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ABSTRACT The objective of this research is to build a ‘‘Whole Slide Images’’ classification system using
Convolutional Neural Network (CNN). This system is capable of classifying Thyroid tumors into three types:
Follicular adenoma, follicular carcinoma, and papillary carcinoma. Furthermore, the cascaded CNN tech-
nique is additionally employed to classify the classified follicular carcinoma into four subclasses: follicular
carcinoma, papillary follicular variant, well-differentiated follicular carcinoma, and Poorly-differentiated
follicular carcinoma. Results of the proposed CNN architecture showed effective classification of Thyroid
carcinoma in the whole slide images with an overall accuracy of 94.69%. In the first classification stage,
the images are classified into either one of three main types with an overall accuracy of 98.74%, while in
the second classification stage, using the cascaded CNN, accuracy was 95.90% for further sub-classification
into four sub-classes. Our cascaded CNN outperformed the accuracy of other studies due to splitting
classification process of the thyroid into two stages which reduces the number of classes in each stage.

INDEX TERMS Whole slide images, convolutional neural network, thyroid carcinoma, data augmentation,
histopathology whole slide imaging.

I. INTRODUCTION
The thyroid gland plays a critical role in regulating multiple
body functions such as the metabolic rate, energy expendi-
ture, and the function of organs like the heart and the brain.
It is in the lower part of the anterior neck made of two lobes.
Each lobe is about 3–4 cm long and 2 cm wide and a few
millimeters (mm) thick [1].

Thyroid diseases are among the most prevalent medi-
cal conditions. According to the World Health Organization
(WHO) 2017, there are three main classifications for thyroid
diseases [2] Goiter, Tumors, and Thyroiditis, in which tumors
are classified into benign neoplasms (adenomas) and Malig-
nant (carcinomas).

Thyroid Carcinoma is the most common endocrine malig-
nancy, accounting for 2.1% of all new malignancies (exclud-
ing skin cancer and in situ carcinomas) diagnosed annually
worldwide. The annual incidence of thyroid cancer has kept
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rising for the last decades, and if the current trends persist,
it may become the fourth most common cancer in 2030 [3].

Thyroid carcinoma is diagnosed by a pathologist based on
the visual examination of tissue samples prepared on micro-
scopic slides. These samples may be obtained by two dif-
ferent techniques: Fine-Needle Aspiration (FNA) technique
or surgical biopsy. Samples obtained by the FNA technique
are composed of a relatively small number of cells and may
be affected by the nature of the targeted area. Meanwhile,
samples obtained as a tissue slice by surgical biopsy contain
a large arrangement of tissue cells. Therefore, a pathologist
examines samples obtained by FNA as Cytopathology slide,
which of limited classification efficacy because it depends
only on cell features, while those obtained by surgical biopsy
as Histopathology slides, will have more classification power
since they have two parameters for classification which are
the cell features and the distribution pattern in the tissue.

Microscopic digital images of sample slides are acquired
by either an ordinary microscope equipped with a
high-resolution digital camera, with limited dimension and
resolution or by a ‘‘Whole Slide Imaging system’’, which
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allows the pathologist to examine the whole slide in a single
image with a high resolution and a whole detail of the tissue
sample.

Although the ‘‘Whole Slide Image’’ of samples reveals
valuable information for tissue abnormalities classification,
it represents a real challenge to pathologists due to exam-
ination burden and resource consumption. Therefore, this
necessitates the use of automatic classification systems based
on computers and AI technology.

The classification of thyroid tumors has been accom-
plished by using several different techniques of imaging
modalities and machine learning over the years. For Thy-
roid Cytopathology classification, a Deep Semantic Mobile
Application was built in 2016 by Kim et al. [4], four machine
learning algorithms used Random Forest (RF), Linear Sup-
port Vector Machines (SVM), K-nearest neighbor (KNN),
and Convolutional Neural Networks (CNN). The experi-
ment was completed on a dataset of 459 labeled cytology
images, consisting of 391 training images and 68 testing
images. RF, SVM, and CNN all give the same accuracy on
the test set, about 70%. Two of the convolutional neural
networks VGG-16 and Inception-v3, were used in 2019 by
Guan et al. [5]. The training was done on 279 cytological
images of the thyroid. In new images, the accuracy of the
VGG-16 network and Inception-v3 were 95% and 87.5%,
respectively.

