additive cyclic codes are asymptotically
good [10]. Aydogdu et al. also introduced Z2Z2[u]-additive
codes [1], where u2 = 0. In 2017, they studied some
structural properties of Z2Z2[u3]-linear codes and cyclic
codes [2], where u3 = 0. In 2020, Diao et al. studied some
structural properties of ZpZp[v]-additive cyclic codes [5],
where v2 = v. In [6], we proved that ZpZp[v]-additive cyclic
codes are asymptotically good.

Linear complementary dual (briefy LCD) codes are impor-
tant linear codes due to their applications in implementa-
tions against side-channel attacks. Recently, Carlet et al.
used LCD codes to improve the security of the information
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processed by sensitive devices, especially against so-called
side-channel attacks and fault non-invasive attacks on embed-
ded cryto-systems [19].

For a linear code C , if C ∩C⊥ = {0}, then we called it an
LCD code. LCD codes over finite fields were mainly studied
in [?], [20]–[26], [28], [29]. Shi et al. studied LCD codes over
Galois rings, and obtained some classes of asymptotically
good LCD codes [30]. Dinh et al. studied the construction of
LCD codes from Fq× (Fq+uFq)× (Fq+uFq+vFq+uvFq)-
additive cyclic codes [31], where u2 = 1, v2 = 1, uv =
vu. Recently, Benbelkacem et al. studied some results on
Z2Z4-additive complementary dual (brief ACD) codes [32].
It is the first paper to study ACD codes over additive struc-
tures. To be the necessary complementary part of the work
[2], it is interesting to study the asymptotic properties of
Z2Z2[u3]-additive cyclic codes and the structural properties
of Z2Z2[u3]-ACD codes.
The rest of this paper is organized as follows. In Section 2,

we give some well known results on Z2Z2[u3]-additive codes
and additive cyclic codes. In Section 3, we construct a class of
Z2Z2[u3]-additive cyclic codes. By the probabilistic method,
we prove that this class of Z2Z2[u3]-additive cyclic codes are
asymptotically good. In Section 4, we give some sufficient
conditions to show that Z2Z2[u3]-additive codes are ACD
codes, and discuss the complementary duality of other sub-
codes. Particularly, we give a class of Z2Z2[u3]-ACD codes,
which binary Gray images are also LCD codes. In Section 5,
we summarize the main results in this paper.
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II. Z2Z2[u3]-ADDITIVE AND ADDITIVE CYCLIC CODES
Let Z2 = {0, 1} be the binary finite field, and Z2[u3] = Z2+

uZ2+u2Z2 = {0, 1, u, 1+u, u2, 1+u2, u+u2, 1+u+u2} be a
finite chain ring, where u3 = 0. For any element d ∈ Z2[u3],
d can be written as d = a + bu + cu2, where a, b, c ∈ Z2.
Further, d is a unit ofZ2[u3] if and only if a 6= 0. LetZ2[u3]×

be the unit group ofZ2[u3]. Clearly,Z2[u3]× = {1, 1+u, 1+
u2, 1 + u + u2}. The Imax = {0, u, u2, u + u2} is the only
maximum ideal of Z2[u3].
Let

Z2Z2[u3] = {(v|v′)|v ∈ Z2 and v′ ∈ Z2[u3]}.

Define a map

θ : Z2[u3] → Z2

d = a+ bu+ cu2 7→ θ (d) = a.

Clearly, θ is a well defined surjective ring homomorphism.
Let Zα2 be a α-tuple over Z2 and Z2[u3]β be a β-tuple over

Z2[u3], where α and β are positive integers. Let v = (v|v′) ∈
Zα2 × Z2[u3]β be a vector, where v = (v0, v1, . . . , vα−1) and
v′ = (v′0, v

′

1, . . . , v
′

β−1). For any d = a+ bu+ cu2 ∈ Z2[u3],
define a Z2[u3]-scalar multiplication on Zα2 × Z2[u3]β as

d · v = (θ (d)v0, θ(d)v1, . . . , θ (d)vα−1|dv′0, dv
′

1, . . . , dv
′

β−1).

The Zα2 × Z2[u3]β forms a Z2[u3]-module under the above
Z2[u3]-scalar multiplication and the usual addition of vectors.
Definition 1: A non-empty subset C of Zα2 × Z2[u3]β is

called a Z2Z2[u3]-additive code of length n = α + β if C is
a Z2[u3]-submodule of Zα2 × Z2[u3]β .
Definition 2: A Z2Z2[u3]-additive code C is called a

Z2Z2[u3]-additive cyclic code of length n = α + β if for
any codeword

v = (v|v′) = (v0, v1, . . . , vα−1|v′0, v
′

1, . . . , v
′

β−1) ∈ C ,

the (vα−1, v0, . . . , vα−2|v′β−1, v
′

0, . . . , v
′

β−2) ∈ C .
Let Rα,β = Z2[x]/〈xα − 1〉 × Z2[u3][x]/〈xβ − 1〉. Define

a map

9 : Zα2 × Z2[u3]β → Rα,β
ς = (c|c′) 7→ ς (x) = (c(x), c′(x)),

where (c|c′) = (c0, c1, . . . , cα−1|c′0, c
′

1, . . . , c
′

β−1), c(x) =
c0 + c1x + · · · + cα−1xα−1 and c′(x) = c′0 + c′1x + · · · +
c′β−1x

β−1.
For any e(x) = e0 + e1x + · · · + etx t ∈ Z2[u3][x] and

ς (x) = (c(x), c′(x)) ∈ Rα,β , define the Z2[u3][x]-scalar
multiplication

e(x) ∗ ς (x) = (θ (e(x))c(x), e(x)c′(x)),

where θ (e(x)) = θ (e0)+θ (e1)x+· · ·+θ (et )x t . Clearly, under
this scalar multiplication and the usual addition of polynomi-
als, Rα,β forms a Z2[u3][x]-module. Therefore, we have that
C is a Z2Z2[u3]-additive cyclic code if and only if 9(C ) is
a Z2[u3][x]-submodule of Rα,β . In this paper, we identify C
with 9(C ).

Define a map

π : Z2[u3] → Z3
2

d = a+ bu+ cu2 7→ (a, b, c).

