IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 3, 2021, accepted April 22, 2021, date of publication April 28, 2021, date of current version May 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3076207

PMBA: A Parallel MCMC Bayesian
Computing Accelerator

YUFEI NI'“1, YANGDONG DENG?, (Senior Member, IEEE), AND SONGLIN LI"*?2

!nstitute of Microelectronics, Tsinghua University, Beijing 100084, China
2School of Software, Tsinghua University, Beijing 100084, China

Corresponding author: Yangdong Deng (dengyd @mail.tsinghua.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018 YFB 1702600, and in
part by the NSFC Key Scientific Instrument and Equipment Development Project under Grant 20151310834.

ABSTRACT Bayesian computing, including sampling probability distributions, learning graphic model,
and Bayesian reasoning, is a powerful class of machine learning algorithms with such wide applications
as biologic computing, financial analysis, natural language processing, autonomous driving, and robotics.
The central pattern of Bayesian computing is the Markov Chain Monte Carlo (MCMC) computing, which
is compute-intensive and lacks explicit parallelism. In this work, we propose a parallel MCMC Bayesian
computing accelerator (PMBA) architecture. Designed as a probabilistic computing platform with native
support for efficient single-chain parallel Metropolis-Hastings based MCMC sampling, PMBA boosts the
performance of probabilistic programs with a massive-parallelism microarchitecture. PMBA is equipped
with on-chip random number generators as the built-in source of randomness. The sampling units of
PMBA are designed for parallel random sampling through a customized SIMD pipeline supporting data
synchronization every iteration. A respective computing framework supporting automatic parallelization and
mapping of probabilistic programs is also developed. Evaluation results demonstrate that PMBA enables a
17-21 folds speedup over a TITAN X GPU on MCMC sampling workload. On probabilistic benchmarks,
PMBA outperforms prior best solutions by factor of 3.6 to 10.3. An exemplar based visual category learning
algorithm is implemented on PMBA to demonstrate its efficiency and effectiveness for complex statistical

learning problems.

INDEX TERMS Accelerator architectures, Bayesian methods, FPGA, MCMC, parallel machines.

I. INTRODUCTION

As a foundation of modern statistics, Bayesian learning and
inference theory provides efficient tools to evaluate and
update beliefs in the presence of new observations. Due
to its advantages in learning with small samples, Bayesian
reasoning has received significant successes in the past a
few decades [1]. Bayesian models have been built for a
wide range of machine leaning applications including com-
puter vision [2], document classification [3], object per-
ception [4], word learning [5], working memory [6], and
sensorimotor integration [7]. For instance, Lake et al. [8]
realized a Bayesian model that could learn from sparse data
and successfully recognize and write characters that are
indistinguishable from those written by human. In addition,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanbo Chen

65536

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

an increasing amount of evidence suggests that Bayesian
reasoning account for many essential cognitive processes
of human beings [9], [10] due to its natural advantages in
handling uncertainties and providing interpretable results.
Recently, a notable direction attracting considerable inter-
ests is to combine Bayesian reasoning with deep neural
networks [11].

At the core of Bayesian computing is the computation of
probabilistic distributions. As in many cases it is infeasible
to directly derive the analytical formulation of a complex
joint distribution over a large number of random variables,
the Markov Chain Monte Carlo (MCMC) algorithm was
proposed to approximate an arbitrary distribution for further
calculation (e.g. likelihood function). However, the inherent
sequential nature and computation intensity of MCMC pose
essential challenges to perform Bayesian computations in an
efficient manner [12]. To mitigate the computing pressure,

VOLUME 9, 2021

https://orcid.org/0000-0002-3868-3025
https://orcid.org/0000-0001-8702-9778
https://orcid.org/0000-0001-5588-2010

Y. Ni et al.: PMBA: Parallel MCMC Bayesian Computing Accelerator

IEEE Access

different approaches, such as splitting data into sub-sets for
parallel calculating [13], sampling multiple candidates simul-
taneously for a single-chain [14], and sampling a group of
new states in parallel [15], have been proposed to paralleliz-
ing MCMC algorithms. These parallel MCMC algorithms,
nevertheless, perform poor on current parallel platforms due
to the frequent interactions among threads during sampling.
The situation is even worse on GPU platforms because of the
high synchronization cost. As a result, it is still infeasible
to deploy large scale Bayesian computing applications, not
to mention real-time applications like [16], on existing plat-
forms. With the fast-growing demand for Bayesian compu-
tations, there is an urgent need to design dedicated hardware
platform for efficient MCMC computations.

There are three major concerns for the design of MCMC
hardware design. First, the sampling unit has to be flexi-
ble enough to support general statistical computing patterns.
A design bound to a single distribution cannot meet the
requirements of varying applications. Second, MCMC allows
two different parallelization patterns, 1) parallel sampling
multiple chains and 2) parallel sampling multiple results in
a single chain. The former is limited to scenarios that require
a large number of sampling tasks or data sets that can be
spilt into individual sub-sets. In other words, the single-
chain performance cannot be improved in this approach. The
latter, in spite of being more general, has not found effective
hardware solutions. Third, random numbers are indispensable
in MCMC processing and thus dedicated random number
generators are essential to promote the computing efficiency.
Previous works, which will be reviewed later in sub-section
2.3, only partially solve the above problems, while a system-
atic treatment of general accelerator for Bayesian computing
is still missing.

In this work, we propose the parallel MCMC Bayesian
computing accelerator (PMBA), a computing platform sup-
porting efficient Bayesian probabilistic computations. Moti-
vated by an effective parallel Metropolis-Hastings (MH)
algorithm [16], PMBA leverages the paradigm of massive
parallel execution to effectively accelerate the processing of
single-chain MCMC sampling. The microarchitecture con-
sists of a set of sampling cores, with each handling a single
thread of random sampling, a set of computing cores for
general purpose probabilistic computing, and a merge engine
to generate final sampling results. The sampling cores are
packed as a sampling unit to sample MCMC states for varying
levels of parallelism and multiple tasks. All the sampling units
are integrated with one computing unit and work in a SIMD
manner. Final sampling results are derived with a sequential
merge engine.

The remainder of this paper is organized as follows.
Section II explains the background related to this work.
In Section III, we introduce the overall architecture of
PMBA. Section IV covers the microarchitectural design
details, while Section V reports the performance evaluation
results. Section VI concludes the paper and discusses future
work.

