
Received March 25, 2021, accepted April 7, 2021, date of publication April 27, 2021, date of current version May 18, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3075973

DECA: A Dynamic Energy Cost and Carbon
Emission-Efficient Application Placement
Method for Edge Clouds
EHSAN AHVAR 1, SHOHREH AHVAR 2, ZOLTÁN ÁDÁM MANN 3,
NOEL CRESPI 4, (Senior Member, IEEE), ROCH GLITHO 5 (Senior Member, IEEE),
AND JOAQUIN GARCIA-ALFARO 4, (Senior Member, IEEE)
1Learning, Data and Robotics Laboratory, ESIEA, 94200 Ivry-sur-Seine, France
2ISEP-Institut Supérieur d’Électronique de Paris, 75006 Paris, France
3paluno-The Ruhr Institute for Software Technology, University of Duisburg-Essen, 47057 Duisburg, Germany
4Télécom SudParis, SAMOVAR, Institut Polytechnique de Paris, 91764 Palaiseau, France
5Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montréal, QC H3G 1M8, Canada

Corresponding author: Joaquin Garcia-Alfaro (jgalfaro@ieee.org)

The work of Zoltán Ádám Mann was supported in part by the European Union’s Horizon 2020 Research and Innovation
Programme (FogProtect) under Grant 871525.

ABSTRACT As an increasing amount of data processing is done at the network edge, high energy costs and
carbon emission of Edge Clouds (ECs) are becoming significant challenges. The placement of application
components (e.g., in the form of containerized microservices) on ECs has an important effect on the energy
consumption of ECs, impacting both energy costs and carbon emissions. Due to the geographic distribution
of ECs, there is a variety of resources, energy prices and carbon emission rates to consider, which makes
optimizing the placement of applications for cost and carbon efficiency even more challenging than in
centralized clouds. This paper presents a Dynamic Energy cost and Carbon emission-efficient Application
placement method (DECA) for ECs. DECA addresses both the initial placement of applications on ECs
and the re-optimization of the placement using migrations. DECA considers geographically varying energy
prices and carbon emission rates as well as optimizing the usage of both network and computing resources
at the same time. By combining a prediction-based A* algorithm with a Fuzzy Sets technique, DECAmakes
intelligent decisions to optimize energy cost and carbon emissions. Simulation results show the ability of
DECA in providing a tradeoff and optimizing energy cost and carbon emission at the same time.

INDEX TERMS Edge cloud, energy consumption, energy costs, green computing, carbon emission,
application placement.

I. INTRODUCTION
The Internet of Things (IoT) is producing rapidly increasing
amounts of data. Data analytics applications that process
IoT data require significant computational capacity, which
IoT devices typically do not possess. Using centralized cloud
data centers to host the analytics applications is an option,
but transferring the data from the IoT devices to the cloud
incurs high latency and large network traffic. Therefore, new
distributed computing paradigms that move processing closer
to the network edge (fog computing, edge computing etc.)
are gaining popularity. In the computing model considered in
this paper, computational resources are provided in several

The associate editor coordinating the review of this manuscript and

approving it for publication was Hosam El-Ocla .

Edge clouds (ECs) instead of a single centralized cloud.
ECs have limited capacity and are geographically distributed.
Applications can be deployed on ECs, and data produced by
IoT devices can be processed in an EC near the IoT
devices. Thereby, latency and network traffic are signifi-
cantly reduced, making ECs an attractive paradigm for many
IoT applications [1], [2].

With the rise of data processing in ECs, the increasing
energy consumption of ECs is becoming a major concern for
two reasons: energy costs and carbon emissions. Both energy
costs and carbon emissions are becoming pressing issues for
the providers of ECs [10].

Similar to centralized clouds, also ECs need energy saving
methods, e.g., workload consolidation. However, minimiz-
ing energy costs and carbon emissions in ECs is a more

70192 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7366-8288
https://orcid.org/0000-0001-9615-0510
https://orcid.org/0000-0001-5741-2709
https://orcid.org/0000-0003-2962-192X
https://orcid.org/0000-0002-7699-0296
https://orcid.org/0000-0002-7453-4393
https://orcid.org/0000-0002-8202-7762

E. Ahvar et al.: DECA for ECs

complex problem. Energy prices and carbon emission rates
vary by location and even by time (e.g., because of different
local energy sources). Therefore, even the same energy con-
sumption may lead to different energy costs and carbon emis-
sions depending on which EC (and when) serves the given
workload. It is important to note that there is no correlation
between the cleanness (carbon footprint) and the price of a
location’s energy sources [3]. Hence, optimizing energy costs
and carbon emissions are two independent objectives.

We consider an infrastructure comprising several geo-
graphically distributed ECs, where each EC consists of a set
of Compute Nodes (CNs). A set of applications is to be placed
on this infrastructure. Every application consists of one or
more components, for example in the form of containerized
microservices. For every component, detecting an appropri-
ate place (in which of the ECs, on which CN) is considered as
an important issue. For the component placement, there is a
variety of resources, energy prices and carbon emission rates
to consider. To optimize energy costs and carbon emissions,
we have three levers: (i) minimizing energy consumption
(usually by optimizing resource utilization), (ii) choosing
resources in locations with low energy price, and
(iii) choosing resources in locations with low carbon emission
rate. Hence the challenge is to consider these three, some-
times conflicting aims simultaneously (see also Fig. 1).

FIGURE 1. Sources of energy consumption and its impact on optimization
objectives.

To address the above problem, this paper proposes a
dynamic energy cost and carbon emission-efficient applica-
tion placement method (DECA) for ECs, considering the
above three levers to optimize both energy costs and car-
bon emissions in distributed ECs. DECA includes two main
parts: (i) determining the initial placement of newly deployed
applications and (ii) re-optimization of the placement of
applications to react to workload changes. In contrast to most
previous works, DECA considers both CNs and network
devices because both of them may contribute significantly to
energy consumption.

DECA combines a variant of the A* search algorithm [6]
with a Fuzzy Sets technique [7]. Using these powerful
techniques, DECA can perform more effective optimiza-
tion than traditional greedy heuristics used by most existing
approaches [8], [9]. We describe in the Appendix the benefit
of the A* algorithm for application placement in ECs com-
pared to other heuristics.

DECA performs joint optimization of compute and net-
work resources, also considering their associated energy price
and carbon emission rate. It can select CNs frommultiple ECs
to place the components of an application, in order to (i) be
able to achieve low overall energy cost and carbon emission
and (ii) overcome capacity limitations of a single EC.

Our major contributions are summarized below:
1) We build this work based on our previous work on

green cloud computing [10], adapting it to the char-
acteristics of emerging EC systems and improving its
application placement method (i.e., from static place-
ment to dynamic).

2) To offer a better view about DECAmechanism, a com-
prehensive logical architecture is presented.