Clearly, the ring Z2[u3] is isomorphic to Z3
2 as an additive

group. If C is a Z2Z2[u3]-additive code, then it is additively
isomorphic to a group of the form Zk02 × Z3k1

2 × Z2k2
2 ×

Zk32 . Therefore, C is of type (α, β; k0; k1, k2, k3) and has
2k023k122k22k3 codewords. Let X (respectively Y ) be the
set of Z2 (respectively Z2[u3]) coordinate positions. Then
|X | = α and |Y | = β. We call CX (respectively CY ) the
punctured code of C by deleting the coordinates outside
X (respectively Y ). Note that C is said to be separable if
C = CX × CY .
Generally although C is not a free Z2[u3]-module, there

exist {wi}
k0
i=1 and {vj}

k1+k2+k3
j=1 such that for every codeword

of C it can be uniquely expressed in the form
∑k0

i=1 λiwi +∑k1+k2+k3
j=1 µjvi, where λi ∈ Z2, µj ∈ Z2[u3]. Furthermore,

the vectors wi and vj form a generator matrix G of size (k0 +
k1+k2+k3)× (α+β) for the code C and k0+k1+k2+k3 is
called the rank of C denoted by k0+k1+k2+k3 = rank(C ).
Further, G can be written as G = (GX |GY ), where GX is a
matrix of size (k0+k1+k2+k3)×α overZ2 andGY is a matrix
of size (k0+k1+k2+k3)×β over Z2[u3]. Note thatGX is the
generator matrix of CX andGY is the generator matrix of CY .
Define a Gray map φ : Z2[u3] → Z4

2 as φ(0) = 0000,
φ(1) = 0101, φ(u) = 0011, φ(1+ u) = 0110, φ(u2) = 1111,
φ(1 + u2) = 1010, φ(u + u2) = 1100 and φ(1 + u + u2) =
1001. Clearly, φ is a Z2-linear map. Extend this Gray map as
follows

8 : Zα2 × Z2[u3]β → Zn2
(v|v′) 7→ (v0, v1, . . . , vα−1|φ(v′0), φ(v

′

1), . . . , φ(v
′

β−1)),

where v = (v0, . . . , vα−1) ∈ Zα2 and v′ = (v′0, . . . , v
′

β−1) ∈
Z2[u3]β . Then the Gray image 8(C ) = C is a binary linear
code of length n = α + 4β.
From the Ref. [33], for x ∈ Z2[u3], define the homoge-

neous weight of x

wthom(x) =


0, if x = 0,
4, if x ∈ 〈u2〉\{0},
2, if x ∈ Z2[u3]\〈u2〉.

Note that, for x ∈ Z2[u3], wthom(x) = wtH (φ(x)). For
w′ = (w′0,w

′

1, . . . ,w
′

β−1) ∈ Z2[u3]β , define the homoge-

neous weight the of w′ as wthom(w′) =
∑β−1

i=0 wthom(w′i). For
any two vectors w′, v′ ∈ Z2[u3]β , define the homogeneous
distance dhom(w′, v′) as dhom(w′, v′) = wthom(w′−v′). Clearly,
we have wthom(w′) = wtH (8(w′)) =

∑β−1
i=0 wtH (φ(w′i)) and

dhom(w′, v′) = dH (8(w′),8(v′)).
For a vector w = (w|w′) ∈ Zα2 × Z2[u3]β , define

the weight of w as wt(w) = wtH (w) + wthom(w′) =
wtH (w) + wtH (8(w′)) = wtH (8(w)) and for two vectors
w, v ∈ Zα2 × Z2[u3]β , define the distance of w and v as
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d(w, v) = wt(w − v). Denote d(C ) to be the minimum
distance of C . Clearly, the Gray map 8 is an isometry from
(Zα2 × Z2[u3]β , d) to (Zα+4β2 , dH ).
Let w = (w|w′) = (w0,w1, . . . ,wα−1|w′0,w

′

1, . . . ,w
′

β−1)
and v = (v|v′) = (v0, v1, . . . , vα−1|v′0, v

′

1, . . . , v
′

β−1), where
w, v ∈ Zα2 × Z2[u3]β . Define an inner product of w and v
as [w, v] = u2[w, v]2 + [w′, v′]u ∈ Z2[u3], where [w, v]2 =∑α−1

i=0 wivi is the inner product ofw and v overZ2, [w′, v′]u =∑β−1
j=0 w′jv

′
j is the inner product of w

′ and v′ over Z2[u3]. With
respect to the above inner product, we can define the dual
code of Z2Z2[u3]-additive code C as

C⊥ = {v ∈ Zα2 × Z2[u3]β | [w, v] = 0 for all w ∈ C }.

It is easy to prove that C⊥ is also a Z2Z2[u3]-additive code.
Particularly, if C is a separable code, then C⊥ = (CX )⊥ ×
(CY )⊥. Further,C is self-orthogonal ifC ⊂ C⊥ and self-dual
if C = C⊥.

Let C be a Z2Z2[u3]-additive code with the generator
matrix G = (GX |GY ). Define the product

G · G> = u2GXG>X + GYG
>
Y ∈ M (Z2[u3]), (1)

where all elements in GX are taken from Z2, all elements in
GY are taken from Z2[u3],M (Z2[u3]) denotes the matrix ring
over Z2[u3]. Note that we can use usual matrix multiplication
inmatricesGXG>X andGYG>Y , but we can not use usualmatrix
multiplication in matrix G · G>.

III. Z2Z2[u3]-ADDITIVE CYCLIC CODES ARE
ASYMPTOTICALLY GOOD
In this section, we mainly study asymptotic properties of
the relative minimum distance and the rate of Z2Z2[u3]-
additive cyclic codes. The relative minimum distance and
the rate of Z2Z2[u3]-additive cyclic code C are denoted by
1(C ) = d(C )

n and R(C ) = rank(C )
n respectively, where

d(C ) is the minimum distance of C and rank(C ) is the
rank of C .
Definition 3: A class of Z2Z2[u3]-additive cyclic codes

is called asymptotically good if there exist a sequence
of Z2Z2[u3]-additive cyclic codes C1,C2, . . . ,Ci, . . . with
length m1,m2, . . . ,mi, . . ., when mi → ∞, both the rela-
tive minimum homogeneous distance and the rate of Ci are
positively bounded from below.

A. A CLASS OF Z2Z2[u3]-ADDITIVE CYCLIC CODES
Let Rkm = Z2[x]/〈xkm − 1〉, Rlm = Z2[x]/〈x lm − 1〉, R′lm =
Z2[u3][x]/〈x lm − 1〉, where m, k, l are positive integers such
that gcd(m, 2) = 1 and 2, k, l are pairwise prime.

Clearly, u2Z2[u3] = u2Z2 ⊂ Z2[u3]. Let

u2R′lm =

{
b′(x) =

lm−1∑
i=0

b′ix
i
∈ R′lm|b

′
i = u2bi, bi ∈ Z2

}
.

It is well known that u2R′lm ⊂ R′lm is a Z2[u3][x]-submodule
of R′lm.

For any f (x) ∈ Z2[x] and (a(x), b(x)) ∈ Rkm × Rlm, define
the following scalar multiplication

f (x)(a(x), b(x))

=

(
f (x)a(x) (mod xkm − 1), f (x)b(x) (mod x lm − 1)

)
.

For the simplify, we write the above equation as
(f (x)a(x), f (x)b(x)). Clearly, in terms of the pairwise coor-
dinate addition and the scalar multiplication by the elements
of Rklm = Z2[x]/〈xklm − 1〉, the Rkm × Rlm forms an Rklm-
module.