In 2017, Wang et al. [6] built an algorithm for the
classification of thyroid tissue in three phases: (1) Image
pre-processing and segmentation, (2) feature extraction, and
(3) perform the predictive model. The trained data involve
14 H&E Tissue Microarray from 153 patients and 13 BRAF
IHCTissueMicroarray from 140 patients. The results demon-
strated that the prediction accuracy is still away from
the accurate thyroid tissue classification in the microarray.
Deep convolutional neural networks Inception-ResNet-v2
and VGG-19 were used to multi-classify thyroid carcinoma
using histopathology images in 2019 byWang et al. [7]. They
have used 11,715 images from 806 patients in their study. The
test set onVGG-19 gives a better accuracy than Inception-
ResNet-v2 (97.34% vs. 94.42%, respectively).

Dov et al. [8] used a deep learning algorithm based on a
cascade of two convolutional neural networks to classify thy-
roid carcinoma in whole-slide cytopathology images. Both
networks share the same architecture based on VGG11. The
proposed algorithm used 799 slides in the training phase.
Experimental results show that the area under the curve of
ROC was 0.932. In 2020 Elliott Range et al. [9] built a
system to predict malignancy based on two convolutional
neural networks (CNNs). They have used 908 whole slides
from 659 patients of FNABs images. The algorithm predicted
a malignancy with sensitivity and specificity of 92.0% and
90.5%, respectively. Tao et al. [10] developed a system for
follicular segmentation of thyroid cytopathological based on
WSI’s. Firstly, they used a hybrid segmentation architecture,
then applied the ResNet 101 for the classification phase.
The dataset used in their study contains 15 WSI’s from the

FNAB images dataset. They achieved a segmentation accu-
racy of 53.4%.

Deep learning has been successfully used for different
types of cell classification [11]. Convolutional Neural Net-
works (CNN’s) showed an ability to differentiate healthy and
malignant cell samples [12].

In this paper, an automatic classification system for thyroid
carcinoma types from WSI’s is presented based on cascaded
CNN. The architecture of the cascaded CNN is evolved using
different training parameters to acquire the most appropriate
structure.

The manuscript is organized as follows; in section 2,
the proposedmethodology is discussed in detail, starting from
the original WSI’s and how handling occurs to be suitable
for the system and how the adaptation of training parameters
of the cascaded CNNmodel to the inputs, tools and hardware
resources used in this research. Section 3 and 4 are dedicated
to results and discussion, respectively, followed by a conclu-
sion in Section 5.

The main contribution of this study is to classify thyroid
carcinoma from whole slide histology image using deep con-
volutional neural network through the following steps:

1) Generating a dataset for the thyroid carcinoma whole
slide images.

2) Patching eachWhole slide image into small patches with
an overlap of 5% to overcome the computation process.

3) Constructing our cascaded custom Convolutional Neu-
ral Network architecture and test it for ensuring its perfor-
mance quality.

II. METHOD
This research aims to build a ‘‘Whole Slide Images’’ clas-
sification system using a particular type of deep learning
neural network called Convolutional Neural Network (CNN).
The proposed system consists of two main phases, as shown
in Fig 1; the first phase aims to differentiate among three
main types of thyroid tumors: Follicular adenoma, Follicular
carcinoma, and papillary carcinoma. In the second phase, a
cascaded CNN is used to further classify the classified fol-
licular carcinoma into four subclasses: Follicular carcinoma,
papillary follicular variant, Well-differentiated follicular car-
cinoma, and Poorly-differentiated follicular carcinoma.

A. DATABASE AND PRE-PROCESSING
Twenty-fourmedicalWhole slide imageswere collected from
the International Medical Center (IMC) – Egypt. For pri-
vacy, first, patient personal and medical information should
be removed. Then, we prepare the samples for scanning by
Whole Slide Imaging scanner ‘‘Panoramic SCAN II’’ [13]
with a magnification of 20X in automatic imaging mode.
Samples were cut at 5–6 µm thickness and stained with
Hematoxylin and Eosin stain (H&E). Fig 2 shows samples
of WSI’s from the database.

The obtained images were classified and diagnosed based
on examining expert pathologists using OpenEV [14], which
is an application for analyzing and viewing raster vector
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FIGURE 1. Flowchart of the whole system.

FIGURE 2. Sample of acquired database (down sampled).

geospatial images. Table 1 shows the dataset cases number
and diagnosis by our consultant decision.

As WSI’s have a huge size of dimension, so the classifi-
cation approach cannot be directly applied. It is necessary
to pre-process these WSI’s before applying the classification
stage.

The WSI’s should be divided into small patches [15] with
size (512 × 512) with 5% overlapping that yields a final size
of 564× 564 pixels. The overlapping ensures that the division

TABLE 1. Database classes.

does not lead to loss or damage of any critical information
in the image. The patching is done using Large TIFF Tools
v.1.3.6 [16]; it is an application dedicated to managing (very)
large TIFF files, hard to fit entirely into the computer’s
memory. Generally, the acquired whole slide image consists
of nearly 70% of tissue, and the remaining 30% is a back-
ground. These background images are removed by applying
thresholds as they are irrelevant in the classification process.