3) New methods for the dynamic re-optimization of the
placement using live migration are proposed. Two
AC migration mechanisms are proposed for under-
utilized and over-utilized CNs respectively.

4) We perform a comprehensive comparison on energy
cost, carbon footprint and energy consumption for dif-
ferent AC placement algorithms.

The rest of the paper is organized as follows. Section II
describes related work. Section III introduces our problem
formulation. Section IV provides the algorithmic solution
underlying DECA. Section V evaluates DECA. Section VI
concludes the paper.

II. RELATED WORK
As already mentioned, the applications are assumed to be
made of independently deployable ACs, for example in
the form of VM-based or containerized microservices. The
provider shouldmake a decision on resource allocation for the
components by selecting the most suitable CN. This process
is known as placement.

In recent years, many different aspects of the place-
ment problem (mostly in the form of VM placement) have
been investigated [9]. We can divide the related work into
three categories: i) the works which focus on improving
energy consumption and cost, ii) the studies which consider
both energy consumption/cost and carbon emission together,
iii) the works that utilize AC or VM migration algorithms to
improve energy consumption and/or carbon emission.

A. ENERGY CONSUMPTION AND COST
Li et al. [11] considered network and compute resources
at the same time for their allocation algorithm.
Pahlevan et al. [12] proposed an energy- and network-aware
approach that integrates heuristic andmachine learningmeth-
ods. You et al. [13] designed a network-aware VM placement
method to improve communication cost. Although these
works considered also the optimization of data transfer, they
are limited to a single-node (i.e., centralized cloud) environ-
ment and are not appropriate for a distributed ECwith varying
resource prices and carbon emission rates.

Goudarzi et al. [47] have recently proposed an application
placement technique based on the Memetic Algorithm to

VOLUME 9, 2021 70193

E. Ahvar et al.: DECA for ECs

make batch application placement decision for IoT appli-
cations in a heterogeneous Edge and Fog computing envi-
ronment. However, in this work, the energy consumption is
considered from the IoT device perspective. They also do not
consider the price of energy.

Pallewatta et al. [48] proposed a microservices-based
IoT application placement technique for heterogeneous and
resource constrained fog environments. They also proposed
a fog node architecture to support their proposed placement
approach. But their main objective is to minimize latency and
network usage, and not energy costs.

Hu et al. [49] proposed an approach to optimize the place-
ment of service-based applications in clouds for reducing the
inter-machine traffic. They first partition the application into
several parts while trying to keep the overall traffic between
the created parts to a minimum. Then, the created parts are
carefully located into machines with respect to their resource
and traffic demands. However, they do not consider energy
cost optimisation.

Hassan et al. [50] have recently proposed a method for
service placement in fog-cloud systems. They classified ser-
vices into two categories: critical and normal ones. For crit-
ical services, they try to minimize response time, and for
normal ones the goal is to reduce the energy consumption
of the fog environment. The same authors [52] formulated
the VM placement of IoT applications in Cloud DCs as an
MILP model and proposed two algorithms. Minimization
of the power (i.e., CPU) and network for the first algo-
rithm. And second algorithm focuses on reducing the power
(i.e., CPU) and resources wastage. Yet, carbon emission and
energy cost optimisation has not been accounted for in these
two works.

Kayal and Liebeherr [51] proposed a placement strategy
to jointly optimize energy consumption of fog nodes and
communication costs of applications. The algorithm applies
theMarkov approximation method to solve the combinatorial
optimization objective. However, they are concerned with
methods for assigning microservices to fog nodes with the
objective of balancing energy consumption at fog nodes and
network traffic costs.

Nabavi et al. [53] proposed a multi-objective VM place-
ment scheme (considering VMs as fog tasks) for edge
cloud DCs called TRACTOR using an artificial bee colony
optimization algorithm. TRACTOR goal is power and
network-aware assignment of VMs onto PMs. The proposed
scheme aims to minimize the network traffic of the inter-
acting VMs and the power dissipation of the DC’s switches
and PMs.

Our current work is different from all above-mentioned
results since we consider not only energy costs but also
carbon emission.

B. BOTH ENERGY CONSUMPTION (COST) AND CARBON
EMISSION
Beloglazov et al. [16] considered both carbon emission
and energy during VM allocation. However, they did not

consider the variability of energy prices. Also, inter-VM
(inter-AC) communication was not considered, although it is
an important factor for reducing energy of network resources.
Khosravi et al. in [17] have presented several energy and
carbon-aware algorithms. But they did not consider the
energy consumed by network elements in their energy model.
Zhou et al. [4] jointly considered electricity cost, emission
and Service Level Agreement (SLA) reduction for dis-
tributed ECs, while Gu et al. [18] presented a method to min-
imize carbon emission of ECs or Data Centers (DCs) while
satisfying constraints on response time, electricity budget and
maximum number of running CNs in an environment with
homogeneous CNs. These papers target service jobs with
constraints on response time. Moreover, different from all
mentioned works, our work considers both component (VM)
placement and migration to keep costs and emissions low.

C. AC (VM) MIGRATION
Tziritas et al. [19] targeted the problem of placement consid-
ering two objectives: (1) to minimize energy consumption of
the CNs, and (2) to minimize the network overhead stemming
from communication betweenVMs and fromVMmigrations.
They select the most energy-consuming CN based on both
maximum power and current workload to migrate its VMs.
This method may select CNs with low power consumption
but heavy workload as migration source and CNs with high
power consumption and low workload as destination, which
may lead to sub-optimal results.

Zhou et al. [20] proposed a VM deployment algorithm
called three-threshold energy saving algorithm (TESA) and
five VM selection algorithms: MIMT, MAMT, HPGT, LPGT
and RCT. Unlike our work which selects a destination CN
based on both communication and compute resource metrics,
they select a CNwith the least increase of power consumption
(we called it Min. Compute policy) due to VM allocation.
This way, the target CN may be located far from the source
CN so that migration consumes a large amount of energy.

Mustafa et al. [30] proposed two consolidation based
techniques to reduce energy consumption alongwith resultant
SLA violations. They also enhanced two existing techniques
that attempt to reduce energy consumption and SLA viola-
tions. They finally show that the proposed techniques perform
better than the selected heuristic based techniques in terms of
energy, SLA, and migrations.

Zheng et al. [21] proposed a dynamic energy efficient
resource allocation scheme. They consider a mapping proba-
bility matrix where each VM request is assigned with a prob-
ability on a specific CN. The proposed method then decides
where to allocate new VM requests and whether to migrate
existing VMs in order to improve energy efficiency. Although
the authors proposed an idea to migrate VMs for energy
reduction, their exact solution in situation of CN overloading
is not clear.

Beloglazov and Buyya [22] devised heuristics to continu-
ously consolidate VMs leveraging live migration and switch-
ing off idle CNs to minimize the number of utilized CNs.