VOLUME 9, 2021

Il. BACKGROUND

In this Section, we first review the basic pattern of Bayesian
computation and MCMC algorithm. Then we introduce var-
ious parallel MCMC algorithms and explain our choice for
PMBA. A brief survey of Bayesian computing hardware is
given in subsection C.

A. BAYESIAN COMPUTATIONS
The Bayesian computing is based on the Bayes’ Theorem,
which offers a general way to derive the posterior distribution
of a random variable. It indicates that statistical inference can
be made as follows:
P®|D) = "D 1)
P(D)

where D denotes the observed data and € denotes a hypothesis
(e.g. an underlying cause leading to D or a parameter) we
want to infer from D. The concrete form of the posterior
probability explaining a given problem is determined by both
the likelihood and priori distributions. For example, in order
to learn to write words as humans (i.e. deriving the posterior
distribution of an alphabet through given sample letters), prior
distributions related to stokes (e.g. stroke features, stroke
spatial relations, and token control points) and likelihood
distributions related to characters with given strokes can be
built to model handwritten characters [8]. Note that such
probabilistic models can be readily expressed as a probabilis-
tic graphic model or Bayesian networks. The structure of this
model can be either manually defined or learned from data.

The Bayesian inference is a powerful tool developed in the
18th century, but it is severely limited due to the frequent
intractability of deriving a close-form analytical solution to
the posterior distribution [17]. It became a widely used tool
to the science community and industry until the invention of
the Markov chain Monte Carlo (MCMC) method, which can
approximate the target distribution. MCMC can be performed
with many algorithms like importance sampling, Metropolis-
Hastings (MH) algorithm, and Gibbs algorithm [18]. Figure 1
is an illustration of the MH algorithm. Samples of a given
probabilistic distribution p(x) are generated by a Markov
chain. Starting from an original state X, the Markov chain
transits to next state according to a transition probability

accepted

XYi+1
Xi+1= {
X; not accepted

. K(Xis1lX3) . . ,"
4
~. = /.
S . .I.

FIGURE 1. Metropolis-Hastings algorithm.

65537

IEEE Access

Y. Ni et al.: PMBA: Parallel MCMC Bayesian Computing Accelerator

K(X’i+11Xj). In other words, the state transitions happen with
a chance as follow.

o (X0, X'111) = min {P(X i+DK(X;|1X i+l)’ })

PXDK (X i11Xi)

When a new state X’j; is generated from Xj, it is accepted
with the rate o(X;,X’i+1).

The Markov chain converges to p(x) after a sufficient
number of iterations under a probability of 1. The procedure
can be highly time consuming with complicated probabilistic
distributions. However, the original formulation of MCMC
is inherently sequential. In fact, the fundamental data depen-
dency is because every state of a Markov chain has to be
determined by considering its last state. Significant research
efforts have been dedicated to finding new algorithms better
supporting parallel processing.

B. PARALLEL MCMC ALGORITHM

To improving computing performance, different approaches
have been proposed to parallelize MCMC. One approach is
to sampling multiple individual chains in parallel [19]. But it
does not improve the performance of single-chain sampling.
Moreover, multiple chains do not always follow the same
instruction flows and thus the resultant load balance can be a
concern. Another approach attempts to extract parallelization
by sampling multiple states simultaneously [14], [20], while
only one state is actually picked per iteration. Wang et al. [13]
partitioned the data into subsets for parallelization sampling.
This method only applies to a limited set of applications
which have individual subset of data.

Recently, an efficient solution developed by Calder-
head [15] is design to generate a joint set of new states
in parallel for a joint probabilistic density. As listed in the
pseudo code of Algorithm 1, N proposals are generated in
parallel as the first step in each iteration using the transition
function K(xj, x\1). An extra random variable I is intro-
duced as the index for choosing from proposals. The main
task in this step is sampling new states for Markov chain

Algorithm 1

1: INPUT: state x;,I=1,n=0and N
2: For each iteration

3: begin:
4 Parallel j = 1: N
5 X’] = X]
6: sample x’;11 from p(x’j31]X’1)
7 Parallel k = 1: N +1
8 calculate stationary distribution of I p(I = k)
9: normalize p(I = j)
10: Parallel m = 1: N
11 sample I, from p(I = Iy,)
12: Xn+m = X'Im
13: n=n+N
14: 1= IN
15: end
65538

based on random seeds. Given the transition probability of
Markov chain, the new states are randomly generated from
x1 according to inputs of random numbers. The second step
is to calculate the stationary distribution of / based on the N
proposals [15], given

P(I = k) oc p(xk)*K(xk, X\x) (3)

This step can be put into parallel execution. The final step
is to sample N values of I based on the stationary distri-
bution calculated in the previous step. Then N new points
are generated from proposals with the index. This algorithm
makes it possible to sample multiple points for a single-chain
in a single iteration. The number of proposals, N, can be
arbitrarily assigned for a varying level of performance. The
experimental results show that this algorithm achieve an
effective sample size (ESS) rate of more than 80% and greatly
increased speed given a task of generating 5000 samples [15].
Although the parallel paradigm is conceptually suitable for
SIMD architectures, its performance is not satisfying on mod-
ern GPU platforms due to the frequent data synchronization
among threads. During the execution on GPU, data transfer
among the threads will harm the efficiency a lot for the
reason that all the threads have to wait until such transfer
ends. However, three times of synchronization occurred for
each iteration of MCMC in Calderhead’s algorithm. In this
work, we choose this algorithm as the underlying MCMC
algorithm for its potential to enable highly parallel hardware
microarchitecture.