Define a map

σ : Rlm → u2R′lm

b(x) =
lm−1∑
i=0

bix i 7→ b′(x) = u2b(x) =
lm−1∑
i=0

u2bix i,

where bi ∈ Z2. Clearly, σ is a Z2[x]-module isomorphism.
Thus, Rkm × u2R′lm also forms an Rklm-module.

For any (a(x), b(x)) ∈ Rkm × Rlm and f (x) ∈ Rklm, let

Ca,b = {(f (x)a(x), u2f (x)b(x)) ∈ Rkm × u2R′lm}.

Then Ca,b is an Rklm-submodule of Rkm × u2R′lm generated
by (a(x), u2b(x)). By the Z2[x]-module isomorphism σ , Ca,b
can be viewed as a Z2-linear space.
Proposition 1: Let Ca,b = {(f (x)a(x), u2f (x)b(x)) ∈

Rkm × u2R′lm|f (x) ∈ Rklm}, where a(x) ∈ Rkm, b(x) ∈ Rlm
are monic polynomials. Let ga,b(x) = gcd

(
a(x), x

km
−1

xm−1

)
·

gcd
(
b(x), x

lm
−1

xm−1

)
·gcd(a(x), b(x), xm−1)· (x

klm
−1)·(xm−1)

(xkm−1)·(xlm−1) and

ha,b(x) = xklm−1
ga,b(x)

. Then there is an Rklm-module isomorphism:

〈ga,b(x)〉Rklm ∼= Ca,b

c(x) 7→ (c(x)a(x), u2c(x)b(x)),

and rank(Ca,b) = deg(ha,b(x)).
Proof: Define a map

χa,b : Rklm → Rkm × u2R′lm
f (x) 7→ (f (x)a(x), u2f (x)b(x)).

Clearly, χa,b is a well defined Rklm-module homomorphism.
For f (x) ∈ Rklm, f (x) ∈ ker(χa,b) if and only if{

f (x)a(x) ≡ 0 (mod xkm − 1)
f (x)b(x) ≡ 0 (mod x lm − 1)

if and only if
f (x)a(x) ≡ 0

(
mod xkm−1

xm−1

)
f (x)b(x) ≡ 0

(
mod xlm−1

xm−1

)
f (x)a(x) ≡ 0 (mod xm − 1)
f (x)b(x) ≡ 0 (mod xm − 1)
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if and only if

f (x) ≡ 0

(
mod

xkm−1
xm−1

gcd
(
a(x), x

km−1
xm−1

)
)

f (x) ≡ 0

(
mod

xlm−1
xm−1

gcd
(
b(x), x

lm−1
xm−1

)
)

f (x) ≡ 0
(
mod xm−1

gcd(a(x),b(x),xm−1)

)
if and only if

f (x) ≡ 0 (mod Q1(x) · Q2(x) · Q3(x)) ,

where Q1(x) =
xkm−1
xm−1

gcd
(
a(x), x

km−1
xm−1

) , Q2(x) =
xlm−1
xm−1

gcd
(
b(x), x

lm−1
xm−1

) and

Q3(x) = xm−1
gcd(a(x),b(x),xm−1) .

Thus, ker(χa,b) = 〈ha,b(x)〉Rklm . Since gcd(m, 2) = 1
and 2, k, l are pairwise prime, then klm is odd. Thus, Rklm
is semisimple and

Rklm = 〈ga,b(x)〉Rklm ⊕ 〈ha,b(x)〉Rklm .

Clearly, the above Rklm-module homomorphism χa,b induces
an Rklm-isomorphism:

〈ga,b(x)〉Rklm → Ca,b

c(x) 7→ (c(x)a(x), u2c(x)b(x)).

In particular,

rank(Ca,b) = rank(〈ga,b(x)〉Rklm )

= klm− deg(ga,b(x)) = deg(ha,b(x)).

By Proposition 1, we can give a generator matrix of Ca,b.
Let a(x) =

∑km−1
i=0 aix i ∈ Rkm and b(x) =

∑lm−1
i=0 bix i ∈ Rlm.

Let

A =


a0 a1 · · · akm−1

akm−1 a0 · · · akm−2
...

...
. . .

...

a1 a2 · · · a0


and

B =


b0 b1 · · · blm−1

blm−1 b0 · · · blm−2
...

...
. . .

...

b1 b2 · · · b0

 .
Define the matrix G as

A u2B
A u2B
...

...

A u2B


klm×(k+l)m

.

If the rank of Ca,b is r , then the first r rows of G form a
generator matrix of Ca,b.
Example 1: Let m = 1, k = 5, l = 7. Let

Ca,b be a Z2Z2[u3]-additive cyclic code with generator

(a(x), u2b(x)) ∈ R5 × u2R′7, where a(x) = x3 + x ∈ R5,
b(x) = x4 + x3 + x2 + 1 ∈ R7.
Let ga,b(x) = gcd

(
a(x), x

5
−1

x−1

)
· gcd

(
b(x), x

7
−1

x−1

)
·

gcd(a(x), b(x), x − 1) · (x
35
−1)·(x−1)

(x5−1)·(x7−1)
. Then ga,b(x) = x28 +

x25+ x24+ x21+ x20+ x19+ x18+ x17+ x15+ x13+ x12+
x11 + x9 + x8 + x6 + x2 + x + 1. Since h(x) = x35−1

ga,b(x)
=

x7 + x4 + x3 + x + 1, then the rank of Ca,b is 7. Clearly,
the following matrix

0 1 0 1 0 u2 0 u2 u2 u2 0 0
0 0 1 0 1 0 u2 0 u2 u2 u2 0
1 0 0 1 0 0 0 u2 0 u2 u2 u2

0 1 0 0 1 u2 0 0 u2 0 u2 u2

1 0 1 0 0 u2 u2 0 0 u2 0 u2

0 1 0 1 0 u2 u2 u2 0 0 u2 0
0 0 1 0 1 0 u2 u2 u2 0 0 u2


forms a generator matrix of Ca,b.

B. ASYMPTOTICALLY GOOD Z2Z2[u3]-ADDITIVE CYCLIC
CODES
By the Chinese remainder theorem,

Rm = Z2[x]/〈xm − 1〉

= Z2[x]/〈x − 1〉 ⊕ Z2[x]/〈xm−1 + · · · + x + 1〉.

Clearly, the rank of cyclic code generated by xm−1 + · · · +
x + 1 is 1. Thus, we only consider the cyclic code generated
by x − 1.

Let

Jm = 〈x − 1〉Rm ,

Jkm =
〈
xkm − 1
xm − 1

(x − 1)
〉
Rkm

,

Jlm =
〈
x lm − 1
xm − 1

(x − 1)
〉
Rlm

,

Jklm =
〈
xklm − 1
xm − 1

(x − 1)
〉
Rklm

,

J ′lm =
〈
x lm − 1
xm − 1

(x − 1)
〉
R′lm

,

u2J ′lm =
〈
u2
(
xkm − 1
xm − 1

(x − 1)
)〉

u2R′lm

.