70194 VOLUME 9, 2021

E. Ahvar et al.: DECA for ECs

TABLE 1. Related work summary.

They proposed a modified version of the Best Fit Decreasing
algorithm (MBFD) to place VMs on CNs and four heuris-
tics to select VMs for migration. They did not consider
the energy consumption of network elements. In another
study, Beloglazov and Buyya [23] proposed three stages of
VM placement optimization including reallocation based on
current utilization of multiple system resources, optimization
of virtual network topologies established between VMs and
VM reallocation considering thermal state of the resources.
However, Beloglazov et al. in both studies did not consider
carbon emission.

Liu et al. [24] developed an ant colony system-based
approach to reduce cloud energy consumption. To handle
both homogeneous and heterogeneous CN environments,
they also proposed an order exchange and migration mech-
anism. However, their objective is limited to minimizing
the number of active CNs. Forestiero et al. [25] proposed
a hierarchical method (i.e, composed of two workload
assignment and migration algorithms) for efficient work-
load management in distributed ECs. Li et al. [26] pro-
posed a dynamic virtual machine scheduling algorithm,
called GRANITE, to minimize total EC energy consump-
tion. However, these works do not take into account carbon
emission.

Ibrahim et al. [54] attempted to reduce consumed energy,
number of VM migrations, number of host shutdowns and
the combined metric Energy SLA Violation (ESV) with a
dynamic consolidation of VMs. In the method, the servers
are checked periodically and appropriate VMs from under
and over utilised servers are migrated to destinations selected
based on Particle Swarm Optimization techniques. The
authors mentioned that increasing energy consumption has
a significant impact on the environment due to emissions of
carbon. However, they have not done any study in carbon
emission reduction. Cost also was not considered by the
authors.

Table 1 lists the relatedworks considering their main objec-
tives/characteristics. All mentioned related works addressed
some of the points listed in the Introduction to characterize
the problem, but only in isolation, missing some other impor-
tant aspects. Our previous work CACEV [10] is the first to
address most aspects in combination, although in a cloud
computing setting. It is also the first VM placement algorithm
integrating the prediction-based A* search algorithm [6] with
a Fuzzy Sets technique [7]. However, CACEV makes only
a static VM placement. Our current work, DECA, extends
CACEV to ECs and with support for VM migrations. Dif-
ferent from related works on VM consolidation, DECA uses

a fuzzy set-based decision maker which can sharply improve
its performance.

III. PROBLEM FORMULATION
A. SYSTEM MODEL
To offer a realistic solution, the paper considers a system
model characterized by the following points:

1) Heterogeneity of ECs, CNs, and network devices
in terms of capacity and energy consumption
characteristics.

2) Heterogeneity of application components in terms of
resource needs.

3) Load-dependent energy consumption (for example,
the energy consumption of a CN depends on its
CPU load).

4) Joint optimization of compute and network resources.
5) Arbitrary network topology amongECs andwithin ECs;

in particular, there can be multiple network paths
between a pair of CNs.

6) Variety in unit energy price and unit carbon footprint
among ECs.

7) Ability to select CNs from multiple ECs to place the
components of an application.

8) Taking into account the communication between
application components and the associated impact on
network traffic, preferring to place components with
intensive communication close to each other.

9) Workload consolidation by live migration of applica-
tion components.

We consider a hierarchical distributed architecture [27] con-
sisting of a set of ECs, with each EC consisting of a set
of CNs. The ECs and the inter-cloud connectivity information
are given by a graph G0 = (D,E,wD,wE) where D is the
set of ECs, wD denotes their current capacity, E consists of
connections (network paths) among the ECs, and wE denotes
the weights of the connections (e.g., number of routers on
the network paths). Each EC is characterized by a Power
Usage Effectiveness (PUE) value and is associated with one
or more energy sources with different energy prices and
carbon footprint rates. PUE is considered as the ratio of
total power consumed by the EC to the power consumed by
IT devices within the EC [16]. We assume a high-capacity
backbone network to carry the traffic between the ECs. Inside
an EC, the model (and our proposed algorithm) supports both
structured (e.g., Fat-Tree [38]) and arbitrary [28] topologies.
Table 2 gives an overview of the abbreviations and notations
used in the paper.

VOLUME 9, 2021 70195

E. Ahvar et al.: DECA for ECs

TABLE 2. Notation overview.

Each EC d ∈ D is represented by a weighted graph Gd =
(Nd ,Ed ,wNd ,wEd), whereNd is the set of CNs in EC d ,Ed is
the set of links (network paths) between CNs, wNd shows the
current capacity of the CNs, andwEd denotes the link weights
(e.g., number of switches on the network path) between CNs
within the given EC. Similar to [29], for every pair of CNs
i and i′ in EC d , a set of pre-calculated paths from i to i′ is
considered, and is given by Ed . Resource parameters of each
CN i are given as a vector Ri, including CPU, memory, disk,
and I/O bandwidth.

To handle time-varying request rates and energy prices,
time is split into equal time windows. We assume that within
a time window T , energy prices do not change.

A set A of application deployment requests is received for
the next time window. Application a ∈ A consists of a set ma

of application components. The set of all requested applica-
tion components is denoted byM = ∪a∈Ama. An application
usually consists of several components that communicate to
each other. An |M | × |M | traffic matrix TR contains the
amount of traffic exchanged among the application compo-
nents. Each application component k is characterized by a
vector Vk of its resource needs according to CPU, memory,
disk, and I/O bandwidth.

Carbon emission and energy cost are related to the amount
of energy consumption by network and server resources. The
energy consumption of a CN is considered as a function
of its CPU load since the CPU is the main contributor to
dynamic power consumption in a CN [31], [36]. Switches
and routers are the main contributors to network energy
consumption [37]. We consider sleep and active modes for
both CNs [31] and switches [32], [33].

B. APPLICATION ALLOCATION PROBLEM
Each component inM has to be assigned to an EC, taking into
account the geographically varying energy prices and carbon
emission rates (e.g., see [46]). The distributed requests in each
selected EC are then allocated on appropriate CNs in the EC.
Appropriate paths are also selected between the CNs hosting
communicating components.

As (1) shows, our aim is to allocate the application com-
ponents such that energy costs and carbon emissions are
minimized:

minimize: (Ytot ,Ztot), where
Ytot = Ycl + Ycom, and
Ztot = Zcl + Zcom

(1)

with the constraint that the selected CNs must have enough
capacity to accommodate the components shown in (2).∑

d∈D

∑
i∈Nd

(Ri · Sd) ≥
∑
k∈M

Vk . (2)

In (1), Ytot is the total cost, Ztot is the total carbon emis-
sion, Ycl is the cost within the ECs, Ycom is the cost of
the inter-cloud network communication, Zcl is the carbon
emission within the ECs, and Zcom is the carbon emission of
the inter-cloud network communication. In (2), Vk is a vector
of the requested resources of component k , the variable Sd
is 1 if EC d is selected for hosting some of the requested
components (otherwise 0), and Ri is the capacity vector
of CN i.