C. HARDWARE ACCELERATOR FOR BAYESIAN
COMPUTING

Different hardware microarchitectures have been proposed to
improve the performance of MCMC based Bayesian comput-
ing. Mansinghka et al. implemented a Gibbs MCMC sam-
pler by developing stochastic logic circuit that manipulates
random bits with combinational gates for various distribu-
tions [21]. Mc3a [22] is a parallel ASIC accelerator for
MCMC by extending the previous works [16], [23]. Mc3a
adopts a Multiple Parallel Tempering algorithm to sample
multiple chains simultaneously. A customized uniform Ran-
dom Number Generator is installed in the ASIC. The goal of
Mc3a is to realize high throughput sampling. but the perfor-
mance of a single-chain is not changed. Moreover, only uni-
form random numbers are used in sampling, but it should be
noted that in some cases random number of other distributions
can remarkably increase the sampling efficiency. Causal-
Learn [24] is a FPGA based architecture for probabilistic
model learning by parallel sampling Gaussian processes with
a Hamiltonian Markov Chain Monte Carlo algorithm. The
single-chain MCMC sampling is not accelerated either. The
algorithm proposed by Liu et al. [25], [26] mainly focuses
on customized computing precision as well as accelerating
likelihood evaluation in parallel, but does not accelerate the
sampling itself. Mingas and Bouganis [27] developed a par-
allel tempering MCMC accelerator on FPGA where multiple
chains are processed in parallel. In [12], a SIMD architecture

VOLUME 9, 2021

Y. Ni et al.: PMBA: Parallel MCMC Bayesian Computing Accelerator

IEEE Access

15t sync
MCMC Sampling Results l
, , P1
Xl' X2 Xn . Xn+N X1 Xn+1 = X, I
, o P2
_Y_J X2 Xn+2 = X I, I 2
31 sync 2nd syn
Parall'el X X =5 <_y I L Ps Parallel
Sampling 3 n+3 Iy 3 C -
omputing
ALGORITHM 1 .
1: INPUT: state x;, I=1,n=0 and N .
2: For each iteration - , , PN
3:begin:. X'y XptN = X, Iy
4 Parallel j=1: N .
5: sample x’j+1 from p(x’j+1[x1) PN+1
6: Parallel k= 1: N+1 . H .
7: calculate stationary distribution of I p(I = k) . New states Samp hng Variable 1
: normalize p(I = j) results :
9: Parallel m=1: N Statlonary

10 sample Ly from p(I = In) B
11: Xotm = X

122 n=n+N.

13: I=Ix.

14: end -

distribution of I

[]

FIGURE 2. Execution flow of a single iteration in parallel MH MCMC.

is introduced for accelerating probabilistic models. Similar
to CausalLearn, it is based on data-level parallelism and the
sampling process is not accelerated. AcMC2 [28] presented
a probabilistic model compiler to extract the parallelism in
MCMC and implemented a hardware prototype accelerating
sampling. The sampling task was partitioned into several
parallel sub-chains through the Markov blanket concept that
is used in AcMC2.

Notice that, none of the abovementioned works implement
parallel sampling for a single MCMC chain. Instead, they
leverage multiple chains or independent data for parallel
execution. Besides, some works are limited to handle spe-
cific probabilistic distributions and cannot meet the need of
general-purpose Bayesian computations.

lll. THE MCMC COMPUTING FRAMEWORK BASED ON
PMBA ARCHITECTURE
As the basis of a flexible parallel MCMC framework, PMBA
is designed to efficiently generate sampling results for an
arbitrary probabilistic distribution as required by a proba-
bilistic program. A PMBA frontend first extracts MCMC
models and parameters from a probabilistic program and then
transforms the MCMC sampling process into codelets that
can be regarded as a single instance of Metropolis-Hastings
algorithm. These codelets are mapped to PMBA hardware for
parallel execution.

In this section we will introduce the computing framework,
the PMBA frontend and the overall architecture of PMBA
respectively.

A. COMPUTING FRAMEWORK

PMBA is deliberately designed for high-performance MCMC
with parallel execution of single-chain sampling. We adopt
the parallel Metropolis-Hasting algorithm [15] introduced
in Section II as the computing framework of PMBA.
Figure 2 illustrates the fundamental execution flow of one

VOLUME 9, 2021

round of processing. The first step is to concurrently sample
n new states based on the results from the last iteration. Next,
we calculate the stationary distribution of I with the n 41
values derived by synchronizing data from step 1. Then we
sample [in parallel in step 3. Finally, we get the sampling
results by combing the output from steps 1 and 3. These steps
can be processed in parallel, but three synchronizations are
required within a single iteration. Considering the fact that
tens of thousands iterations are needed before converging
to the target probabilistic distribution, the synchronization
overhead has to be carefully handled.

In the overall computing framework, we split the four
steps as four macroblocks so that the synchronization always
happens at the boundary of macroblocks and no threads need
to wait before reaching the end of a macroblock. In addition,
Step 2, namely the computation of a stationary distribution,
has a different degree of parallelism from other steps. The
introduction of the macroblock makes it possible to process
each step with a different hardware configuration.

Figure 3 shows the execution flow in terms of PMBA’s
hardware instructions for a single iteration of MCMC sam-
pling. The core computing patterns within a single iteration
consists of three kernels, sample kernel, computing kernel,
and merge kernel. First, the sample kernel is called to generate
N new states. An instruction of choosing random number
source is introduced to select random numbers from either a
uniform distribution or other specific distributions. The uni-
formly distributed random numbers can be produced directly
by a random number generator, while other random num-
bers of distributions are derived with the on-chip stochastic
gates similar to those proposed by Mansinghka et al. in [21].
Compared with the work in [21], PMBA extracts random
numbers utilizing on-chip random source instead of using
pre-stored random bit-stream. Second, the computing kernel
to calculate N+/ stationary distribution parameters of /.
Third, the sample kernel is called to generate N samples of /.

65539

IEEE Access

Y. Ni et al.: PMBA: Parallel MCMC Bayesian Computing Accelerator

HIGH LEVEL MCMC INSTRUCTIONS FOR
PMBA
1. Sample kernel (N, Generate New States)
Load new state parameters
Choose random number source
Generate new states from random numbers
Store new states
2. Computing kernel (N+1, Stationary Distribution)
Computing probability
Store stationary distribution of I
3. Sample kernel (N, Generate I)
Load stationary distribution of 1
Generate value of 1
Store value of 1
4. Merge kernel (N, Sampling Results)
Load new states
Load value of 1
Generate sampling results
Store sampling results

FIGURE 3. Hardware instructions for single iteration sampling.

At step 4, the merge kernel is called to generate final sampling
results. Instructions of different kernel will be sent to different
hardware resource.

