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ABSTRACT The existing CNN-based segmentation methods use the object regions alone as the labels to
train their networks, and the potentially useful boundaries annotated by radiologists are not used directly
during the training. Thus, we proposed a framework of double U-Nets to integrate object regions and
boundaries for more accurate segmentation. The proposed network consisted of a down-sampling path
followed by two symmetric up-sampling paths. The down-sampling path learned the low-level features of
regions and boundaries, and two up-sampling paths learned the high-level features of regions and boundaries,
respectively. The outputs from the down-sampling path were concatenated with the corresponding ones from
two up-sampling paths by skip connections. The outputs of double U-Nets were the predicted probability
images of object regions and boundaries, and they were integrated to calculate the dice loss with the
corresponding labels. The proposed double U-Nets were evaluated on two datasets: 247 radiographs for
the segmentation of lungs, hearts, and clavicles, and 284 radiographs for the segmentation of pelvises.
Compared with the baseline U-Net, our double U-Nets improved the mean dices and reduced the 90%
Hausdorff distances for the “difficult” objects (lower lungs, clavicles, and pelvises), and the integration
of “difficult” object regions and boundaries can improve the segmentation results compared with the use of
object regions alone. However, for the “easy” objects (entire lungs and hearts) or ““very difficult” objects
(pelvises in lateral and implanted images), the integration did not improve the segmentation performance.

INDEX TERMS Image segmentation, double U-Nets, integrate regions and boundaries.

I. INTRODUCTION

Computer-aided diagnosis (CAD) has become one of the
major topics in medical imaging and diagnostic radiology.
It can assist radiologists in image interpretation and decision
making. The segmentation of organs and abnormalities in
medical images is an important first step in a CAD system,
which will also provide volume and shape parameters for
clinical quantitative analysis.

Routinely, the delineation of objects is mostly based on
manual procedures, which is time-consuming and tedious,
especially for those in 3D images. Therefore, some automatic
methods [1], [2] have been developed for segmentation. How-
ever, it is challenging for an automatic segmentation with high
performance due to several factors such as the low contrast
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of images, variables object sizes of different patients, and
similarity between the shapes of nearby objects.

Recently, with the availability of a large number of well-
annotated data and advancements of graphics processing
units (GPUs), convolutional neural networks (CNNs) with
more layers have significantly improved the performance
levels in computer vision and image processing [3]-[5].
Inspired by the remarkable successes of CNNs, many CNN
architectures have been successfully utilized in the seg-
mentation of various organs and abnormalities in medical
images [6]—[8].

The high-performance CNNs-based methods usually
require a large number of manual annotations for optimizing
the massive amount of network parameters. For example,
the residual network won the ImageNet Large Scale Visual
Recognition Challenge in both the classification and single-
object location tasks, and employed more than 10 million

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

69382

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 9, 2021


https://orcid.org/0000-0003-1769-2173
https://orcid.org/0000-0002-6271-1874
https://orcid.org/0000-0002-1023-6805
https://orcid.org/0000-0001-8781-7993

W. Guo et al.: Double U-Nets for Image Segmentation by Integrating Region and Boundary Information

IEEE Access

annotations for successfully training [9]. However, due to
expensive expert annotation and privacy issues, there are not
sufficient training images and annotations in practice. To
this end, some groups employed the affine transformation to
generate samples and then used the generated samples to train
their networks [10], [11]. Except for augmenting the dataset,
we can also make full use of the potentially useful boundaries
of objects for more effective training.

The reference standards of objects to be segmented are
usually the boundaries delineated by radiologists. However,
the existing CNN-based [6]-[23] methods usually employ the
object regions, instead of the boundaries, as the labels for
training their networks. If we fully take advantage of both
regions and boundaries for object segmentation, the results
will be better than those by using the region alone. Therefore,
we proposed a framework of double U-Nets to integrate the
information of object regions and boundaries and applied it
to the segmentation of objects in radiographs.

Il. RELATED WORKS

In the early time, CNNs were usually used to segment images
in a patch-based way [7], [12]. The fixed-size patches were
extracted for all pixels in the entire image and then used as the
inputs to train and test a classification CNN. The classifica-
tion result for each patch was assigned as the segmentation
result of its center point in the entire image. Apparently,
the high overlap between the adjacent patches will cause
massive redundant operations.