If (a(x), b(x)) ∈ Jkm×Jlm, it is easy to see that 〈ga,b(x)〉Rklm ⊆
Jklm by Proposition 1, then the Z2Z2[u3]-additive cyclic code
Ca,b can be reformulated as Ca,b = {(f (x)a(x), u2f (x)b(x)) ∈
Rkm × u2Rlm}, where f (x) ∈ Jklm.
For any f (x) ∈ Jm, define

Cā,b̄ = {(f (x)ā(x), u
2f (x)b̄(x)) ∈ Rm × u2R′m}, (2)

where (ā(x), b̄(x)) ∈ Jm × Jm and R′m = Z2[u3]/〈xm − 1〉.
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Let u2J ′m = 〈u
2(x − 1)〉u2R′m . Define a map

η : Jm × u2J ′m → Jkm × u2J ′lm

(ā(x), u2b̄(x)) 7→
(
a(x), u2b(x)

)
,

where a(x) = ā(x) x
km
−1

xm−1 and b(x) = b̄(x) x
lm
−1

xm−1 . It is obvious
that η is an Rklm-module isomorphism and Ca,b = η(Cā,b̄).
The sets Jkm × u2J ′lm and Jm × u2J ′m are probability space

of Rkm × u2R′lm and Rm × u2R′m respectively, whose samples
are afforded with equal probability. Further, Ca,b is a random
code over probability space Jkm × u2J ′lm. Therefore R(Ca,b)
and1(Ca,b) are random variables over this probability space.
Thus, by the definition of asymptotically good, the prob-
lem has been transformed into studying the probabilities of
Pr(1(Ca,b) > δ) and Pr(rank(Ca,b) = m − 1), where δ is a
real number such that 0 < δ < 1.

By the map η, we have that

wt(a(x), u2b(x)) = wtH (a(x))+ wthom(u2b(x))

= kwtH (ā(x))+ lwthom(u2b̄(x))

≥ wt(ā(x), u2b̄(x)).

It means that wt(Ca,b) ≥ wt(Cā,b̄). Since 1(Ca,b) =
d(Ca,b)
(k+l)m =

wt(Ca,b)
(k+l)m and 1(Cā,b̄) =

d(Cā,b̄)
2m =

wt(Cā,b̄)
2m , then

we have 1(Ca,b) ≥ 2
k+l4(Cā,b̄). Further, since |1(Ca,b) >

δ| ≥ |1(Cā,b̄) >
k+l
2 δ| and |Jkm × Jlm| = |Jm × Jm|, then

Pr(1(Ca,b) > δ) =
|1(Ca,b) > δ|

|Jkm × Jlm|
≥
|1(Cā,b̄) >

k+l
2 δ|

|Jm × Jm|

= Pr
(
1(Cā,b̄) >

k + l
2

δ

)
.

Thus, we can transform the problem again into studying the
probabilities of Pr

(
1(Cā,b̄) >

k+l
2 δ

)
and Pr(rank(Ca,b) =

m− 1).
Definition 4: The function h2(x) is called a 2-ary entropy

if for 0 < x < 1, h2(x) = −xlog2x − (1− x)log2(1− x).
Note that for a real number 0 < δ < 1, we have that

h2(δ) < 1
2 .

Definition 5: The variable Yf over the probability space
Jm × u2J ′m is called Bernoulli variable if for f (x) ∈ Jm,
(ā(x), u2b̄(x)) ∈ Jm × u2 J ′m satisfies

Yf =

{
1, 1 ≤ wt(f (x)ā(x), u2f (x)b̄(x)) ≤ 2mδ,
0, otherwise.

Moreover, the set {f (x)ā(x) ∈ Rm|ā(x) ∈ Jm} is an ideal of Rm
generated by f (x) and {u2f (x)b̄(x) ∈ u2 R′m|b̄(x) ∈ Jm} is an
ideal of u2R′m generated by u2f (x). Let If = 〈f (x)〉Rm ⊆ Jm
and rf = rank(If ). Let I ′f = 〈u

2f (x)〉u2R′m ⊆ u2J ′m. Since I
′
f is

also a Z2-linear space, then rank(I ′f ) = rf .
Lemma 1 [34]: Let If ×If ⊆ Rm×Rm and (If ×If )≤2mδ =
{(f1(x), f2(x)) ∈ If × If | wt(f1(x), f2(x)) ≤ 2mδ}. Then∣∣(If × If )≤2mδ∣∣ ≤ 4rf h2(δ).

Lemma 2: E(Yf ) ≤ 4−rf+rf h2(δ).
Proof: Let (If × I ′f )

≤2mδ
= {(f1(x), u2f2(x)) ∈ If ×

I ′f |wt(f1(x), u
2f2(x)) ≤ 2mδ}. By Definition 5, the expecta-

tion E(Yf ) = Pr(Yf = 1) =
|(If×I ′f )

≤2mδ
|−1

If×I ′f
. For f1(x), f2(x) ∈

Rm, by the definition 8, we have

wt(f1(x), u2f2(x)) = wtH (f1(x))+ wthom(u2f2(x))

= wtH (f1(x))+ wtH (8(u2f2(x)))

= wtH (f1(x))+ 4wtH (f2(x))

≥ wtH (f1(x), f2(x)).

Thus, ∣∣∣(If × I ′f )≤2mδ∣∣∣ ≤ ∣∣∣(If × If )≤2mδ∣∣∣ .
Moreover, we know that rank(I ′f ) = rank(If ) = rf . There-
fore, by Lemma 1, we have

E(Yf ) =
|(If × I ′f )

≤2mδ
| − 1

|If × I ′f |
≤
|(If × If )≤2mδ|
|If × If |

≤
4rf hp(δ)

4df
= 4−rf+rf hp(δ).

Lemma 3 [12]: Let xm−1
x−1 = p1(x)p2(x) · · · ps(x), where

p1(x), . . . , ps(x) are irreducible polynomials in Z2[x] and
pk (x) be the lowest degree polynomial in pi(x), i =
1, 2, . . . , s. Let km = deg(pk (x)) and r be an integer with
km ≤ r ≤ m − 1. For any non-zero ideal I of Rm, if I ⊆
Jm, then rank(I ) ≥ km and the number of non-zero ideals
contained in Jm of rank r is at most m

r
km .

Lemma 4: Pr(1(Cā,b̄) ≤ δ) ≤
∑m−1

j=km 4
−j
(
1
2−h2(δ)−

log2m
2km

)
,

where 0 < δ < 1 is a real number such that hp(δ) < 1
2 and

km is defined as in Lemma 3.
Proof: Let Y =

∑
f (x)∈Jm Yf denote the num-

ber of f (x) ∈ Jm such that the non-zero codeword
(f (x)ā(x), u2f (x)b̄(x)) ofCā,b̄ with weight at most 2mδ. Since

1(Cā,b̄) =
d(Cā,b̄)
2m =

wt(Cā,b̄)
2m , then

Pr(1(Cā,b̄) ≤ δ) = Pr(wt(Cā,b̄) ≤ 2mδ) = Pr(Y > 0)

≤ E(Y ) =
∑

f (x)∈Jm

E(Yf ).