B. COMPILING FRONTEND OF PMBA

PMBA takes probabilistic programs as input. We design a
frontend to handle probabilistic programs, BLOG in this
work, and compile them into binary code instructions for
hardware execution. Current probabilistic programming lan-
guages can be classified into two categories, extension of
frequently used language such as PyMC [29] and Stan [30],
and independent languages such as BLOG [31]. It is much
more complex to develop a compiler for the first category
of probabilistic languages because the baseline language is
usually general-purposed and contains structures unrelated
to probabilistic programing. The second category, on con-
trary, is more probabilistic-programming oriented and allows
flexible development of our own compiler toolkit. In addi-
tion, algorithm-level transform is required in the frontend of
PMBA. A given MCMC sampling procedure is first rewritten
as parallel codelets and then mapped to PMBA as hardware
instructions. We adopted the BLOG language as the program-
ming language for PMBA due to its concise presentation of
probabilistic model and relative ease of development of trans-
formations. The PMBA frontend is developed as an extension
of BLOG compiler [32] to meet the hardware demand.

As illustrated in Figure 4, the PMBA frontend performs
three procedures on an input probabilistic program after pars-
ing an input program.

1. Program splitting. The input BLOG program usually
contains several segments sampling different probabilis-
tic distribution (e.g. Poisson distribution and Gaussian
distribution with varying parameters). PMBA frontend
first divides the input program into codelets. A codelet

65540

targets a single distribution with fixed parameters. Each
codelet will be executed individually on PMBA hard-
ware. As some codelets can have data dependency on
other codelets, the PMBA frontend tags such depen-
dency for hardware controller to avoid wrong order of
execution.

2. MCMC nparallelism extraction. In this procedure,
the PMBA frontend turning codelets derived from the
first procedure into parallel binary instructions. The exe-
cution flow of each sampling block is supported by Sfour
hardware blocks as illustrated in Figure 3.

3. Data Mapping. In this procedure the PMBA frontend
orchestrates the input and output data. As the input of
some codelets comes from previously executed codelets,
PMBA frontend allocated all data addresses in this pro-
cedure to ensure every codelet to get the right input.

With the above three procedures, the PMBA frontend splits
input BLOG program as several parallel MCMC sampling
blocks, and compiles them into hardware functions for PMBA
hardware execution.

C. OVERALL MICROARCHITECTURE

The proposed PMBA microarchitecture largely follow a sin-
gle instruction multiple thread (SIMT) paradigm. We extend
a SIMT instruction set [33] with various operations in
sampling, including choosing and loading random number
source, loading MCMC states, generating sampling points
and storing sampling results, to fully support MCMC process.

As illustrated in Figure 5, the PMBA microarchitecture is
organized as a pipeline consisting of eight SIMD sampling
units, one SIMD computing unit, one merge engine, and a
random number generator together with a specialized buffer.
The processing time of sampling units is around 6-8 times as
much as computing units depending on specific applications.
In this work eight sampling units are employed to avoid waste
of hardware resource. Multiple MCMC sampling tasks can be
processed simultaneously in pipeline on PMBA.

A sampling unit contains 32 sampling cores with each
processing a single sampling thread. A sampling function
mentioned in Section III can be mapped to one or more
sampling units. All sampling cores are invoked in a SIMD
manner.

There is only one computing unit used for the computing
of a stationary distribution. It contains 32 SIMD computing
cores. A merge engine is introduced to generate the final
sampling results and thus offload the only computing unit.
The merge engine works in sequential because the underlying
operations are relatively simple.

We deploy a commercial IP core of random number gener-
ator [34] in this design to generate uniformly distributed bit
streams. A random number buffer is added to store random
numbers from the random number generator and supply ran-
dom numbers to sampling units when needed. Each sampling
unit has a random number file that can load uniform random

VOLUME 9, 2021

Y. Ni et al.: PMBA: Parallel MCMC Bayesian Computing Accelerator

IEEE Access

(D Algorithm Splitting

@ MCMC parallelism

(3 Data Mapping

\ . .
i i i
| i i
| H 1
random Integer z ~|Bernoulli(@.5);l H | H
random Real x(Integer i) ~ . 1 H 1
if z == 1 then[Gaussian(0.5, 1.0) S Sampling ! e MG ! Parallel MCMC 1 Input 1 '
- 3 Block 1 | | i
obilsia\—wafszly(9.5, 1.9); i Parallel MCMC 2 ; i
e x(® - oh - : : Parallel MCMC 2 Iput2 gy PMBA
obe ;23; - o5 SATDINE g o gl | — : Hardvare
= 2y Block 2 omputing Kernel
obs x(4) = 0.6; E Sample Kernel 2 i Parallel MCMC 3 Input3 E
query z; \ - H Merge Kernel 1 | H
i i i
Block 3 : : I p
pBwG Parallel MCMC 3 IO L Dt
1 H
At | | Sampling Results
1 i
H
H
FIGURE 4. Frontend of PMBA.
A
PMBA Hardware S/
/
v 1
Instruction cache 6# Fetch H Decoder ‘ ‘ Pointer Buffer ‘ /
. A Vs
PMBA v ¥ f
Instructions S Unit Schedular
\
j r 1 -
\
Computing Unit i i A
puting Merge Engine Sampling Unit A\
\
Core \
Data mapping T Computing \ Newstates Sampling Variable (oo
&= G - Sampling \ EestICi disribution of
MCMC N:':nl::: T Core Register \ 1 l
i g 3 8 i \
parallelism g 8 File File \\
F \ Sampli » Sampli C i
prm— | p—— NS
splitting Core Core |l

Register File
LD/ST

]

BLOG
Program

| Sampling | !
Core

Random Number
Generator
Shared States Shared Samples

Shared Data

FIGURE 5. Overall microarchitecture of PMBA.

numbers from the random number buffer or specific random
numbers from the shared cache.

All the units have access to a shared cache. The cache
is divided into two regions, one reserved for shared states
including new states and samples of I, and the other for shared
samples of specific distributions.

A scheduling unit coordinates the overall computing
resource by sending instructions of different kernels to
corresponding sampling unit, computing unit or merge
engine. Multiple tasks can be scheduled to PMBA to
avoid idle of hardware resource. This makes it possible to
run multiple MCMC chains on PMBA. While the actual
MCMC processing may require more parallelism than PMBA
hardware resource can provide, the scheduling unit real-
izes that by reusing the sampling units and computing
unit.