A fully convolutional network (FCN) [13] was proposed by
Long in 2015, and it employed de-convolutional layers to up-
sample the feature maps for producing outputs with the same
size as the input. Therefore, it can segment all the pixels in
the entire image end-to-end and achieve a faster processing
speed for image segmentation than the patch-based methods.
Many architectures based on the FCN were proposed for a
variety of applications in medical segmentation. He et al. [14]
employed the FCN guided by the distinctive curve to segment
the rectums, prostates, and bladders. Trullo et al. [15] com-
bined the FCN with the conditional random fields to segment
the organs at risk in thoracic CT scans. However, because
the FCN ignores some useful information about the shallow
location, the segmented details are usually not very accurate
at the fine-scale.

The U-Net was considered as one of the most well-known
CNN architectures for image segmentation [16], which
stemmed from the FCN and achieved great success in
biomedical image segmentation. It employs down-sampling
and up-sampling paths to form a symmetric U-shaped fully
convolutional network. The skip connections in the U-Net
concatenate the outputs from the down-sampling path with
those from the up-sampling path to well combine the shallow
locations with deep semantics of images for more accurate
segmentation. Since the appearance of U-Net, some similar
network architectures [17]-[20] have been proposed for var-
ious segmentation of medical images.
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Ill. MATERIALS

Our double U-Nets were evaluated on two datasets: 247 chest
radiographs with lungs, hearts, and clavicles, and 284 radio-
graphs with pelvises.

A. JSRT DATASET

The 247 chest radiographs were collected from a stan-
dard digital image database [21], which was created by
the Japanese Society of Radiological Technology (JSRT)
in cooperation with the Japanese Radiological Society. The
chest radiographs comprise 2048 x 2048 pixels with a spatial
resolution of 0.175 mm and 12-bit gray levels.

Two observers delineated 3 anatomical structures, i.e.
lung, heart, and clavicle in each chest radiograph indepen-
dently [22]. They were a medical student and a computer
science student, and both of them were specialized in the
medical image. They were also instructed by an experienced
radiologist before their delineation. The segmentation results
of the medical student were taken as the reference standards
in this study.

B. PELVIS DATASET

The pelvis dataset consisted of 284 radiographs in the Dicom
format, which were collected from a hospital in Shanghai,
China. Seventy-five out of 284 were images with an implant,
and the other 209 images were without an implant. Eighty-six
out of 284 were lateral images, and the other 198 were
posteroanterior images. The radiographs comprise 1031 x
1325 pixels with a spatial resolution of 0.125 mm. The dis-
tance from the source to the detector was 1770 mm, and
the exposure time was 66 s. The radiologist delineated the
pelvises in radiographs, and we used them as the reference
standards to evaluate the segmentation methods.

IV. METHODS

A. FRAMEWORK OF DOUBLE U-NETS

The architecture of double U-Nets is shown in Fig. 1 for the
segmentation of lungs in a chest radiograph, which integrated
the lung’s region and boundary information. It included
a down-sampling path followed by two symmetric up-
sampling paths, and the symmetric paths formed a double
U-shaped fully convolutional network. The down-sampling
path learned the low-level features of regions and boundaries,
and two up-sampling paths learned the high-level features of
regions and boundaries, respectively. The skip connections
concatenated the outputs from the down-sampling path with
the corresponding ones from two up-sampling paths. Two
U-Nets were employed to predict the probability images of
object region and boundary, respectively.

All the paths were divided into five stages with five feature
resolutions. Each stage included two blocks, and each block
included a 3 x 3 convolution layer followed by a batch
normalization layer and a ReLU activation layer. In the down-
sampling (up-sampling) path, the second block was followed
by a max-pooling (up-convolution) layer with a kernel size
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FIGURE 1. Double U-Nets architecture. The blue and white boxes represent the multi-channel feature maps and the copied feature maps, respectively.
The numbers on the top and lower-left edge of each box denote the number of feature channels and the size of feature maps, respectively. The arrows of
different shapes and colors indicate different operations. Each convolution throughout the network is followed by a batch normalization (BN) and a

rectified linear unit (ReLu), which are omitted in this diagram.

of 2 x 2. Two last layers in two up-sampling paths employed a
1 x 1 convolution to transform the feature maps with 32 chan-
nels to those with 1 channel. Then, two sigmoid functions
converted two final feature maps for the region and boundary
into their corresponding segmentation probability images.
For the testing, the predicted probability image of the region
was converted to the binary one as the final segmentation
result by thresholding at 0.5.