For any ideal I ≤ Jm, let I∗ = {f (x) ∈ I |If = I }, where
If = 〈f (x)〉Rm ⊆ Jm and rank(If ) = rf . Then I∗ = {f (x) ∈
I |rf = rank(I )}. Clearly, Jm =

⋃
I≤Jm I

∗, where I runs
through the ideals contained in Jm. By Lemma 3, we have
km ≤ rank(I ) ≤ m − 1 and the number of I ≤ Jm with
rank(I ) = j is less than m

j
km . Therefore,

E(Y ) =
∑

f (x)∈Jm

E(Yf ) =
∑
I≤Jm

∑
f (x)∈I∗

E(Yf )
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=

m−1∑
j=km

∑
I≤Jm,

rank(I )=j

∑
f (x)∈I∗

E(Yf )

≤

m−1∑
j=km

m
j
km

∑
f (x)∈I∗

E(Yf ).

By Lemma 2 and the fact that |I∗| ≤ |I | = 2j, we have∑
f (x)∈I∗

E(Yf ) ≤
∑

f (x)∈I∗
4−j+jh2(δ)

≤ 2j4−j+jh2(δ) = 4−
1
2 j+jh2(δ).

Since j ≥ km, then log2m ≤
jlog2m
km

. Thus, we have

E(Y ) ≤
m−1∑
j=km

m
j
km 4−

1
2 j+jh2(δ)

=

m−1∑
j=km

2
jlog2m
km 4−

1
2 j+jh2(δ)

=

m−1∑
j=km

4
−j
(
1
2−h2(δ)−

log2m
2km

)
.

For any f (x) ∈ Jmi , let

C i
ā,b̄
= {(f (x)ā(x), u2f (x)b̄(x)) ∈ Rmi × u

2R′mi} (3)

be a random Z2Z2[u3]-additive cyclic code of length 2mi.
In fact, there exist some odd integers m1,m2,m3, . . . such

that when mi→∞, limi→∞
log2mi
kmi
= 0, where kmi is defined

as in Lemma 3. Thus, we give the following proposition.
Proposition 2: Let 0 < δ < 1 be a real number and

hp(δ) < 1
2 . Then

limi→∞Pr
(
1
(
C i
ā,b̄

)
> δ

)
= 1.

Proof: When mi → ∞, then limi→∞
log2mi
kmi
= 0. Since

hp(δ) < 1
2 , then there exist a positive integer N and a real

number ε such that when i > N , 1
2 − h2(δ) −

log2mi
2kmi

≥ ε.
Thus, by Lemma 4,

limi→∞Pr
(
1
(
C i
ā,b̄

)
≤ δ

)
≤ limi→∞

mi−1∑
j=km

4
−j
(
1
2−h2(δ)−

log2mi
2kmi

)

≤ limi→∞

mi−1∑
j=kmi

4−jε ≤ limi→∞mi4−kmiε

= limi→∞4
−kmi

(
ε−

log2mi
2kmi

)
.

limi→∞kmi → ∞ since limi→∞
log2mi
kmi

= 0. Thus,

limi→∞4
−kmi

(
ε−

log2mi
2kmi

)
= 0. Therefore,

limi→∞Pr
(
1
(
C i
ā,b̄

)
> δ

)
= 1.

Since Pr
(
1(Ca,b

)
> δ) ≥ Pr

(
1(Cā,b̄) >

k+l
2 δ

)
, then if

h2( k+l2 δ) <
1
2 , we have the following corollary.

Corollary 1: Let 0 < δ < 1 and hp( k+l2 δ) <
1
2 . Then

Pr
(
1(C i

a,b

)
> δ) = 1.

In the following, we study the Pr
(
rank(C i

a,b) = mi − 1
)
.

We need the following lemma.
Lemma 5 [12]: For any (ā(x), b̄(x)) ∈ Jm × Jm, let Cā,b̄

be given as in (2). Then rank(Cā,b̄) ≤ m − 1. Note that
rank(Cā,b̄) = m−1 if and only if there is no irreducible factor
p(x) of x

m
−1

x−1 in Z2[x] such that p(x)|ā(x) and p(x)|b̄(x).
Proposition 3: Let C i

ā,b̄
be given as in (3). Then

limi→∞Pr
(
rank(C i

ā,b̄
) = mi − 1

)
= 1.

Proof: Let xmi − 1 = (x − 1)pi1(x)pi2(x) · · · pir (x),
where pi1(x), . . . , pir (x) are distinct irreducible polynomials
in Z2[x]. By the Chinese remainder theorem,

Jmi ' Z2[x]/〈pi1(x)〉 × · · · × Z2[x]/〈pir (x)〉

f (x) 7→ (fi1(x), . . . , fir (x)),

where fij(x) = f (x)(mod pij(x)), j = 1, 2, . . . , r .
Let (ā(x), u2b̄(x)) ∈ Jmi × u2J ′mi , where ā(x), b̄(x) ∈ Jmi .

By Lemma 5, rank(C i
ā,b̄

) = mi− 1 if and only if pij(x) - ā(x)
and pij(x) - b̄(x) if and only if (aij(x), bij(x)) 6= (0, 0). Let
deg(pij(x)) = hij. Then |Z2[x]/〈pij(x)〉| = 2hij and

Pr
(
(aij(x), bij(x)) 6= (0, 0)

)
=

2hij · 2hij−1

2hij · 2hij
= 1− 4−hij .

Thus,

Pr
(
rank

(
C i
ā,b̄

)
= mi − 1

)
=

r∏
j=1

(1− 4−hij ).

For any j = 1, 2, . . . , r , hij ≥ kmi , where kmi is the degree
of lowest degree polynomial in pi1(x), pi2(x), . . . , pir (x).
Clearly, r ≤ mi−1

kmi
≤

mi
kmi

. Thus,

Pr
(
rank

(
C i
ā,b̄

)
= mi − 1

)
=

r∏
j=1

(1− 4−hij )

≥

(
1− 4−kmi

) mi
kmi

=

(
1− 4−kmi

)4kmi mi
kmi 4

kmi
.
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Since

limi→∞
(
1− 4−kmi

)4kmi mi
kmi 4

kmi

=

(
limi→∞

(
1− 4−kmi

)4kmi)limi→∞ mi
kmi 4

kmi

=

(
1
e

)0

= 1,

then limi→∞Pr
(
rank

(
C i
ā,b̄

)
= mi − 1

)
= 1.

Since η is an isomorphism and Cā,b̄ = η(Ca,b), then we
have the following corollary directly.
Corollary 2: limi→∞Pr

(
rank(C i

a,b) = mi − 1
)
= 1.