IV. DESIGN DETAILS OF PMBA MICROARCHITECTURE
In this section, we elaborate the design details for implement-
ing the microarchitecture of PMBA.

VOLUME 9, 2021

A. SCHEDULING UNIT
The detailed design of the scheduling unit is shown in
Figure 6. It is in charge of coordinating instructions process-
ing. The major components of the scheduling unit are as
follows.
o Instruction cache: The instructions are kept in the
instruction cache. Each task has its independent storage
area and up to eight tasks can be supported.

Instructio
n cache

Sampling Unit ‘

Schedular <—){ Sampling Unit
[Pointer | <—>{ Merge Engine ‘
| B2 |
> Computing Unit ‘
Scheduling Unit

FIGURE 6. Scheduling unit.

65541

IEEE Access

Y. Ni et al.: PMBA: Parallel MCMC Bayesian Computing Accelerator

o Fetch module: The fetch module keeps an instruction
pointer for every task. The fetch module asks for instruc-
tion according to the pointer one task by one task, unless
the instruction stack module feeds back a wait signal for
current task.

« Instruction decoder: Fetched instructions are decoded by
the decode module to classified for sampling, general
computing or result merging.

o Scheduler: According to the results of decoder,
the scheduler module performs the following actions.
When a sampling instruction comes, scheduler module
gives the instruction to available sampling units. If the
available sampling units cannot meet the parallelism
required by current tasks, the instruction is kept in
FIFO buffer and dispatched once there is more available
sampling unit. When a computing instruction comes,
the scheduling model instead give the instruction pointer
to the computing unit and set the pointer to end of current
computing task. The computing unit uses its own fetch
and decode pipeline for the rest of the computing task.
The advantage of this mechanism is to avoid occupying
the scheduler module for too long. In fact, the computing
unit decodes faster because it only fetches from one
task. Merging instructions are given to merge engine.
Note that only one merge instruction is need to start the
merge procedure. Every time an instruction is dispatched
by scheduler module, the current pointer is given to
pointer buffer. It means that this task must wait until
the former instruction is processed. When the sampling
unit, the computing unit or the merge engine returns a
termination signal, the scheduler module will ask the
pointer buffer to pop the pointer of current task.

o Pointer Buffer: It sends a wait signal for tasks which
have an instruction pointer stored in the pointer buffer.

The scheduling pipeline is able to map multiple tasks to

PMBA 5o as to efficiently utilize the computing resources.

B. PROCESSING RESOURCE
PMBA has three different types of processing resource, sam-
pling unit, computing unit, and merge engine.

The sampling unit is the basic building block to implement
sampling functions. The decoded operation comes directly
from the scheduling unit. The sampling processing of pro-
posed parallel MCMC algorithm offers sufficient data-level
parallelism, so PMBA chooses a SIMD pattern to implement
parallel execution. 32 sampling cores are installed in one
sampling unit and they always follow the same processing
flow but process different data.

A new state x; is generated from the last state x;_; in a
Markov Chain according to the transition kernel as follows.

K (xi, xi—1) = p(xi|xi—1) 4)

A random number from p(x;|xj—1) is needed to decide the
possibility of drawing x;. To improve computing efficiency,
a dedicated register file is used to store the required random
numbers and supply them to sampling cores. The capacity

65542

of the register file is set to hold 64 random numbers for
32 sampling cores in order to reduce latency. The random
number can follow either uniform distribution or a specific
one. They are loaded from random number buffer or shared
samples cache through the load/store unit.

Figure 7 illustrates the detailed design of the sampling
core. A sampling core has two function, generating new
states of Markov Chain, and sample value of index I. Given
the parameters needed for calculation (for example, rpax in
equation 2), a decoder decides which function to calculate
results. To generate a new state, we use a random walk
transformation:

.
X = r/% — pxici ®)

where r represents the random number, r,,,, represents the
max value of random number and parameter p represents the
maximum random walk step. A symmetric random walk is
added to xj_1 to generate new state X;.

Sampling
new state

Sampling core

Random State

Number Parameter T
_B Last
State x
Sample
> of I
Parameter]

Stationary
Distribution

Sampling I

FIGURE 7. Design of sampling core.

In order to derive a sample of I from the stationary distribu-
tion, the sampling core first calculates 1/ry,x as a normalized
random number. Then the result is compared with accumu-
lated stationary distribution probabilities of I to decide the
value of sampled 1.

The computing unit is responsible for calculating the sta-
tionary distribution of I. Here PMBA adopt a 32-core general-
purpose SIMD pipeline based on our previous work [33]
running hardware instructions. The computing unit has its
own decoder so the instructions from computing kernels can
be directly dispatch to computing unit once for all.

When all the new states and samples of I are ready,
the scheduling unit invokes the merge engine. Sampling
results are chosen from new states according to samples of 1.
As shown in Figure 8, a load unit is able to load all new
states to registers in merge engine with load instruction occur.
As a result, the merge instruction actually initializes a vector
operation.

C. RANDOM NUMBER BUFFER
In the process of parallel MCMC sampling on PMBA, each
sampling core is allocated to one parallel thread. For every

VOLUME 9, 2021

Y. Ni et al.: PMBA: Parallel MCMC Bayesian Computing Accelerator

IEEE Access

Merge

i \L Engine

Register |
—| ofnew

states
<[

|

Sampling
results

Instructi¢n

Load

FIGURE 8. Merge engine.

iteration of sampling, two random numbers are used by each
sampling core running a single thread. The massive usage of
random numbers requires a robust source of randomness in
terms of quality and efficiency of generated random numbers.
For this reason, PMBA is equipped with dedicated IP cores
for random number generation together with customized data
path and memory blocks so that random distributions can
be sampled by sampling cores and then stored on-chip for
succeeding usage.

The sequential generating rate of random number gen-
erator is not sufficient when all the sampling units are
requiring random numbers. So we implement a ran-
dom number buffer continually drawing random numbers
from the generator when there is storage available. Each
sampling unit has its own area in the random number
buffer.