The next subsections describe the details of determining
Ytot and Ztot (see also Fig. 2 for an overview).

1) OVERALL COST FORMULATION (Ytot)
In order to determine Ytot , (3)-(16) formulate Ycl
and (17)-(19) formulate Ycom.

a: COSTS INCURRED WITHIN THE ECS
Ycl is the cost of incremental energy of selected ECs
(including both the CNs and the intra-cloud network) to place

70196 VOLUME 9, 2021

E. Ahvar et al.: DECA for ECs

FIGURE 2. Problem formulation diagram for the application allocation
part.

the newly requested components:

Ycl =
∑
d∈D

PUEd · (Y ′d + Y
′′
d) · yd · Sd . (3)

Here, Y ′d and Y ′′d are the incremental energy consumption
of CNs and switches, respectively, caused by deploying new
components in EC d . PUEd is the power usage effectiveness
value and yd is the energy unit price for EC d . Sd is 1 if EC
d is selected, otherwise 0.

Equations (4)–(7) formulate Y ′d and (12)–(16)
formulate Y ′′d . For the sake of notational simplicity, we skip
the index of ECs in these equations.

Y ′d =
∑
i∈Nd

SerEni · Si. (4)

SerEni =
∑
k∈M

E iinc,k · Lk,i. (5)

E iinc,q = (E iwp + E
i
idle) · S

i
Slp + E

i
k . (6)

E ik = (E imax − E
i
idle) ·

Ck
C i
max

. (7)

Subject to the following constraints:

Lk,i ≤ Si. ∀i ∈ Nd , k ∈ M , (8)∑
i∈Nd

Lk,i = 1. ∀k ∈ M , (9)

∑
k∈M

Vk · Lk,i ≤ wNi. ∀i ∈ Nd . (10)

In (4), SerEni is the incremental energy of running new
components on CN i. Si is 1 if at least one new component
is deployed to CN i, otherwise 0. In (5), E iinc,k is the incre-
mental energy of running component k on CN i. Lk,i is 1 if
component k is allocated on CN i.
Equation (6) formulates E iinc,k from (5), and where E iwp

is the energy needed by CN i to go from sleep to active
mode and E iidle is the energy consumption of CN i if idle
(i.e., active, with zero load). S iSlp is 1 if CN i is in sleep
mode (0 if in active mode) and E ik is the additional energy
consumption of running component k on CN i. If CN i is
in sleep mode and receives the first component, it needs to
spend energy E iwp to go from sleep to active mode. If active
but idle, CN i consumes constant energy ofE iidle; component k

adds E ik to it. As the first component lets the CN wake
from sleep mode, the resulting energy consumption is E iwp +
E iidle+E

i
k . But for components added to an already active CN,

the increase in energy is only E ik . To compute E ik , we use the
following formula derived from [31] and [39]:

E i = E iidle +
|M |∑
q=1

(E iq · Lq,i) (11)

In (7), E imax is the energy consumption of CN i with full
load, Ck is the CPU load of component k and C i

max is the
CPU processing capacity of CN i.

The constraint, mentioned in (8), ensures that a compo-
nent can be assigned only to a selected CN. Equation (9)
guarantees that each component is assigned to exactly one
CN and (10) guarantees that the total load of the components
assigned to a CNdoes not exceed its capacity. Recall thatVk is
the vector of requested resources of component k and wNi is
the current capacity of CN i.

After formulating Y ′d (incremental energy consumption of
CNs in EC d), (12)–(16) formulate Y ′′d (incremental network
energy consumption in EC d). Y ′′d is computed based on
incremental network energy stemming from the additional
traffic between each pair of CNs in EC d for running the new
applications:

Y ′′d =
∑
i∈Nd

∑
i′∈Nd ,
i6=i′

δi,i′∑
t=1

W t
i,i′ . (12)

Here, δi,i′ is the number of exchanged packets between CNs i
and i′, andW t

i,i′ is the incremental energy of network elements
between CNs i and i′ for transferring the t th packet. Note that
in (12), only the selected CNs will be considered automati-
cally, because when there is no traffic between CNs i and i′,
then δi,i′ = 0. δi,i′ is computed based on the characteristics of
the components allocated on CNs i and i′ and on the traffic
matrix:

δi,i′ =
∑
k∈M

∑
k ′∈M

Lk,i · Lk ′,i′ · trk,k ′ . (13)

Lk,i is 1 if component k is allocated on CN i (otherwise=0)
and trk,k ′ is the number of packets between components k and
k ′. W t

i,i′ is computed as follows:

W t
i,i′ =

∑
B∈λi,i′,t

EBinc. (14)

Here, λi,i′,t denotes the path between CNs i and i′ to which
the t th packet is assigned. EBinc is the incremental energy
consumption of network element B for servicing a packet.
The incremental energy consumption of network element B
is computed analogously to that of CNs (see (6)):

EBinc = (EBwp + E
B
idle) · N

B
Slp + E

B. (15)

In (15), EB is computed as indicated in [37].

EB = EBp + E
B
S& FL, (16)

VOLUME 9, 2021 70197

E. Ahvar et al.: DECA for ECs

where EBp (i.e., per-packet processing energy) and EBS&F (i.e.,
per-byte store-and-forward energy) are constants for a given
switch or router configuration, and L is the packet length.

b: COSTS INCURRED BY INTER-CLOUD COMMUNICATION
: Ycom is the incremental energy of the network to transfer
data between different ECs while running the newly
requested applications.

Ycom =
∑

d,d ′∈D

Yd,d ′ · yd,d ′ · Sd · Sd ′ . (17)

where yd,d ′ is the energy unit price for communication
between ECs d and d ′. Yd,d ′ is the incremental energy
between ECs d and d ′ and is formulated in (18).

Yd,d ′ =

δ′
d,d ′∑
t=1

∑
B∈λ′

d,d ′

EBinc,t . (18)

δ′d,d ′ is the number of exchanged packets and λ′d,d ′ is the set
of network elements between ECs d and d ′.

δ′d,d ′ =
∑
i∈d

∑
i′∈d ′

∑
k∈M

∑
k ′∈M

Lk,i · Lk ′,i′ · trk,k ′ . (19)

where Lq,i is 1 if ACq is allocated on CNi of ECj
(otherwise=0) and Lw,i′ is 1 if ACw is allocated on CNi′

ofECj′ (otherwise=0). trq,w is the number of packets between
ACq and ACw.