According to Corollaries 1 and 2, we obtain the following
main theorem.
Theorem 1: Let 0 < δ < 1 be a real number such that

hp( k+l2 δ) <
1
2 . Then there exist a sequence of Z2Z2[u3]-

additive cyclic codes C1,C2, . . . ,Ci, . . . with block length
(km1, lm1), (km2, lm2), . . . , (kmi, lmi), . . ., when mi → ∞,
the 1(Ci) > δ and limi→∞R(Ci) = 1

k+l .
Proof: By Corollary 1, limi→∞Pr(1(Ci) > δ) = 1,

which implies that there is a positive integer N1 such that,
when i > N1, 1(Ci) > δ. Therefore, deleting the first
N1 codes and renumbering the remaining codes, we say that
1(Ci) > δ.

By Corollary 2, limi→∞Pr
(
rank(C i

a,b) = mi − 1
)
= 1,

which implies that there is a positive integer N2 such that,
when i > N2, rank(C i

a,b) = mi − 1. Therefore,

limi→∞R(Ci) = limi→∞
rank(Ci)
kmi + lmi

= limi→∞
mi − 1
kmi + lmi

=
1

k + l
.

Theorem 1 indicates that Z2Z2[u3]-additive cyclic codes
are asymptotically good.

IV. Z2Z2[u3]-ACD CODES AND RELATED ACD AND LCD
CODES
In this section, we study additive complementary dual-
ity (ACD) codes of Z2Z2[u3]-additive codes.

A. Z2Z2[u3]-ACD CODES
Firstly, we give the definition of Z2Z2[u3]-ACD codes.
Definition 6: Let C be a Z2Z2[u3]-additive code of type

(α, β; k0; k1, k2, k3). If C ∩ C⊥ = {0}, then C is said to be a
Z2Z2[u3]-ACD code. For the Z2Z2[u3]-ACD code C , if β =
0, then it is a binary LCD code of length α and if α = 0, then
it is a Z2[u3]-octonary LCD code of length β.
Proposition 4: Let C ⊆ Zα2 × Z2[u3]β be an ACD code.

For any v ∈ Zα2 × Z2[u3]β , v can be written uniquely as v =
v1 + v2, where v1 ∈ C and v2 ∈ C⊥.

Proof: Since C is a Z2Z2[u3]-ACD code, then C ∩
C⊥ = {0}. Thus, Zα2 × Z2[u3]β can be written as
Zα2 × Z2[u3]β = C ⊕ C⊥. In other word, for any v ∈

Zα2 × Z2[u3]β , there exist unique v1 ∈ C and v2 ∈ C⊥ such
that v = v1 + v2.
Theorem 2: Let C be a Z2Z2[u3]-additive code with the

generator matrix G. Let nonzero vectors v1, v2, . . . , vk be the
rows of G such that G = 〈v1, v2, . . . , vk 〉. Let Z2[u3]× =
{1, u+1, u2+1, u2+u+1}. If [vi, vj] ∈ {0, u2} and [vi, vi] ∈
Z2[u3]× for all i, j ∈ {1, 2, . . . , k} such that i 6= j, then C is
a Z2Z2[u3]-ACD code.

Proof: Let w be any nonzero codeword of C . If w /∈

C⊥, then C is a Z2Z2[u3]-ACD code. Since w ∈ C , then
w =

∑
i∈J λivi, where J = {1, 2, . . . , k} and λi ∈ Z2[u3].

Firstly, assume that there exists j ∈ J such that λj ∈
Z2[u3]×. Then

[w, vj] =
∑
i∈J

λi[vi, vj] =
∑
i∈J\{j}

λi[vi, vj]+ λj[vj, vj].

For i 6= j, since [vi, vj] ∈ {0, u2}, then λi[vi, vj] ∈ {0, u2}.
Since [vj, vj] ∈ Z2[u3]×, then λj[vj, vj] ∈ Z2[u3]×. Thus,
[w, vj] 6= 0 and w /∈ C⊥.
Further, if λi ∈ Imax , let j ∈ J such that λj ∈ {u, u2, u2+u}.

Since [vi, vj] ∈ {0, u2}, then λi[vi, vj] = 0. Thus,

[w, vj] =
∑
i∈J\{j}

λi[vi, vj]+ λj[vj, vj] = λj[vj, vj].

Since [vj, vj] ∈ Z2[u3]×, then λj[vj, vj] 6= 0. Thus, [w, vj] 6=
0 and w /∈ C⊥. Thus, C is a Z2Z2[u3]-ACD code.
The following corollaries can be deduced from Theorem 2

directly.
Corollary 3: Let C be a Z2Z2[u3]-additive code with the

generator matrix G and G · G> = (vij)i,j∈{1,2,...,k}. For all
i, j ∈ {1, 2, . . . , k} such that i 6= j, if vij ∈ {0, u2} and vii ∈
Z2[u3]×, then C is a Z2Z2[u3]-ACD code.
Corollary 4: Let C be a Z2Z2[u3]-additive code with the

generator matrixG. IfG ·G> is nonsingular over Z2[u3], then
C is a Z2Z2[u3]-ACD code.
Note that conditions in Theorem 2, Corollaries 3 and 4 are

only sufficient conditions to prove that C is a Z2Z2[u3]-ACD
code. The reverse statements are not true in general.
Example 2: Let C be a Z2Z2[u3]-additive code generated

by

G =

 1 1 0 u u2 + u u+ 1
0 1 0 1 u u
0 1 1 0 u2 0

 .
ByMagma Computational Algebra System [35], C

⋂
C⊥ =

{0}. Thus, C is an ACD code. Let v1 = (1, 1, 0 | u, u2 +
u, u + 1), v2 = (0, 1, 0 | 1, u, u), v3 = (0, 1, 1 | 0, u2, 0).
Clearly, [v3, v3] = 0 /∈ Z2[u3]×. So it does not satisfy the
conditions of Theorem 2. Further,

G · G> =

 0 u2 0
u2 1 u2

0 u2 0

 ∈ M (Z2[u3]).

Clearly, it does not satisfy the conditions of Corollary 3.
Further,

|G · G>| = 0,
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which implies that it does not satisfy the conditions of
Corollary 4.
Theorem 3: Let C be a binary [α, k] linear code with basis
{v1, v2, . . . , vk}, where α is the length of C and k is the
dimension of C . Let ζ ≥ k and GX be a ζ × α matrix, which
non-zero row vectors are v1, v2, . . . , vk . Let G = (GX | λIζ ),
where λ ∈ Z2[u3]×. Then the Z2Z2[u3]-additive code C
generated by G is an ACD code.