D. SHARED CACHE

As illustrated in Figure 5, the shared cache offers storage
space that can be used by all processing resource. There
are three banks in shared cache for shared states, shared
samples and shared data respectively. New states and sampled
values of I are kept in shared states bank, they are in fact
the synchronization data of the original parallel MH MCMC
algorithm. Shared sample bank stores the sample results that
will be used as random number input for sampling units in
future process. Other shared data are sent to the shared data
bank.

V. EVALUATION OF PMBA

In this section, we evaluate the implementation and appli-
cations of the PMBA microarchitecture. An FPGA imple-
mentation of PMBA is presented in subsection A. Then
we evaluate the performance of the implementation for
Metropolis-Hastings MCMC on PMBA compared with
multi-core CPU and GPU in subsection B. We further imple-
ment a visual learning task on PMBA to which will be dis-
cussed in subsection C.

VOLUME 9, 2021

TABLE 1. PMBA configuration on the FPGA implementation.

FPGA Model Xilinx VC709
Clock rate 400MHz
Random number generator 800Mbps
Random number buffer 1KB
Sampling Unit

Register file 8KB
Random number register file 128B
Shared cache 48KB
Shared state bank 16KB
Shared samples bank 16KB
Shared data bank 16KB

A. FPGA PROTOTYPING
A prototyping PMBA microarchitecture is implemented
on a Xilinx VC709 development board with a clock rate
of 400MHz. The rate of random number generator is
512Mbps. It takes 2000 cycles to fill a 1KB random number
buffer with on-chip generated random numbers. The capacity
of register file for sampling unit is 256B. i.e., eight 32-bit
registers for each sampling core. The random number register
file inside a sampling unit has a size of 128B and holds
sixty-four 32-bit random numbers. The volume of the shared
cache is 48KB. The sampling unit is also equipped with a
16KB shared states bank, a 16KB shared sample bank, and a
16KB shared data bank. 16K random numbers can be stored
in the shared samples bank for MCMC sampling on PMBA.
Table 2 shows the resource usage of FPGA hardware for
implementing the PMBA microarchitecture. This summary
indicates that PMBA uses a notably high ratio of block RAMs
resource. Considering that the utilization of block RAMSs can
be replaced by using CLBs (including LUTs and Flipflops)
in FPGA, it is feasible to implement more sampling or com-
puting units.

TABLE 2. Usage of FPGA resource.

Type LUTs Flipflops Block
RAMs
Sampling Unit | 4712 9561 32
Merge Engine | 79 31 0
Computing 8421 11749 16
Unit
RNG 5436 8239 10
Rest of Design | 2816 3331 480
Overall 21464 32911 538
Usage 39.4% 32.9% 70.6%

B. PERFORMANCE EVALUATION

We first implement a single parallel Metropolis-Hastings
algorithm on both PMBA and a Titan X acceleration card
(Pascal GPU) using CUDA language. Then we evaluate

65543

IEEE Access

Y. Ni et al.: PMBA: Parallel MCMC Bayesian Computing Accelerator

several BLOG benchmarks on PMBA to compare with previ-
ous works.

The number of parallel threads is configurable in the paral-
lel MCMC algorithm. So, we first evaluate the performance
of MCMC sampling at different configuration of parallel
threads against GPU. The threads here indicate how many
samples are generated in parallel for a single iteration of
MCMC. Each configuration is evaluated with 300 runs of
execution. Two version of algorithm are processed, we use
random walk to sample points of Beta random numbers and
Gaussian random numbers. The results in Figure 9 show
that PMBA outperforms the GPU by a factor of 17x-21x.
Noticed that it is capable to implement more threads, but
the computing complexity during synchronization of parallel
MCMC algorithm grows when proposing more threads. As a
result, the optimal choice of number of proposals N varies
with different tasks [15]. So we make the paralleled threads
configurable and choose 1024 as the maximum of paralleled
threads as evaluated in the algorithm research [15].

304 [IBeta
Il Gaussian
25|
20
o
3
8 15
Q.
»
10
5 -
0 4
32 64 128 256 512 1024
Threads

FIGURE 9. Speedup of PMBA against GPU sampling with Beta sampling
and Gaussian sampling.

We then evaluate the performance of BLOG bench-
marks [32] on PMBA hardware and Figure 10 shows the
results. In order to compare the performance intuitively,
we follow AcMC2 [28] and normalize the performance of
the Swift microarchitecture [32] as 1. It can be inferred that
the PMBA hardware improves the performance from 3.6 to
10.3 over AcMC2. There is difference that AcMC2 uses
Power8 CPU and in this work we evaluate the performance
against Xeon E7 CPU. These benchmarks contain sampling
tasks of both continuous and discrete probability distributions
as well as random variables with conditional dependencies,
which verifies the ability of PMBA to handle general purpose
probabilistic computing tasks.

C. EXEMPLAR BASED VISUAL CATEGORY LEARNING

The benchmarks in Section V testify the performance advan-
tage of PMBA. In this sub-section, we evaluate the efficiency
and effectiveness of PMBA for a complex statistical learn-
ing problem, visual category learning. The problem can be
formulated as extracting the relationship among categories

65544

1000

297.3 314.5 263.4 331.5

100 68.3

Speedup

0.1+ L,
Burglary Hurricane Tug of War Poisson Ball

Benchmarks

FIGURE 10. BLOG benchmarks on PMBA.

from natural images of multiple classes of objects. Basically,
a category of visual stimuli corresponds to certain concepts,
while the features for different categories reflect relationship
among concepts. For instance, the images in the ImageNet
dataset [35] are conceptually organized on the basis of Word-
Net [36] with a total of 21841 concepts following a complex
hierarchical structure.

In this work, we use the classical exemplar based visual cat-
egory learning framework [37]. In this framework, concepts
are represented and memorized with the exemplar model. The
basic idea of exemplar model is to model a concept with a
few representative instances that cover the feature space of
the concept as much as possible. First, images are represented
by parameters extracted from several local features [38]. Then
we pick instances (;1, I;2, . .. 1) for exemplar E; of a concept
C; through a Gaussian mixture model described in (3).

E; of Concept C; ~ {ni1 * Gaussian (I;1)
+ ... 4+nim * Gaussian (Ij,) (n> 0.1) (6)

We find E; that best fits the data of concept C; by running
MCMC on PMBA. After getting the exemplars for all the
concepts, we extract the structural relationship as follow.