2) CARBON EMISSION FORMULATION (Ztot)
Recall that Ztot is the sum of Zcl and Zcom, which are com-
puted as follows.

a: INTRA-EC CARBON EMISSION
: Zcl is the carbon emission caused by incremental energy
in the selected ECs (CNs and intra-EC networks) to run the
requests, computed as:

Zcl =
∑
d∈D

PUEd · (Y ′d + Y
′′
d) · CEd · Sd . (20)

Recall that Y ′d and Y ′′d (formulated in (4) and (12)) are the
incremental server (CN) energy and network energy, respec-
tively, in a selected EC d . Sd is 1 if EC d is selected, and 0 oth-
erwise. CEd is the average carbon emission rate (in g/kW) of
the energy sources of EC d . It is computed as follows [4]:

CEd =

∑`
k=1 CE

k
d · r

k∑`
k=1 CE

k
d

. (21)

where CEkd and rk denote the electricity generated by energy
source k and its carbon emission rate, respectively.

b: INTER-EC CARBON EMISSION
Zcom is the amount of incremental carbon emission resulting
from data transfer between the selected ECs:

Zcom =
∑

d,d ′∈D

Yd,d ′ · CCEd,d ′ · Sd · Sd ′ . (22)

where CCEd,d ′ is the average carbon emission rate for com-
munication between EC d and d ′. Sd is 1 if EC d is selected
(otherwise 0). Yd,d ′ was defined in (18).

C. AC CONSOLIDATION (MIGRATION) PROBLEM
Given a set M ′ of ACs running on CNs of EC d , our goal
is to reduce the total energy consumption of running those
ACs in d using migrations. That is, given a number of ACs
(already allocated on CNs) with their sizes and traffic matrix
as an input, we aim to find a new feasible placement for ACs
allocated on under-utilized CNs, minimizing: (1) the energy
spent to run the ACs (by consolidating ACs to reduce the
number of active CNs), (2) the total network overhead (by
improving placement of ACs to reduce inter-AC traffic and
the number of active switches), and (3) the overhead of AC
migrations (by selecting a closer destination for migration in
order to reduce network energy/traffic and using already acti-
vated switches to have minimum number of active switches).
AC consolidation should obtain maximum energy saving

using appropriate AC migrations while consuming minimum
possible energy for the migrations. The AC consolidation
problem can be formulated as follows:

maximize (ϑ − ϑ ′ − ϑ ′′),
ϑ = ϑs + ϑn, and
ϑ ′ = ϑ ′s + ϑ

′
n

(23)

where ϑ and ϑ ′ denote the energy consumption in EC d
for running the ACs before and after AC consolidation,
respectively. ϑ ′′ is the amount of energy consumed by the
migrations.
ϑ is composed of the energy consumption of running the

ACs on CNs (ϑs) and the energy consumption of the commu-
nication among them (ϑn). ϑs is computed as follows:

ϑs =
∑
i∈Nd

Si ·
∑
q∈M ′

E iq. (24)

Here, Si is 1 if at least one AC is allocated on CN i, and
E iq is the energy consumption of running AC q on CN i.
ϑs is computed analogously to Y ′d (see (4)–(7)). The main
difference is that ϑs contains the energy consumption of all
allocated ACs on EC d , while Y ′d considers only the energy
consumption needed for the new requests.
ϑn is the network energy consumption for the communica-

tion among the already allocated ACs:

ϑn =
∑
i∈Nd

∑
i′∈Nd
i6=i′

δi,i′∑
t=1

Hi,i′∑
φ=1

αti,i′,φ ·
∑

B∈λi,i′,φ

EBinc. (25)

Hi,i′ is the number of available paths between CN i and
CN i′. αti,i′,φ is 1 if the φth path is selected. ϑn is computed
analogously to Y ′′d (see (12)–(16)). The main difference is
that ϑn includes the communication energy consumption of
all already allocated ACs on EC d , while Y ′′d considers only
the communication energy consumption for the new requests.

70198 VOLUME 9, 2021

E. Ahvar et al.: DECA for ECs

ϑ ′ is calculated in the same way as ϑ , but using the new
allocation after the migrations have been effectuated.
ϑ ′′ is the energy needed for the migration of the ACs

selected by the AC consolidation algorithm.

ϑ ′′ =
∑
q∈M ′

Sq · ϑ ′′q,(i,i′). (26)

where Sq is 1 if ACq is migrated, otherwise 0. ϑ ′′q,(i,i′) is

the energy needed to migrate ACq from its source CN i to
destination CN i′:

ϑ ′′q,(i,i′) =

Tq∑
t=1

Hi,i′∑
φ=1

β ti,i′,φ ·
∑

B∈λi,i′,φ

EBinc. (27)

Tq is the number of needed packets to transfer ACq. Tq is com-
puted based on the size of ACq and packet size L (i.e., ACqL).
Hi,i′ is the number of available paths between CN i and
destination CN i′. βi,i′,φ is 1 if the φth path is selected.

IV. DYNAMIC ENERGY COST AND CARBON
EMISSION-EFFICIENT APPLICATION PLACEMENT
METHOD (DECA)
To describe DECA, first we introduce its general three-phase
mechanism. Then, we present the DECA logical architecture
and describe in detail each of its components.

A. GENERAL MECHANISM
DECA consists of three main phases: (1) Pre-allocation,
(2) Allocation, and (3) Placement improvement.

1) PHASE 1—PRE-ALLOCATION
Based on the requested application components, the compo-
nents’ traffic matrix, the available ECs and CNs, this phase
tentatively determines the best resources considering cost and
carbon emission. This is done in two steps (see Algorithm 1).
Step 1 pre-selects ECs and pre-distributes the components
to them simultaneously (joint EC selection and component
distribution). Step 2 pre-chooses CNs in each pre-selected
EC and pre-allocates components on them simultaneously
(joint CN selection and component placement). In both steps,
we first create candidate subgraphs and then select the best
subgraph in terms of overall energy cost and carbon emission.

If a component is distributed to EC d in Step 1, then it
is tried to be allocated on a compute node within EC d in
Step 2. This will be normally successful since the decisions in
Step 1 ensure that the total capacity of an EC is sufficient for
the total demand of components mapped to that EC. However,
this is only a necessary but not sufficient condition for being
able to place the set of ACs in this EC. It may turn out in
Step 2 that an AC cannot be allocated in the intended EC.
In this case, the AC and its related ACs are re-allocated to
another EC.

Based on the pre-allocation observation, this phase finds
the best resources for the requested ACs and offers them for
allocation in Phase 2.

2) PHASE 2—ALLOCATION
Phase 2 actually allocates the requested ACs on the resources
finally selected in Phase 1.

3) PHASE 3—PLACEMENT IMPROVEMENT
Phase 3 is in charge of managing already allocated ACs.
It has two main objectives: (1) energy saving: it includes
inter-EC and intra-EC AC migration methods and continu-
ally minimizes energy consumption of each EC to optimize
energy cost and carbon emission, (2) SLA violation preven-
tion: by migrating ACs from overloaded CNs, it prevents
SLA violation.