The predicted probability images of object region and
boundary were combined with their corresponding labels
for calculating the dice loss, and the information of object
boundary and region was integrated by optimizing the dice
loss function. Compared with using the object region, the
boundary information provided additional local information
for object segmentation. Therefore, we integrated the infor-
mation of both regions and boundaries to train a CNN for
achieving better results of object segmentation.

B. LOSS FUNCTION FOR DOUBLE U-NETS

The dice has been used as an objective function in CNN-based
segmentation methods, and the dice for bi-segmentation
between the predicted binary image P and the ground truth
binary image G can be written as [23]

23 pigi
YU+ Y e
where p; and g; represent the pixel value in the predicted
binary image P and the ground truth binary image G, respec-
tively. N denotes the total number of pixels in the object.

In the case of multiclass segmentation tasks, the dice is
extended to the multiclass dice (M-Dice) as

ey

Dice =

M
M — Dice = [ [ Dice;. )
j
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where M denotes the number of classes for segmentation.
When the dices of all classes are equal to each other, the
M-Dice is the largest. The corresponding multiclass dice loss
(M-loss) is defined as

M — Loss =1 — M — Dice. 3)

In this study, the outputs of our double U-Nets were the
predicted probability images, and they were employed to cal-
culate the M-Loss, instead of the predicted binary images P,
for more convenient calculation during the process of train-
ing. When the values of dice for both regions and boundaries
were large and equal to each other, the M-Dice was largest,
and the M-Loss is smallest. The predicted probability images
of object region and boundary were integrated by optimizing
the multiclass loss function.

C. EVALUATION METRICS FOR SEGMENTATION RESULTS
We employed two metrics to evaluate the segmentation
results in our study. The first one is dice, which measures
the overall consistency between the segmented result and its
reference. The value of dice 0 gives no overlap between the
two objects, and the value of 1 produces a perfect overlap.
The second is 90% Hausdorff distance (HD). The HD is
the maximum distance between two objects and defined as

dg(x,y) = max{dxy, dyx}

= max{maxycxminycyd(x, y),
maxycy Mingexd(x, y)} 4
where X and Y denote the boundaries of the segmented result
and its reference standard, respectively. The HD assesses the
extreme dissimilarity between two boundaries and is too sen-

sitive to very few outlier points with large distances. To end
this, we employ the 90% HD, which is calculated based on
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the 90th percentile of distances between the boundary points
on the segmented result and its reference standard.

Further, we employed the mean values of dices and 90%
HDs to evaluate the segmentation results for our two datasets.

D. IMPLEMENTATION OF OUR DOUBLE U-NETS

We trained a unique network for each object in chest radio-
graphs. The networks’ architecture and initial parameters
were the same for all the networks. The experimental plat-
form was equipped with an Intel ES CPU with 128 GB
RAM and an NVIDIA GTX-2080Ti GPU. The double U-Nets
were implemented by Python based on a deep learning
library of Keras. The weights of networks were initialized
by He_normal distribution, and the networks were trained
by minimizing the multiclass dice loss function with Adam
optimization. We initialized the learning rate as 0.0003, and
the batch size as 4.

The 5-fold cross-validation methods were used to evalu-
ate the segmentation of objects in both datasets. We evenly
divided all the cases into 5 subsets. For each fold, we used
4 subsets for training the networks, and the remaining one
subset for testing. The processing of training and testing for
a fold was repeated 5 times until all the images were tested.

The chest radiographs in the JSRT dataset were resized
to 512 x 512 pixels for training and testing our net-
works, and pelvis radiographs were resized and padded to
420 x 420 pixels. The boundaries of lungs, hearts, and clav-
icle were dilated on both sides 4, 3, and inward 3 times,
respectively. The boundaries of pelvises were dilated on both
sides 3 pixels.