Given MCMC sampling results S; and S; of exemplar E;
and Ej, 6;; represents the ratio of sampling points in S; that
are also results of S;

0;j = (SiNS)/Si @)
If we can get j satisfying
Jj = argmax (Qj,-) (Qij > 8) (8)

then C; is a sub-concept of C; (8 is the parameter of the
threshold of relationship, when 6;; > §, C; can be seen as
the child-concept of Cj).

We use the images from ImageNet [35] as the training
data. In this work, we are only interested at the 971 con-
cepts of natural object, living things, and artifacts. As shown
in Figure 11, we first learn the exemplar of each concept by
sampling a Gaussian mixture model [39] due to its perfor-
mance in feature-based image learning. Given the relation
of 300 concepts defined at higher levels in WordNet, we then

VOLUME 9, 2021

Y. Ni et al.: PMBA: Parallel MCMC Bayesian Computing Accelerator

IEEE Access

Flower

(a) Learning Exemplar

FIGURE 11. Exemplar based visual category learning.

learn the relationship of the remaining 671 concepts. The
accuracy rate of sampling new concept to correct direct parent
concept and to correct parent concept, is respectively 37.8%
and 71.2%. The PMBA outperforms a Xeon E7 CPU by a
factor of 60 in terms of learning time.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a Bayesian computing engine with
native support for high-efficiency MCMC sampling as well as
the corresponding computing framework for automatic paral-
lelization and mapping of probabilistic programs. Leveraging
the concurrency extracted by a parallel Metropolis-Hastings
algorithm, the proposed PMBA architecture supports fully
parallelized single-chain sampling of arbitrary probabilistic
distributions. With the help of a compiling frontend for auto-
matic parallelism extraction, PMBA can execute probabilistic
programs for a wide range of statistical learning applications.
The microarchitecture supports efficient execution of MCMC
sampling based probabilistic computations. Experimental
results demonstrate the significant performance advantages
of PMBA over state-of-the-art GPUs. Comparison against
previous dedicated Bayesian computing solutions proves that
PMBA enables a performance improvement of up to over
10 times.

There still remains a large space to explore high perfor-
mance Bayesian computing microarchitectures. First, PMBA
adopts random walks to generate new states in the MCMC
sampling process instead of directly transforming to new
state, because directly transforming requires more complex
hardware. It is worth exploring efficient design of such
hardware. Second, PMBA only supports Metropolis-Hastings
MCMC algorithm. It will be more flexible for PMBA if
parallel Gibbs and other more advanced MCMC algorithm
can be implemented. Third, as we are still at the dawn of
probabilistic computing, the design space of basic building

VOLUME 9, 2021

All concepts

Natural ObjMLiving m&facts

Animals / N Plans

Flowe/ ~ Wood
/N

Sunflower Violet

(b) Learning Category Relation

blocks like sampling unit and computing unit need extensive
refining.

REFERENCES

[1] R. A. Jacobs and J. K. Kruschke, “Bayesian learning theory applied to
human cognition,” Wiley Interdiscipl. Rev., Cognit. Sci., vol. 2, no. 1,
pp. 8-21, Jan. 2011.

[2] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Hyperspectral image segmen-
tation using a new Bayesian approach with active learning,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 10, pp. 3947-3960, Oct. 2011.

[3] D.Ramage, D. Hall, R. Nallapati, and C. D. Manning, “Labeled LDA: A
supervised topic model for credit attribution in multi-labeled corpora,” in
Proc. Conf. Empirical Methods Natural Lang. Process., vol. 1, Aug. 2009,
pp. 248-256.

[4] D. Kersten, P. Mamassian, and A. Yuille, “Object perception as Bayesian
inference,” Annu. Rev. Psychol., vol. 55, no. 1, pp. 271-304, Feb. 2004.

[5] F. Xu and J. B. Tenenbaum, “Word learning as Bayesian inference,”
Psychol. Rev., vol. 114, no. 2, p. 245, 2007.

[6] W.J. Ma, M. Husain, and P. M. Bays, “Changing concepts of working
memory,” Nature Neurosci., vol. 17, no. 3, p. 347, 2014.

[7] K. P. Kording and D. M. Wolpert, ‘“Bayesian integration in sensorimotor
learning,” Nature, vol. 427, no. 6971, p. 244, 2004.

[8] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, ‘“Human-level con-
cept learning through probabilistic program induction,” Science, vol. 350,
no. 6266, pp. 1332-1338, Dec. 2015.

[9] D. C. Knill and A. Pouget, “The Bayesian brain: The role of uncertainty
in neural coding and computation,” Trends Neurosci., vol. 27, no. 12,
pp. 712-719, Dec. 2004.

[10] M. Jones and B. C. Love, “Bayesian fundamentalism or enlightenment?
On the explanatory status and theoretical contributions of Bayesian models
of cognition,” Behav. Brain Sci., vol. 34, no. 4, p. 169, 2011.

[11] J. M. Hernandez-Lobato and R. Adams, ““Probabilistic backpropagation
for scalable learning of Bayesian neural networks,” in Proc. Int. Conf.
Mach. Learn., 2015, pp. 1861-1869.

[12] A.S.Mahani and M. T. A. Sharabiani, “SIMD parallel MCMC sampling
with applications for big-data Bayesian analytics,” Comput. Statist. Data
Anal., vol. 88, pp. 75-99, Aug. 2015.

[13] X. Wang, F. Guo, K. A. Heller, and D. B. Dunson, “Parallelizing MCMC
with random partition trees,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 451-459.

[14] A. E. Brockwell, “Parallel Markov chain Monte Carlo simulation by
pre-fetching,” J. Comput. Graph. Statist., vol. 15, no. 1, pp. 246-261,
Mar. 2006.

[15] B. Calderhead, “A general construction for parallelizing Metropolis—
Hastings algorithms,” Proc. Nat. Acad. Sci. USA, vol. 111, no. 49,
pp. 17408-17413, 2014.

65545

IEEE Access

Y. Ni et al.: PMBA: Parallel MCMC Bayesian Computing Accelerator

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

L. Marni, M. Hosseini, J. Hopp, P. Mohseni, and T. Mohsenin, “A real-
time wearable FPGA-based seizure detection processor using MCMC,” in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018, pp. 1-4.