Proof: Let C be the Z2Z2[u3]-additive code generated
by G = (GX | λIζ ). By (1), we have

G · G> = u2GXG>X + λ
2Iζ I>ζ

= u2GXG>X + λ
2Iζ = (vij)i,j∈{1,2,...,ζ },

where all elements in GX belong to {0, 1}. Since all elements
in u2GXG>X are in {0, u2}, then for i 6= j, vij ∈ {0, u2} and
vii ∈ {λ2, λ2 + u2} ⊆ Z2[u3]×. Therefore, by Corollary 3, C
is a Z2Z2[u3]-ACD code.
Example 3: Let C be a binary [3, 3] linear code with the

basis v1 = (0, 1, 0), v2 = (0, 0, 1), v3 = (1, 0, 0). Let ζ = 4,
and C be a Z2Z2[u3]-additive code generated by the matrix

G =


0 1 0 1 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 1 0
0 0 0 0 0 0 1

 .
Let wi be the rows of G for i = 1, 2, 3, 4. Clearly, [wi,wj] =
0 for i 6= j and [wi,wi] ∈ {1, 1 + u2} ⊆ Z2[u3]×. Thus,
by Theorem 3, C is an ACD code.

B. COMPLEMENTARY DUALITY OF C , CX AND CY
In this subsection, we discuss the complementary duality
between C and CX or CY .
Case 1: C is a Z2Z2[u3]-ACD code, CX is a binary LCD

code and CY is a Z2[u3]-octonary LCD code.
Theorem 4: Let C be a separable Z2Z2[u3]-additive code.

Then C is an LCD code if and only if CX is a binary LCD
code and CY is a Z2[u3]-octonary LCD code.

Proof: Let C be separable. Then C = CX ×CY , which
implies thatC⊥ = (CX )⊥×(CY )⊥. IfC is an ACD code, then
for any v = (v|v′) ∈ C ∩ C⊥ and so v = 0, which implies
that v = 0 and v′ = 0. Therefore, CX is an LCD code and CY
is a Z2[u3]-octonary LCD code.
Conversely, let CX be an LCD code and CY be a Z2[u3]-

octonary LCD code. Since C is separable, then for any v =
(v|v′) ∈ C ∩ C⊥, we have that v ∈ CX ∩ (CX )⊥ = {0} and
v′ ∈ CY ∩ (CY )⊥ = {0}, which implies that v = (v|v′) = 0,
i.e. C ∩ C⊥ = {0}. Thus, C is an ACD code.

From Theorem 4, a separable code C is a Z2Z2[u3]-
ACD code if and only if CX is a binary LCD code and
CY is a Z2[u3]-octonary LCD code. However, there exist
non-separable Z2Z2[u3]-ACD codes such that CX is an LCD
code and CY is a Z2[u3]-octonary LCD code. Let us look at
the following example.

Example 4: Let C be a non-separable Z2Z2[u3]-additive
code generated by

G =

 1 0 0 0 u2 u2 + u+ 1
0 1 0 u+ 1 0 u
0 0 1 0 u2 u

 .
ByMagma Computational Algebra System [35], C

⋂
C⊥ =

{0}. Thus, C is a Z2Z2[u3]-ACD code. Moreover, we have
CX

⋂
C⊥X = {0} and CY

⋂
C⊥Y = {0}, Thus, CX is an LCD

code and CY is a Z2[u3]-octonary LCD code.
Case 2: C is a Z2Z2[u3]-ACD code, either CX is a binary

LCD code or CY is a Z2[u3]-octonary LCD code.
In Theorem 3, we have obtained a class of Z2Z2[u3]-ACD

codes, i.e.CX is not an LCD code, butCY is aZ2[u3]-octonary
LCD code since GY = λ2Iζ .

The following result is a special case of Theorem 3.
Theorem 5: Let C be a binary [α, ζ ] self-orthogonal code

generated by the matrix GX . Let G = (GX | λIζ ), where λ ∈
Z2[u3]×. Then CY is a Z2[u3]-octonary LCD code generated
by λIζ , and the matrix G generates a Z2Z2[u3]-ACD code of
type (α, ζ ; 0; ζ, 0, 0).

Proof: Clearly, CY is a Z2[u3]-octonary LCD code.
By (1), we have

G · G> = u2GXG>X + λ
2Iζ I>ζ = λ

2Iζ = (vij)i,j∈{1,2,...,ζ },

since GX generates a self-orthogonal code. Since λ ∈

Z2[u3]×, then λ2 ∈ {1, u2 + 1}. Thus, for i 6= j, vij = 0
and vii ∈ {1, u2 + 1} ⊆ Z2[u3]×. Therefore, by Corollary 3,
C is a Z2Z2[u3]-ACD code.
Example 5: Let C be a binary [5, 2] self-orthogonal code

generated by GX , where

GX =
(
1 1 0 0 0
0 0 1 0 1

)
.

Let G = (GX | λI2), where λ = u + 1 ∈ Z2[u3]×. Then the
matrix (

1 1 0 0 0 u+ 1 0
0 0 1 0 1 0 u+ 1

)
generates a Z2Z2[u3]-additive code. By Magma Computa-
tional Algebra System [35], C ∩ C⊥ = {0}, which implies
that C is a Z2Z2[u3]-ACD code of type (5, 2; 0; 2, 0, 0).
Theorem 5 proves that CY is a Z2[u3]-octonary LCD code,

CX is not an LCD code, but C can be a Z2Z2[u3]-ACD
code. In the following, we will discuss that CX is an LCD
code, CY is not a Z2[u3]-octonary LCD code, but C can
also be a Z2Z2[u3]-ACD code. Similar to the construction of
Theorem 5, let CX be an LCD code generated by λIζ and CY
be a self-orthogonal (self-dual in particular) code generated
by GY . Can G = (λIζ | GY ) generate a Z2Z2[u3]-ACD code?
Let G = (λIζ | GY ). Then, by (1), G · G> = u2λ2Iζ I>ζ +

GYG>Y = u2Iζ + GYG>Y . Since CY is self-orthogonal, then
GYG>Y = 0, i.e. G · G> = u2Iζ . Thus, in general, we can
not confirm that whether C is ACD or not. However, we can
find a class of special Z2Z2[u3]-ACD codes generated by
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G = (GX | GY ) such that CX is an LCD code and CY is not a
Z2[u3]-octonary LCD code.
Proposition 5: Let C be a Z2Z2[u3]-additive code gener-

ated by G = (Iζ | u2Iζ ). Then C is an ACD code.
Proof: Let w = (w|w′) ∈ C ∩ C⊥. Clearly, for all

v = (v|v′) ∈ C , we have 0 = [w, v] = u2[w, v]2 + [w′, v′]u.
Since CY is a self-orthogonal code generated by u2Iζ , then
[w′, v′]u = 0. Since CX is an LCD code generated by Iζ
and [w, v]2 ∈ Z2, then u2[w, v]2 = 0, which implies that
[w, v]2 = 0 and so w = 0. Let vi = (vi|v′i) be the i-th row
of G, where vi denote the i-th row of Iζ and v′i = u2vi. Since
w ∈ C , then there exist λ0, λ1, . . . , λζ−1 ∈ Z2[u3] such that

w =
ζ−1∑
i=0

λivi =

ζ−1∑
i=0

θ (λi)vi|u2
ζ−1∑
i=0

λivi

 .
Thus, w =

∑ζ−1
i=0 θ (λi)vi and w′ = u2

∑ζ−1
i=0 λivi. Since

v0, v1, . . . , vζ−1 are Z2-linearly independent, then w = 0
implying that θ (λi) = 0 i.e. λi = biu+ciu2, where bi, ci ∈ Z2.
Therefore, w′ = u2