V. RESULT
A. SEGMENTATION RESULTS FOR LUNGS, HEARTS, AND
CLAVICLES
1) SUBJECTIVE EVALUATION OF SEGMENTATION RESULTS
Figure 2 compares the segmentation results of lungs, hearts,
and clavicles in chest radiographs by the baseline U-Net and
our double U-Nets. The blue, red, and green curves indicate
the delineated objects by radiologists, U-Net, and double
U-Nets, respectively. The architecture and initial parameters
of U-Net are the same as those used in our double U-Nets.
The U-Net did not segment the lower parts of the lungs well
as shown in Fig. 2. Although the blurred boundaries near the
diaphragm degraded the segmentation performance of U-Net,
they did not worsen the boundaries segmented by our double
U-Nets. Overall, our double U-Nets achieved better results
than the U-Net with more accurate and smoother boundaries
for the segmentation of lungs, hearts, and clavicles.

2) OBIJECTIVE EVALUATION OF SEGMENTATION RESULTS

Due to the blurred boundaries of the lungs near the heart
and diaphragm, the segmentation for the lower-left part of
the lungs was more difficult than for other parts. Therefore,
we divided the entire image into four parts with a size of
256 x 256 pixels and compared the segmentation result for
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each of the parts. Figure 3 shows the mean dices and 90%
HDs for the segmentation of lungs, hearts, and clavicles by
U-Net and our double networks.

a: LUNG

The segmentation result of U-Net for the lower-left part was
not very good with a mean dice of 0.93. However, our double
U-Nets improved the value to 0.96 by integrating the infor-
mation of boundary and region. The double U-Nets improve
the mean dice for the lower-right part a little from 0.97 to
0.98. For the two upper parts and entire images, the U-Net
and double U-Nets achieved the same mean dice. Because
the region of poor segmentation was not large in the lower
part of images, it did not degrade the performance of U-Net
for the entire image very much.

Compared with the U-Net, double U-Nets decreased the
mean 90% HDs for the segmentation of the entire lungs from
6.05 mm to 3.20 mm. Further, double U-Nets also achieved
a smaller mean 90% HDs than the U-Net for each part of the
images.

b: HEART AND CLAVICLE

For the U-Net, the mean dices were 0.93 and 0.92 for the seg-
mentation of hearts and clavicles, respectively. And the dou-
ble U-Nets achieved the values of 0.93 and 0.94, respectively.
The U-Net achieved a very large mean 90% HD of 124.31 mm
for hearts, and double U-Nets greatly reduced the value to
17.85 mm. Although the mean 90% HD of the U-Net for
clavicle was not very large (14.90 mm), our double U-Nets
greatly reduced the value to 4.80 mm.

B. SEGMENTATION RESULTS FOR PELVIS

1) SUBJECTIVE EVALUATION OF THE SEGMENTATION
RESULTS

Figure 4 shows the segmentation results of pelvises with and
without an implant in a posteroanterior and lateral radiograph
by the baseline U-Net and our double U-Nets. The first row
is the original images, and the second row is the segmen-
tation results. The blue, red, and yellow curves indicate the
delineated objects by radiologists, U-Net, and double U-Nets,
respectively. The architecture and initial parameters of U-Net
are the same as those used in our double U-Nets.

For a pelvis in a non-implanted posteroanterior image as
shown in Fig. 6, the U-Net misidentified some bone and
tissue, but our double U-Nets precisely segmented the pelvis
with smooth boundary. Due to the few lateral and implanted
images, overlap of bones, and high contrast of implants, both
U-Net and double U-Nets did not segment the pelvises in the
lateral and implanted images well.

2) OBIJECTIVE EVALUATION OF SEGMENTATION RESULTS

Figure 5 shows the mean dices and 90% HDs for the segmen-
tation of all the pelvises by U-Net and our double networks.
Compared with the U-Net, the double U-Nets improved
the mean dices from 0.85 to 0.87 and reduced the mean
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FIGURE 2. Segmentation results for lungs, hearts, and clavicles. The blue, red, and green curves indicate the delineated objects

by radiologists, U-Net, and double U-Nets, respectively.
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FIGURE 3. Mean Dices and 90% HDs for the segmentation of lungs, hearts, and clavicles by U-Net and double U-Nets.