J. A. Hartigan, “Bayes theory,” Bull. Amer. Math. Soc., vol. 12,
pp. 294-297, 1985.

W. K. Hastings, “Monte Carlo samplingmethods using Markov chains and
their applications,” Biometrica, vol. 57, no. 1, p. 97, 1970.

J. S. Rosenthal, “Parallel computing and Monte Carlo algorithms,” Far
East J. Theor. Statist., vol. 4, no. 2, pp. 207-236, 2000.

R. V. Craiu and C. Lemieux, “Acceleration of the multiple-try Metropo-
lis algorithm using antithetic and stratified sampling,” Statist. Comput.,
vol. 17, no. 2, p. 109, 2007.

V. K. Mansinghka, E. M. Jonas, and J. B. Tenenbaum, *“Stochastic dig-
ital circuits for probabilistic inference,” Massachusetts Inst. Technol.,
Cambridge, MA, USA, Tech. Rep. MITCSAIL-TR 2069, 2008.

L. Marni, M. Hosseini, and T. Mohsenin, “MC3A: Markov chain monte
carlo manycore accelerator,” in Proc. Great Lakes Symp. VLSI, May 2018,
pp. 165-170.

M. Hosseini, R. Islam, A. Kulkarni, and T. Mohsenin, “A scalable FPGA-
based accelerator for high-throughput MCMC algorithms,” in Proc. IEEE
25th Annu. Int. Symp. Field-Program. Custom Comput. Mach. (FCCM),
Apr. 2017, p. 201.

B. Darvish Rouhani, M. Ghasemzadeh, and F. Koushanfar, “Causalearn:
Automated framework for scalable streaming-based causal Bayesian learn-
ing using FPGAS,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, Feb. 2018, pp. 1-10.

S. Liu, G. Mingas, and C.-S. Bouganis, “An unbiased MCMC FPGA-
based accelerator in the land of custom precision arithmetic,” IEEE Trans.
Comput., vol. 66, no. 5, pp. 745-758, May 2017.

S. Liu, G. Mingas, and C.-S. Bouganis, “An exact MCMC accelerator
under custom precision regimes,” in Proc. Int. Conf. Field Program.
Technol. (FPT), Dec. 2015, pp. 120-127.

G. Mingas and C.-S. Bouganis, ‘“‘Population-based MCMC on multi-
core CPUs, GPUs and FPGAs,” IEEE Trans. Comput., vol. 65, no. 4,
pp. 1283-1296, Apr. 2016.

S. S. Banerjee, Z. T. Kalbarczyk, and R. K. Iyer, “AcMC?: Accelerating
Markov chain Monte Carlo algorithms for probabilistic models,” in Proc.
24th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Apr. 2019, pp. 515-528.

A. Patil, D. Huard, and C. J. Fonnesbeck, ‘“PyMC: Bayesian stochastic
modelling in Python,” J. Stat. Softw., vol. 35, no. 4, p. 1, 2010.

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betan-
court, M. Brubaker, J. Guo, P. Li, and A. Riddell, “Stan: A probabilistic
programming language,” J. Stat. Softw., vol. 76, no. 1, pp. 1-32, 2017.

B. Milch, B. Marthi, and S. Russell, “BLOG: Relational modeling with
unknown objects,” in Proc. ICML Workshop Stat. Relational Learn. Con-
nections Other Fields, 2004, pp. 67-73.

Y. Wu, L. Li, S. Russell, and R. Bodik, “Swift: Compiled inference for
probabilistic programming languages,” 2016, arXiv:1606.09242. [Online].
Available: http://arxiv.org/abs/1606.09242

K. Fang, Y. Ni, J. He, Z. Li, S. Mu, and Y. Deng, “FastLanes: An FPGA
accelerated GPU microarchitecture simulator,” in Proc. IEEE 31st Int.
Conf. Comput. Design (ICCD), Oct. 2013, pp. 241-248.

B. Sunar, W. Martin, and D. Stinson, “A provably secure true random
number generator with built-in tolerance to active attacks,” IEEE Trans.
Comput., vol. 56, no. 1, pp. 109-119, Jan. 2007.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int.
J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.

G. A. Miller, “WordNet: A lexical database for English,” Commun. ACM,
vol. 38, no. 11, pp. 39-41, 1995.

65546

[37] D. L. Medin and M. M. Schaffer, “Context theory of classification learn-
ing,” Psychol. Rev., vol. 85, no. 3, p. 207, 1978.

[38] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking,” J. Mach. Learn. Res.,
vol. 11, pp. 1109-1135, Jan. 2010.

[39] H.Permuter, J. Francos, and I. Jermyn, “A study of Gaussian mixture mod-
els of color and texture features for image classification and segmentation,”
Pattern Recognit., vol. 39, no. 4, pp. 695-706, Apr. 2006.

YUFEI NI received the B.S. degree in electron-
ics engineering from Tsinghua University, China,
in 2013, where he is currently pursuing the Ph.D.
degree in electronics engineering with the Institute
of Microelectronics. His research interests include
parallel computing architecture and artificial intel-
ligence accelerating methods.

YANGDONG DENG (Senior Member, IEEE)
received the B.E. and M.S. degrees in electronic
engineering from Tsinghua University, Beijing,
China, in 1995 and 1998, respectively, and the
Ph.D. degree in electrical and computer engineer-
ing with Carnegie Mellon University, Pittsburgh,
PA, USA, in 2006. From 2005 to 2008, he was
a Consulting Technical Staff with Magma Design
Automation. From 2008 to 2013, he was an Asso-
ciate Professor with the Institute of Microelectron-
ics, Tsinghua University, where he has been an Associate Professor with
the School of Software, since 2013. His research interests include computer
architecture and predictive maintenance. His awards and honors include
the ECE Fellowship (Department of Electrical and Computer Engineering,
Carnegie Mellon University), the Best Paper Award of 2013 International
Conference on Computer Design, and the NVIDIA Professor Partnership
Award.

SONGLIN LI received the B.S. degree with
the Department of Microelectronics and Nano-
electronics, Tsinghua University, where he is
currently pursuing the M.S. degree with the
Department of Microelectronics and Nanoelec-
tronics. His research interests include computer
architecture, brain-inspired computing, and neuro-
morphic computing.

VOLUME 9, 2021