B. DECA ARCHITECTURE
As mentioned in Section III-A, we assume a cloud controller
and EC controllers in a hierarchical distributed EC architec-
ture. Note that the cloud controller is a logical component
which might be implemented in a physically distributed way
enabling both load balancing and fault tolerance, but this is
beyond the scope of the paper. In each time slot, the cloud
controller selects appropriate resources (ECs, CNs and paths)
for the received AC requests and distributes the ACs to
the chosen ECs. Inside each EC, the EC controller places
the received AC requests on the chosen CNs. Moreover,
in each time period T , the cloud controller runs inter-EC
AC migration and, right after that, each EC controller uses
intra-EC AC migrations to continually optimize cost and
carbon emission of the EC and also to prevent SLA violations
(CN overloading).

To offer a better view about the DECA mechanism,
we mapped the three phases of DECA on its logical archi-
tecture (see Fig. 3). Cloud and EC controller include some
modules which are described next.

FIGURE 3. Logical architecture of DECA.

1) CLOUD CONTROLLER MODULES
a: PRE-ALLOCATOR (PA)
This module (see Algorithm 1) reads general cloud informa-
tion from the Information database, creates a complete graph
of ECs and complete graph of CNs inside each EC, calls the
appropriate sub-modules to pre-allocate the ACs, and finally
sends the determined placement information to the Allocator
(Level 1 and 2) modules. The PA module includes several
sub-modules that we will describe as follows:

VOLUME 9, 2021 70199

E. Ahvar et al.: DECA for ECs

Algorithm 1: Pre-Allocator(G0, {Gi},T ,TR) → (c, f,
e[f])
(a, b) = CSC(G0, M, TR); /*a: subgraphs of ECs, b:
ACs on them*/
c = FBSS (a,b); /*c: the best subgraph of ECs */
foreach EC ∈ c do

(d, e) = CSC(GEC , b[c][EC], TR);
/*d: subgraph of CNs, e: ACs on them*/
f = FBSS(d, e); /*f: the best subgraph of CNs for
EC*/

/*c: selected ECs, f: selected CNs inside ECs, e: way of
placing ACs on CNs*/

b: GRAPH CREATOR (GC)
The GC module creates a complete graph of ECs and com-
plete graph of CNs inside each EC based on general cloud
information in the Information database.

c: AC MAPPER (ACM)
The ACM module (see Algorithm 2) receives a candidate
vertex v (which may represent an EC or a CN) with its current
capacity and a set X of ACs with their traffic matrix TR as
input. Starting from each AC q ∈ X , ACM determines a
subset Yq of X that fits on v. Yq is grown greedily: in each
step, the AC from X \ Yq is chosen that has the largest traffic
with the ACs already in Yq, and is added to Yq if v still has
sufficient capacity. After creating a subset starting from each
AC q, ACM selects the subset with highest inter-AC traffic
and maps it to v.

Algorithm 2: ACM(v, X, TR)→ Highest Traffic Yi
foreach ACq ∈ X do

Yi = {};
if v has enough capacity for ACq then

Add ACq to Yi;
while v has enough capacity for Yi and Yi 6= X
do

Let V ∈ X \ Yi have the highest total traffic
with ACs in Yi;
if v has enough capacity for Yi ∪ {V } then

Add V to Yi;

/* return the Yi with highest inter-AC traffic */

d: CANDIDATE SUBGRAPH CREATOR (CSC)
AsAlgorithm 3 shows, this module receives a weighted graph
G = (V ,E,wV ,wE), a list of ACs M[] and their traffic
information TR as input and returns |V | subgraphs (i.e., S)
with allocated ACs on them (i.e., Sv). The aim of CSC is
to determine for each vi ∈ V (1 ≤ i ≤ |V |) an induced
subgraph G′(vi) with sufficient total capacity for hosting the
ACs and optimized overall cost and carbon emission. G′(vi)
is grown from {vi} as starting point by iteratively adding

one vertex a time. The already selected vertices of G′(vi)
and their allocated ACs are stored in arrays S[i] and Sv[i]
respectively. In each step, CSC checks whether the selected
vertices have sufficient total capacity. If this is the case,
G′(vi) is finished. Otherwise, the PFBS module is called
to select one more vertex for inclusion in S, and the cycle
continues, until the total capacity of the selected vertices is
sufficient. Then, G′(vi) is the subgraph induced by S[i], with
its allocated ACs stored in Sv[i]. This way, a subgraph is cre-
ated for each vertex vi as a starting point yielding altogether
|V | candidate subgraphs.
Trying each vertex as a starting point is important because

the subgraph formed starting from vi will often be biased
towards vertices in the proximity of vi; taking the best one
of the candidate subgraphs helps to find a globally opti-
mal one. In principle, it would also be possible to consider
all subgraphs of G with sufficient total capacity. However,
the number of all such subgraphs can be exponential, making
this approach intractable in practice. In contrast, our method
is a faster, polynomial-time heuristic.

e: PREDICTION AND FUZZY SETS-BASED SELECTOR (PFBS)
Whenever CSC needs to add a new vertex (i.e., vk) to
a candidate subgraph G′(vi) being generated, it calls the
PFBS module (recall that the subgraphG′(vi) formed starting
from vi). As Algorithm 4 shows, PFBS receives a graph G,
a list of already selected vertices in subgraph G′(vi)
(i.e., S[i]), a set of unallocated ACs (i.e., X), AC traffic
information (i.e., TR), and a variableH as input. PFBS returns
the most cost/carbon effective vertex vk ∈ V \ S and selected
ACs on it (Sv) to be included in G′(vi). H = 1 means all
vertices of G will be used for allocating the requested ACs
and so we do a simple random vertex selection to save time.
V \ S are the vertices still available in G for selection.
Selecting the best vertex based on a single metric (e.g., only
cost or carbon emission) is relatively easy. But selecting the
best vertex according to two, sometimes conflicting, metrics
simultaneously is more challenging. This is where Fuzzy
Sets [7] are helpful to trade off the two metrics and thus
select the best vertex. Another challenge is that, to be fast,
we must make local decisions on the next vertex; but ignoring
the effect of later decisions could lead to poor results. For
this reason, we propose a combination of the Fuzzy Sets
technique and the A∗ algorithm [6] to get the benefits of
both appropriate decisions for multiple metrics (using fuzzy
sets) and global decisions (using A∗) together. An example
showing the benefits of using A∗ is given in the Appendix.

Equations (28)–(38) detail our proposed method. PFBS
uses a fuzzy set of all possible (EC or CN) candidates
(i.e., V \ S). There is a membership function c() for this
set to map each candidate to a membership value in the
range [0, 1]. For a candidate vk ∈ V \ S, c(vk) is computed
based on its cost and carbon emission.