90% HDs from 20.78 mm to 12.74 mm. In this study, the of networks. Therefore, we also reported the segmenta-

implanted and lateral images were difficult to be segmented tion results for the implanted images and lateral images,
accurately, and they degraded the segmentation performance respectively.
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FIGURE 4. Segmentation results for the pelvises. The blue, red, and green curves indicate the delineated objects by radiologists,

U-Net, and double U-Nets, respectively.
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FIGURE 5. Mean Dices and 90% HDs for the segmentation of pelvises by U-Net and double U-Nets.

a: NON-IMPLANTED AND IMPLANTED IMAGES

For the non-implanted images, the double U-Nets achieved
higher performance than the U-Net with a higher mean dice
and a lower mean 90% HD. However, for the implanted
images, both networks achieved poor segmentation perfor-
mance with low mean dices and high mean 90% HDs due
to the high contrast of implants and few training images.

b: POSTEROANTERIOR AND LATERAL IMAGES

For the posteroanterior images, the double U-Nets also
improve the mean dice and reduced the mean 90% HD. For
the lateral images, both networks did not segment the pelvises
well due to the overlap of bones and few training data.

C. SEGMENTATION RESULTS FOR OTHER DATASETS
To further verify that the integration of object regions
and boundaries can improve the segmentation results,
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we conducted an additional experiment on the datasets of
ISBI 2019 SegTHOR and DRISHTI-GS1, and compared our
double U-Nets with other state-of-the-art approaches.

1) DATASET

(1) The SegTHOR dataset included 60 scans with the man-
ual delineations of the esophagus, heart, trachea, and aorta,
and the whole dataset was randomly split into a training set
of 40 scans and a testing set of 20 scans. The CT scans have a
size of 512 x 512 pixels on XY-plane with spatial resolutions
between 0.90 mm and 1.37 mm. The numbers of slices in a
scanrange from 150 to 284 with a Z-resolution between 2 mm
and 2.5 mm.

(2) The DRISHTI-GS1 dataset consisted of 101 retinal
images, which were collected from Aravind eye hospital,
Indian. The images are in PNG uncompressed format and
have an approximate size of 2047 x 1760 pixels. Four experts
delineated the boundaries of optical discs (ODs) and optical
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TABLE 1. Dice metric for SegTHOR 2019.

Method Dice
Esophagus  Heart Trachea Aorta

(1) 3D V-Net/ ResNet 0.8651 0.9536 09276  0.9464
(2) 3D V-Net/ ResNe 0.8597 0.9459 09217  0.9433
(3) 25 D U-Net/ 0.859%4 0.9500 0.9201  0.9484
DenseNet /ResNet

(4) 3D V-Net/ ResNet 0.8166 0.9329  0.8910 0.9232
(5) 2D U-Net/ attention 0.8303 0.9381  0.9088  0.9353
mechanism/ pixel shuffle

(6) 3D V-liket++ 0.7734 0.9414  0.8927 0.9233
(7) 2.5D U++ 0.7518 0.9328  0.8885 0.8919
(8) 2D U-Net 0.7462 0.9433 09163 0.8755
(9) Double 2D U-Net 0.7843 0.9528 09287  0.9321

cups (OCs), and the reference standards of boundaries were
determined by the majority of experts.

2) RESULT

a: RESULTS FOR ISBI 2019 SegTHOR CHALLENGE

We performed the comparison between the U-Net (8)
and double U-Nets (9). As shown in Table 1, the U-Net
achieved quite high-performance levels with the mean dices
of 0.9433 and 0.9163 for the heart and trachea, respec-
tively, and the double U-Nets also achieved similar results
with the mean dices of 0.9528 and 0.9287. For the esoph-
agus and aorta, the results of the U-Net were not very
good with the mean dices of 0.7462 and 0.8755, respec-
tively, however, double U-Nets improved the values to 0.7843
and 0.9321 by integrating the information of regions and
boundaries.

Moreover, we downloaded the top-ranking teams’ reports
and compared with their approaches and results. Other teams
used the training and testing sets to train and test their
networks, respectively. Because we can only download the
training set from the website, we used 40 scans of the training
set to evaluate our networks by the 5-fold cross-validation
method.

Most teams (1, 2, 3, 4, 6, and 7) employed a coarse- and
fine-resolution 3D/2.5D network for locating and segmenting
an object, respectively, and architectures of networks were
mainly based on the V-Net/U-Net with ResNet or DenseNet
modules. Team (3) segmented four classes/organs simulta-
neously, and Team (1) fused the segmentation results for
the single-class and multi-class. Team (2) used an additional
abdomen dataset with 13 classes of organs and 50 scans to
pre-train their model. Team (5) added the pixel shuffle and
the attention model in their 2D U-Net.