Expert pathologists carefully classify small patches into
groups to represent each class individually to be ready for
training and testing. The total number of labeled patches out
from this process is 18,653 images.
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Algorithm 1 . Pseudocode of the Whole System
1) Star
2) For I=1: 2

Input Whole Slide Image (I).
Patching into small images with 576 × 576 with
overlap 5%.
Automatic threshold for removing total weight back-
ground patches.
Random selection and manually labeling.
Collect dataset for training.

3) End for
4) Dataset augmentation
5) Images Patches pre-processing.
6) Define training options.
7) Define CNN structure.
8) Start training and validation for the main classes by

the first model.
9) End training and validation for the main classes.
10) Export true positive value images from Follicular

carcinoma dataset.
11) Start training and validation for the sub-classes by

the second model.
12) End training and validation for the sub-classes.
13) Validate each patch from each whole slide with the

cascaded models.
14) If patch (Follicular adenoma

Color patch = green.
15) Elseif (Follicular carcinoma

Color patch = blue.
16) Elseif (Papillary carcinoma)

Color patch = yellow.
17) Elseif (Papillary follicular variant

Color patch = cyan.
18) Elseif (well-differentiated follicular carcinoma

Color patch = black.
19) Elseif (poorly-differentiated follicular carcinoma

Color patch = magenta.
20) Group each patch for each whole slide image.
21) End

To reduce processing time and complexity, the 564 × 564
pixel patches were furtherly resized by the Gaussian pyramid
approach [17] to 282× 282 pixels.
Training of the CNN by using the raw data without rein-

forcing the desirable features leads to non-acceptable training
accuracy. Therefore, the special features of the thyroid carci-
noma in the patches should be enhanced in the pre-processing
stage before starting the training phase. To do that, it is nec-
essary to use an un-sharp mask to enhance cell edges (desir-
able features) and consistency of subtracting an un-sharp
(smoothed) version of a patch from the original patch to get
enhanced edges in the patches [18].

In trying to generalize the features of images to cover each
case in various circumstances, the database was augmented
by four different techniques [19] as follows:

• Adding Salt and Pepper noise to the original image with
noise density 0.05.

• Rotating the original image by 45◦ counterclockwise
around its center point.

• Flipping the original image in the left-right direction
around the vertical axis.

• Flipping the original image in the up-down direction
around the horizontal axis.

Fig 3 shows a sample of the augmentation process.
After augmenting the database, it is necessary to split it into

three parts, 60% for training, 25% for validation, and 15% for
testing.

FIGURE 3. Example of an image after augmentation, from left to right,
original image, rotation, horizontal flip, vertical flip, and salt and pepper
noise.

B. PROPOSED CNN ARCHITECTURE
Our proposed CNN consists of the following layers:

1) The first layer is the input stage for the convolution
neural network.

2) The convolution layer; in this layer, features extraction
is done by different filters. Sizes of filters, number filters,
Stride, and zero paddings are determined in this layer and
subsequently illustrated.

3) Batch normalization layer (Batch Norm.).
4) Rectified linear unit.
5) Max pooling.
6) From layers 2 to 5, represent the feature extraction

group. The feature extraction level depends on the number
of repetitions of this group; for example, if the feature is
superficial, it does not require to be repeated. However, if the
feature is deep like our case, it should be repeated. In our
proposed network, this group is repeated three times.

7) Full connected layer.
8) Rectified linear unit.
9) DROPOUT LAYER.
There are 24 layers in our proposed network, and its com-

plete construction is shown in Fig 4. Each layer in the CNN
has several learnable parameters to solve while training. The
first layer starts to collect the 282×282 colored images from
the database.

Extracting the input images’ features is the next stage done
by the Convolution layers (2, 6, and 10) by applying several
kernels (filters). Each kernel has the same size and moves
across the image with steps horizontally and vertically which
are called stride. The low-level features are detected only by
the Kernels in the early layers, while Kernels detect complex
features in the network’s advanced convolution layers. [20].
So, our convolution group is repeated three times to extract
the deep features in the patches of the WSI’s.
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FIGURE 4. The full construction of the CNN.

Each convolution layer is followed by an activation ReLU
function that is generally used to minimize the time of train-
ing compared to other activation functions [21]–[23].

Batch Normalization is performed after the activation layer
to remove covariate shift and minimize training time. Batch
Normalization minimizes the effects of various gradients
because every data becomes nearly normally distributed [24].