Inspired by the A∗ algorithm, c(vk) is made up of
two functions: g(vk) is based on the immediate costs and
carbon emission incurred by selecting the candidate vk ,

70200 VOLUME 9, 2021

E. Ahvar et al.: DECA for ECs

Algorithm 3: CSC(G, M[], TR)→ (S, Sv)
S[][] = { }, Sv[][][] = { }, copy members of array M[]
into a set X ;
Ts: Total requested of |X | ACs, Tn: Total available
capacity of G
H = 1 if all nodes of G will be used for placing the
requested ACs; else H = |V |;
for i=1 to H do

S[i][0] = vi, j = 0, X ′ = { }, Sv[i][j][]←
ACM(vi,X \ X ′, TR),

X ′ = X ′ ∪ Sv[i][j], Tc = wvi; /*Tc:Total current
capacity,*/

while Tc < Ts do
j← j+1;
(vnew, Sv[i][j]) = PFBS(G, S[i],X \ X ′,TR, H);
/*selects one more vertex and its ACs*/
X ′ = X ′ ∪ Sv[i][j], S[i][j] = vnew;
Tc = Tc + vvnew; /*vvnew is resource vector of
vnew*/

/*if not all ACs could be allocated*/
if X 6= X ′ then

X ′′ = { }; /*Set of ACs to move to another EC*/
foreach x ′ ∈ X ′ do

add x’ to X ′′;
foreach x ∈ X do

if x’ has relation with x then
add x to X ′′;
if x is already pre-allocated then

remove x from its CN and EC;
else

/*x is also a member of set X’*/
remove x from X’;

/*allocate X ′′ to an appropriate EC*/
(S’, S’v) = CSC(G \ S[i], X’’, TR)
S = S ∪ S’, Sv = Sv ∪ S’v;

/*returns candidate subgraphs with allocated ACs*/

Algorithm 4: PFBS(G(V,E,wV,wE)→ (selected, Sv[vk])
cmax = −1;
if H == 1 then

select a vk ∈ V \ S randomly where vcpuk < SLAThreshold ;
Sv[vi][j]← ACM(wvi, X, TR);
return (vk , Sv[vk]);

foreach vk ∈ V \ S do
if vcpuk < SLAThreshold then

Sv[vi][j]← ACM(wvk , X, TR);
compute c(vk) using (28)–(38);
if c(vk) > cmax then

cmax = c(vk), selected = vk ;

while h(vk) is based on an estimate of the costs and car-
bon emission that will be incurred in the future if vk is

selected now. This estimation aspect of the A∗ algorithm can
give a global optimization view. It also helps to consider the
capacity of each candidate in addition to cost and carbon
emission. Hence, for a candidate vk ∈ V \ S, the A∗-based
membership value is

c(vk) = 0.5 · (g(vk)+ h(vk)). (28)

The algorithm selects the candidate with the largest c(vk)
value. Here, g(vk) computes a membership value based on
the increment in overall cost and carbon emission (for both
server and network resources) incurred by selecting vk :

g(vk) = 1− K1(vk) · K2(vk). (29)

where K1(vk) and K2(vk) are normalized values of cost
and carbon emission (in range of [0,1]) respectively. Equa-
tion (29) ensures that maximizing g(vk) leads to low values
for both cost and carbon emission. Equations (30) and (31)
normalize cost and carbon emission respectively.

K1(vk) =
Svk · Pvk + Nvk · P

′
vk

Smax · Pmax + Nmax · P′max
. (30)

K2(vk) =
Svk · CEvk + Nvk · CE

′
vk

Smax · CEmax + Nmax · CE ′max
. (31)

where Svk is the incremental energy of vk caused by running
the new ACs and Smax is the incremental energy of the
candidate with the maximum incremental energy. Pvk and
P′vk (for network elements inside vi) are the energy price in
the location of vi. However, for inter-EC network elements,
we consider P′vk as average of the energy prices. Pmax and
P′max are the maximum energy price among all locations.
CEvk and CE′vk (for network elements inside vk) are the
carbon emission rate in location of vk . For inter-EC network
elements, CE′vk is the average of the carbon rates. CEmax and
CE′max are the maximum carbon rate among all locations.
Nvk is the incremental energy of network elements caused by
adding the candidate vk to the subgraph G′(vi):

Nvk =
∑
vj∈S[i]

nvk ,vj . (32)

where nvk ,vj is the incremental energy of transferring data
from candidate vk to the already selected vj in G′(vi) (recall
that G′(vi) is the subgraph that is grown from vi and S[i]
holds the current vertices of G′(vi)). For EC selection, nvk ,vj
is computed based on (18) whereas for CN selection, (14) is
used. PFBS calls for each candidate vk the ACM module to
detect allocated ACs on vk and then computes δk,j for CNs
based on (13) and for ECs based on (19). Recall that (14)
also selects the best path between two CNs.
h(vk) computes a membership value based on an estimate

of the increment in overall cost and carbon emission caused
by the vertices that we will have to select later on to accom-
modate all theM ACs.

h(vk) = 1− K ′1(vk) · K
′

2(vk). (33)

VOLUME 9, 2021 70201

E. Ahvar et al.: DECA for ECs

where K ′1(vk) and K ′2(vk) are normalized values of the
estimated cost and carbon emission (in range of [0,1])
respectively.

K ′1(vk) =
y · Sa · Pa + U · Na · P′a

y · Smax · Pmax + U · Nmax · P′max
. (34)

K ′2(vk) =
y · Sa · CEa + U · Na · CE ′a

y·Smax ·CEmax+U ·Nmax ·CE ′max
. (35)

where y andU are the estimated number of vertices and edges
(network paths) to be added later to the subgraphG′(vi), when
allocating the remaining ACs. Sa is the estimated average and
Smax the maximum possible incremental energy for a new
vertex, Na is the estimated average and Nmax the maximum
possible incremental energy of the network for the further
edges. Pa and P′a are the average, Pmax and P

′
max themaximum

price of energy for vertices and edges, respectively.
To estimate U , recall that G is a complete graph, so that

each new node added to a subgraphG′(vi) with z vertices will
add z new edges. After adding vk to the subgraph G′(vi) with
z vertices, it will consist of z + 1 vertices, so adding further
vertices will lead to z + 1, z + 2, . . . new edges. Hence, if y
further vertices will have to be selected after vk , we have

U =
(z+1)+(y−1)∑

k=z+1

k = z · y+
y · (y+ 1)

2
. (36)

The value of y can be calculated as follows:

y =
|M | − ((

∑
vj∈S[i] F(vj))+ F(vk))

Av
. (37)

where |M | is the total number of newly requested ACs,
F(vj) is the number of allocated ACs on vertex vj of subgraph
G′(vi),

∑
vj∈S[i] F(vj) is the number of allocated ACs till now

on G′(vi), F(vk) is the number of ACs that can be allocated
if vk is chosen next, and Av is the average capacity of all
vertices.