Compared with other teams, we used a very simple net-
work to locate and segment objects and obtained comparable
results for the heart, trachea, and aorta. If we also use a multi-
resolution strategy for locating and segmenting respectively,
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our final segmentation performance may be improved.
Moreover, if we use additional residual or attention modules
in our networks, our segmentation results may be also better.
On the other hand, other teams used only the object regions as
labels to train their networks. If they also integrate the object
regions and boundaries, they may achieve more accurate
segmentation results.

b: RESULTS FOR DRISHTI-GS1

Table 2 shows the segmentation results of U-Net, double
U-Nets, and other methods. For ODs and OCs, compared
with the U-Net, the double U-Nets networks improved the
mean values of dices from 0.95 and 0.84 to 0.97 and 0.87,
respectively. It indicates that the integration of regions and
boundaries enables the double U-nets to produce better seg-
mentation results than that used the region alone.

TABLE 2. Dice and accuracy metrics for DRISHTI-GS1.

Method Dice Accuracy

ODs OCs ODs OCs

(1) Modified U-Net/?4 09644  0.8739  ------ -

(2) DeepLab V3+MobileNet 2/ 09173 cemem e mmeen

(3) Recurrent  fully convolution =~ ------ —eeeee 0.976  0.977

network /2¢/ 4 8

(4) U-Net 0.9502  0.8396 - -

(5) double 2D U-Net 0.9656  0.8721 - = -

We also compared the segmentation results of our double
U-Nets with three state-of-the-art methods. Yu et al. [24]
used two networks for locating and segmenting ODs and
OCs. The segmentation network was the modified U-Net, and
the pre-trained ResNet-34 was used as the encoding layers.
Sreng et al. [25] adopted the combination of DeepLab V3 and
MobileNet to segment ODs. Our double U-Net achieved
comparable results as shown in Table 2.

Gao et al. [26] also used a CNN-based method to segment
ODs and OCs, which is mainly composed of a multi-scale
input layer, recurrent fully convolutional network, multiple
output layer, and polar transformation. Because they used
different metrics to evaluate their method, we cannot directly
compare the segmentation results. But it can be believed that
our segmentation performance is not much worse than that
of theirs. Moreover, if they used the integration of object
regions and boundaries in their networks, they will achieve
better segmentation results compared with the use of regions
alone.

VI. DISCUSSION

The reference standards of objects for segmentation are
usually the boundaries delineated by radiologists. However,
the U-Net discards the expensively delineated boundaries
and employs the regions alone to train the network. For
some ‘“‘easy’” objects (lungs and hearts), the region provides
sufficient information and the U-Net achieves a good result.
Double U-Nets does not improve the segmentation perfor-
mance. But for some “difficult” objects (lower lungs, clav-
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icles, and pelvises), the U-Net based on the region does not
achieve a good segmentation result, and the boundary will
provide additional useful information. The double U-Nets
integrate the region and boundary information in the feature
extraction and loss calculation, and such integration enables
the network to learn more useful information for better seg-
mentation. Furthermore, for some “very difficult” objects
(pelvises in lateral and implanted images) with few train-
ing data, the integration of boundary and region also does
not learn very useful features, and the integration does not
improve the performance of segmentation.

In our study, we evaluated the effect of different boundary
dilation schemes on the segmentation result. For the JSRT
chest radiographs, we dilated the boundaries of lungs on
both sides from 2 to 8 pixels, and the boundaries of hearts
and clavicles on both sides and inward from 1 to 3 pixels,
respectively. For the radiographs of pelvises, we dilated the
boundaries of pelvises on both sides from 3 to 5 pixels.
The segmentation results indicated that the mean dices for
all objects with different dilation schemes remain similar.
Although the mean 90% HDs of our double U-Nets were a
little different for the different dilation schemes of all objects,
most of them were lesser than those of the U-Net.

In our study, the architecture of U-Net was the same as
one network used in the double U-Nets. The number of
parameters in the U-Net was 8,641,697, and that in the double
U-Nets was increased to 16,107,874. Although the number
of parameters in the double U-Nets was almost twice of that
in the U-Net, the calculation time was not doubled and only
slightly increased due to the GPU parallel computing.

VIi. CONCLUSION

In this study, we proposed a framework of double U-Nets to
integrate the region and boundary information in the feature
extraction and loss calculation, and applied it to the seg-
mentation in two datasets. The experiments show that the
integration of ‘““difficult” object boundary and region can
improve the segmentation results compared with the use of
object region alone.
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