∑ζ−1
i=0 λivi = 0. It means that w =

(w|w′) = 0. Thus, C is ACD.
Note that in Proposition 5, CX is an LCD code generated

by Iζ and CY is not a Z2[u3]-octonary LCD code since CY is
a self-orthogonal code generated by u2Iζ .
Example 6: LetC be aZ2Z2[u3]-linear code generated by

G =

 1 0 0 u2 0 0
0 1 0 0 u2 0
0 0 1 0 0 u2

 .
By Magma Computational Algebra System [35], C ∩ C⊥ =
{0}, which implies that C is a Z2Z2[u3]-ACD code.

C. BINARY LCD CODES FROM Z2Z2[u3]-ACD CODES
Although Z2Z2[u3]-linear codes are ACD codes, their binary
Gray images are not necessary LCD codes. Thus, in the
following, we give a class of Z2Z2[u3]-ACD codes such that
their binary Gray images are LCD codes.
Theorem 6: Let C be a Z2Z2[u3]-ACD code generated by

the matrix G = (GX | GY )m×(α+β), where GX generates a
self-orthogonal code CX and GY generates a linear code CY .
If the row vectors of GY are Z2[u3]-linearly independent and
8(CY ) is a binary LCD code, then the binary Gray image
8(C ) is an LCD code.

Proof: Let w = (w|w′) ∈ C such that 8(w) =
(w|8(w′)) ∈ C ∩ C⊥, where C = 8(C ). If we can prove
that 8(w) = 0, then C is a binary LCD code.
For all v = (v|v′) ∈ C , 8(v) = (v|8(v′)) ∈ 8(C ) =

C , since 8(w) = (w|8(w′)) ∈ C ∩ C⊥, then 8(w) ∈ C⊥.
Clearly,

0 = [8(w),8(v)]2 = [w, v]2 + [8(w′),8(v′)]2. (4)

Since w, v ∈ CX and CX is a self-orthogonal code, then
[w, v]2 = 0. Thus, by (4), [8(w′),8(v′)]2 = 0. Since
8(w′),8(v′) ∈ 8(CY ) and8(CY ) is a binary LCD code, then
[8(w′),8(v′)]2 = 0 implying 8(w′) = 0. Thus, w′ = 0.

In the following, we will prove that for any w = (w|w′) ∈
C , if w′ = 0, then w = 0. For i ∈ {0, 1, . . . ,m − 1}, let
vi = (vi|v′i) be the i-th row of G, where vi and v′i denote the
i-th row of GX and GY , respectively. Since w ∈ C , then there
exist λ0, λ1, . . . , λm−1 ∈ Z2[u3] such that

w =
m−1∑
i=0

λivi =

(
m−1∑
i=0

θ (λi)vi|
m−1∑
i=0

λiv′i

)
.

Thus, w =
∑m−1

i=0 θ (λi)vi and w′ =
∑m−1

i=0 λiv
′
i. Since

v′0, v
′

1, . . . , v
′

m−1 are Z2[u3]-linearly independent, then w′ =
0 implying that λi = 0 for all i = 0, 1, . . . ,m− 1. Therefore,
w =

∑m−1
i=0 θ (λi)vi = 0. It means that w = 0 and w =

(w|w′) = 0. Thus, 8(w) = 0.
Example 7: Let C be a Z2Z2[u3]-ACD code generated by

G =
(
1 1 u2 + u+ 1 u
0 0 u2 u+ 1

)
,

where

GX =
(
1 1
0 0

)
and GY =

(
u2 + u+ 1 u

u2 u+ 1

)
.

Clearly, GX generates a self-orthogonal code CX and the row
vectors of GY are Z2[u3]-linearly independent. The code CY
has 64 codewords. By applying the Gray map 8 to each
codeword of CY , the generator matrix of CY = 8(CY ) is

1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 1
0 0 1 1 1 0 1 0
0 0 0 0 0 1 1 0

 .
ByMagma Computational Algebra System [35], CY ∩C⊥Y =
{0}, which implies that CY is a binary LCD code.
Similarly, by applying the Gray map 8 to each codeword

of C , the generator matrix of C = 8(C ) is given by
1 1 0 0 0 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 1 1 0 0 1
0 0 0 0 1 1 1 0 1 0

 .
By Magma Computational Algebra System [35], we have
C ∩ C⊥ = {0}. It means that the binary Gray image of C
is an LCD code. More importantly, C is an optimal [10, 4, 4]
binary linear code.
Example 8: Let C be a Z2Z2[u3]-ACD code generated by

G =
(
1 1 1 1 u2 + 1 u
1 0 1 0 u2 u+ 1

)
,

where

GX =
(
1 1 1 1
1 0 1 0

)
and GY =

(
u2 + 1 u
u2 u+ 1

)
.

Clearly, GX generates a self-orthogonal code CX and the row
vectors of GY are Z2[u3]-linearly independent. The code CY
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has 64 codewords. By applying the Gray map 8 to each
codeword of CY , the generator matrix of CY = 8(CY ) is

1 0 0 1 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 .
ByMagma Computational Algebra System [35], CY ∩C⊥Y =
{0}, which implies that CY is a binary LCD code.

Similarly, by applying the Gray map 8 to each codeword
of C , the generator matrix of C = 8(C ) is given by

1 0 1 0 0 0 0 0 0 0 1 1
0 1 0 1 0 0 0 0 1 1 1 1
0 0 0 0 1 0 0 1 1 1 0 0
0 0 0 0 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 1 1 0 0 1

 .
By Magma Computational Algebra System [35], we have
C ∩ C⊥ = {0}. It means that the binary Gray image of C
is an LCD code. More importantly, C is an optimal [12, 5, 4]
binary linear code.

V. CONCLUSION
In this paper, we mainly studied Z2Z2[u3]-additive cyclic
codes and Z2Z2[u3]-ACD codes. We constructed a class
of asymptotically good Z2Z2[u3]-additive cyclic codes, and
gave some sufficient conditions to show that Z2Z2[u3]-
additive codes are ACD codes. Moreover, we gave a class of
Z2Z2[u3]-ACD codes, which binary Gray images are LCD
codes. An computational example showed that this class
of Z2Z2[u3]-ACD codes can produce optimal binary LCD
codes. As an open problem, it is interesting to study ACD
codes over some other additive structures.
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