Down sampling image size is the following function per-
formed by the max-pooling layer. The max-pooling outputs
the maximum value in the input region [20].

Preparing the data for classification is the penultimate
function of CNN that is performed by a fully connected
layer. The output feature maps of the final convolution or
pooling layer are typically flattened a one-dimensional (1D)
array of numbers (or vector). The final fully connected layer
typically has the same number of output nodes as the number
of classes. Classification is the final function of the CNN that
is performed by the SoftMax Classifier layer takes an input
vector (fully connected layer), and it generates the output
vector in the range [0-1], where its elements add up to one.
SoftMax function must follow the final fully connected layer,
and it is given by [20]:

S (yi) =
eyi∑
j yj

(1)

where yi is the output of the classifier, e is the error.

TABLE 2. Training parameters.

TABLE 3. Confusion matrix for testing.

TABLE 4. Comparing the testing result with related works.

C. CASCADED CONVOLUTIONAL NEURAL NETWORK
In this research, two cascaded CNN are used having the same
architecture as shown in Fig 1. The first CNN is to classify
the main three thyroid carcinoma (Follicular adenoma, Fol-
licular carcinoma, and papillary carcinoma), then the second
CNN classifies the follicular carcinoma into four sub-classes
(Follicular carcinoma, Papillary-follicular variant, Well-
differentiated follicular carcinoma, and Poorly-differentiated
follicular carcinoma).

D. TRAINING AND OPTIMIZATION ALGORITHM
Training of Convolutional neural networks involves solving
model parameters using the labeled database to allow the
network to map an input image to a class label [25].
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TABLE 5. Main classes confusion matrix.

TABLE 6. Sub classes confusion matrix.

A cost function is used to calculate the error (the difference
between ground truth label and prediction) during a convo-
lutional neural network training process. The Mean Squared
Error (MSE) loss function is suggested in this work as it
calculates the squared average error E of all the individual
errors, and it is given by [25]:

E =
1
n

∑n

i=1
e2i (2)

where ei is:

ei = target (i)− output(i) (3)

The training is trying to optimize an equation parameter of
the classification problem.

Gradient descent is an optimization technique used to min-
imize the cost function by determining gradients necessary
to update the parameter values of the convolution neural
network. Stochastic Gradient Descent (SGD) is known as
incremental gradient descent, where the gradient is calcu-
latedPm at a time followed by parameter values updating.
It applies one update at a time [25].

w = w− µ.∇E(W ; x (i) ; y(i)) (4)

where: ∇E (W;x(i); y(i)) is the gradient of loss function.
W is the weight for the training example (x(i). y(i)). µ is the
learning rate.

FIGURE 5. Testing accuracy.

FIGURE 6. Accuracy of main-classes classification.

FIGURE 7. Accuracy of subclasses classification.

Training is used to update CNN parameters and minimize
loss function to reach the global minimum in the ideal case
by taking small steps to the negative gradient direction [26].
Table 2 shows all the tested and best parameters which are
used to construct our proposed CNN.

III. EXPERIMENT’S RESULTS
Training and testing of the proposed CNN are done on a
workstation computer with Intel R©Xeon R©Processor W3690
(12M Cache, 3.46 GHz, 6.40 GT/s Intel R© QPI) with RAM
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TABLE 7. Result analysis.

TABLE 8. Proposed system comparison with other related work.

of 16GB and operating system Ubuntu 18.04.5 LTS 64-bit
and MATLAB R2019b. The average training time for the
proposed CNN architecture of the training and validation
parts of the whole Database is 50 hours and 30 minutes.

Since our generated database and the proposed CNN were
not previously tested, it is suggested to start to test the pro-
posed CNN on ‘‘Brain Tumor Dataset v5’’ which contains
3064 T1-weighted contrast-enhanced images with three kinds
of a brain tumor [27].

The obtained results are shown in Table 3 and Fig 5 achiev-
ing an overall accuracy of 98.14%. Table 4 compares the
performance of the proposed CNN with different related
methods from the literature showing that it has the best
performance.

In our experiments, it is suggested to split the classification
process into two cascaded CNN, and the first one classifies
the dataset into three types of thyroid carcinoma (Follicular
Adenoma, Follicular Carcinoma, and Papillary Carcinoma).
Then the true positive output of the follicular carcinoma
class is further classified into four sub-classes (Follicular

Carcinoma, Follicular Papillary Variant, Well Differentiated
Follicular Carcinoma, and Poorly-differentiated Follicular
Carcinoma). The total number of labeled patches used for this
training set is 18,653 images with a dimension of 564× 564.

The overall accuracy of the main classes over the first CNN
is 98.74%, as shown in Fig 6 and Table 5. The Follicular
carcinoma is classified with an overall accuracy of 98.0%,
and furtherly classified into four sub-classes through the sec-
ond CNN with an overall accuracy of 95.90% as shown
in Fig 7 and in Table 6. This yields an overall accuracy
of 94.69% for the cascaded CNN.

A confusion matrix is a representation table for evaluating
classifier performance. The matrix consists of the following
terms:

1) True positives (TPs): Number of instances identified as
positive from the classifier.

2) False positives (FPs): Number of instances identified as
positive from the classifier, but they are negative.

3) True negatives (TNs): Number of instances identified as
negative from the classifier, and they are negative as well.
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FIGURE 8. Result of the validation (down sampled), three different WSI with different color areas.

4) False negatives (FNs): Number of instances identified
as negative from the classifier, and they are positive.

In general, the confusion matrix of a classifier should have
a greater number of TP and TN and a smaller number of FP
and FN.

Using the confusion matrix, other metrics can be used in
the evaluation of the model. These metrics are defined as
in Table 7 and according to the following equations [31]:

Accuracy =
(TP+ TN )

(TP+ FN + FP+ TN )

Error Rate =
(FP+ FN )

(TP+ FN + FP+ TN )

Sensitivity =
TP

(TP+ FN )

Specificity =
TN

(TN + FP)

False Positive Rate =
FP

(FP+ TN )

False Negative Rate =
FN

(FNTP)

Precisionor Positive Predictive Value =
TP

(TP+ FP)

Negative Predictive Value =
TN

(TN + FN )

F1− Score =
(2× (Sensitivity x Precision))

(Sensitivity+ Precision)
(5)

IV. DISCUSSION
Some considerations should be taken seriously in building an
automated classification system for thyroid carcinoma in his-
tology whole slide images. Firstly, images should be captured
by 40× magnification because the features of the cells will
be clearer that minimizes the use of image pre-processing
techniques. Secondly, the patching process allows us to

computationally process the whole slide image. This process
should be carefully done to prevent data loss or damage, so the
patching process is suggested to be done/managed/fixed by
512 × 512, overlapping 5%.
Reinforcing the desired features is an important stage for

training the CNN, so it is suggested to enhance the cells’
edges using an Un-sharp filter. This process reflected on our
achieved results.

As the CNN is built from scratch with 24 layers, it is tested
on a brain MRI database image ‘‘brain tumor dataset v5’’ that
gives an accuracy of 98.0%. Hence, it helps us to be sure
of using this proposed CNN to classify our 24 whole slide
images.

Moreover, the classified patches are validated from our
proposed CNN with the original consultant decision for the
whole slide images of the 24 cases as follows; each class of
the classified patches is given a color code, then it is suggested
to resize the patch to 50 × 50. The downsized and colored
patches are recombined again into new down-sampled WSI.
Consequently, this downscaled version of the WSI became
colored according to each available class’s relative location
in the original WSI, as shown in Fig 8. According to the
dominant area of themajor class in the slide, it can be deduced
that this matches with the consultant diagnosis opinion by
100% for the whole 24 WSI’s.

V. CONCLUSION
In this work, a cascaded CNN system is presented to
classify thyroid carcinoma based on whole slide images.
In the first CNN, thyroid carcinoma is classified into
three main types: Follicular adenoma, Follicular carcinoma,
and papillary carcinoma. In the second CNN, it is sug-
gested to further classify the follicular carcinoma into four
sub-classes which are: Follicular carcinoma, papillary fol-
licular variant, well-differentiated follicular carcinoma, and

88436 VOLUME 9, 2021



A. S. El-Hossiny et al.: Classification of Thyroid Carcinoma in Whole Slide Images Using Cascaded CNN

poorly-differentiated follicular carcinoma. We have used a
custom deep neural network structure. The proposed network
is constructed from 24 layers. To assess the proposed CNN,
we have tested it on a brain MRI database image, ‘‘brain
tumor dataset v5’’, which achieved an overall accuracy of
98.0%. Although the dataset is relatively not big, data aug-
mentation helped well to show better results and hence over-
come this problem. Our proposed architecture has achieved
the highest accuracy of 94.69%.

FUTURE WORK
Although we have included six subclasses of thyroid carci-
noma in our proposed system, we aim in the future to extend
our dataset to include other thyroid carcinoma classes which
did not appear in the current dataset (e.g., Medullary thyroid
carcinoma, Hürthle cell thyroid carcinoma, and Anaplastic
thyroid carcinoma).
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