It remains to estimate Na, the average network energy
consumption for the edges that will be added to the sub-
graph G′(vi) in subsequent steps. One possibility is to use the
average network energy consumption among all CNs. This
would be a good estimate if we sampled edges randomly.
However, our algorithm is biased towards edges of lower
energy, so that the overall average may be an overestimate.
A better estimate is the average energy consumption of the
edges that the algorithm has selected so far, i.e., the edges
within the subgraph G′(vi) extended with vk (denoted as Al).
However, when selecting the second vertex, G′(vi) has only
one vertex and no edge, so in this case, we use the average
network energy consumption between the first vertex (i.e., vi)
and all other vertices:

Na =

∑
vj∈Al

∑
v`∈Al\{vj}

n(vjv`)

(z+ 1)z/2
, if z > 1∑

vj∈V\Al
n(vi, vj)

N − 1
, if Al = {vi}

(38)

Putting all the pieces together, we get a fairly good esti-
mate of the overall energy cost and carbon emission when
selecting vi. Based on these estimates, the algorithm can
select the best vi (see Algorithm 4).

f: FUZZY SETS-BASED BEST SUBGRAPH SELECTOR (FBSS)
This module receives as input a set of subgraphs (i.e., S)
along with a list of allocated ACs on their vertices (i.e., Sv).
FBSS selects the most appropriate subgraph in terms of cost
and carbon emission.While selecting the best subgraph based
on only cost or carbon emission is easy, the simultaneous
optimization of the two metrics is more challenging. We use
fuzzy sets to solve this.

As Algorithm 5 shows, FBSS computes for each
G′(vi) the overall cost (Costi) and carbon emission (Cari)
using (39)–(40). Recall that vertices of a subgraph G′(vi)
stored in S[i] and also Sv[i] consists of the allocated ACs of
G′(vi).

Costi =
∑
v∈S[i]

∑
j∈Sv[i][v]

Evinc,j · yv +
∑

v,v′∈S[i]

Yv,v′ · yv,v′ . (39)

Cari=
∑
v∈S[i]

∑
j∈Sv[i][v]

Evinc,j · CEv +
∑

v,v′∈S[i]

Yv,v′ · CEv,v′ . (40)

where Evinc,j (incremental energy of vertex v of G′(vi) caused
by running AC j) is computed based on (6)–(7), Yv,v′ (incre-
mental network energy between vertices v and v′) for EC
subgraphs is computed from (18) and for CN subgraphs
from (12)–(16). yv and yv,v′ (for network elements inside
an EC) are the energy price in location of the EC. For
inter-EC network elements, we consider yv,v′ as average of the
energy prices. CEv and CE′v,v′ (for network elements inside
an EC) are the carbon emission rate in location of that EC.
For inter-EC network elements, CE′v,v′ is the average of the
carbon emission rates. As we have the list of allocated ACs
for each vertex, the number of exchanged packets between
two nodes is easily computed for CNs from (13) and for ECs
from (19).

FBSS then computes membership value of S[i] using the
membership function shown in (41).

Fi = 1−
Cost i
Costmax

·
Car i
Carmax

. (41)

where Costmax and Carmax are the maximum possible cost
and carbon emission for running the new requests, respec-
tively. Finally, the subgraph with highest membership value
is selected.

g: ALLOCATOR (LEVEL 1)
Based on AC allocation information from the Pre-Allocator
module, this module sends each AC request to the chosen
EC controller.

h: MONITORING
Cooperating with EC controllers, this module continuously
monitors the cloud environment and updates the Cloud Infor-
mation Database.

70202 VOLUME 9, 2021

E. Ahvar et al.: DECA for ECs

Algorithm 5: FBSS(S[][], Sv[][][])→ (Selected)
Fmax = −1, i=0;
while S[i] 6= null do

compute cost of S[i] using (39);
compute carbon emission of S[i] using (40);
compute Fi using (41);
if Fi > Fmax then

Fmax = Fi, selected = S[i];
i = i+1;

/* returns the best subgraph */

i: INFORMATION DATABASE
All information related to the distributed EC is stored in this
module.

j: INTER-EC AC MIGRATION
The energy price and carbon emission rate not only can be
different from EC to EC (i.e., in different locations) but can
also vary with time (e.g., even on an hour-to-hour basis).
Therefore, the overall energy cost or carbon emission may
be reduced by shifting portions of the ACs to ECs that
currently offer better energy prices and/or carbon emission
rates [25]. Because of the similar decision-making for
inter-EC and intra-EC AC migration, we describe them
together in Section IV-B2.

2) EC CONTROLLER MODULES
The EC controller receives AC requests along with target
CNs from the cloud controller. The EC controller allocates
the ACs on the selected CNs (Allocator level 2), monitors
the CNs (EC Monitoring) and gathers information of the
EC and sends it to the cloud controller. To keep optimizing
cost and carbon emission while preventing SLA violations,
a Migration module is also used.

a: ALLOCATOR (LEVEL 2)
This module executes the AC allocation, as determined by the
cloud controller.

b: MONITORING
Cooperating with CN controllers, this module continuously
monitors the EC and updates the Information Database.

c: INFORMATION DATABASE
All information related to the EC is stored in this module.

d: INTRA-EC AC MIGRATION
The aim of this module is twofold: (i) to prevent SLA viola-
tions of over-utilized CNs, and (ii) to optimize energy con-
sumption (and thus costs and carbon emission) by emptying
and switching off under-utilized CNs.

Inspired by [20], we consider three thresholds: TL (low),
TM (middle) and TH (high). These thresholds divide a CN’s
possible workload situations into four states: under-utilized
(under TL), light (between TL and TM), moderate (between
TM and TH), and over-utilized (above TH).

Algorithm 6: AC Migration-Under-Utilized CNs (S,D)
Roundmin = ∞, m=1, copy sets S to S′ and D to D′

while m != |S ′| do
for i=1 to |S| do

Tstay = 0, Tmgr = 0
foreach ACq on CNi ∈ S do

Fmin = ∞
foreach CNi′ ∈ D do

compute F(ACq,CNi′) (see (42))
if F(ACq,CNi′) < Fmin then

Fmin = F(ACq,CNi′), Index[i][q]= CNi′

if Index[i][q] is full, remove it from Set D
compute F(ACq,CNi) (see (42))
Tstay = Tstay + F(ACq,CNi), Tmgr = Tmgr + Fmin

if (Tstay + Eidle > Tmgr) then
pre-migrate (map) each ACq of CNi to
Index[i][q], Round[i]=Round[i]+Tmgr

else
Round[i] = Round[i]+Tstay + Eidle,
Index[i][q]=CNi

do a circular shift for set S′

if (Roundmin > Round[i]) then
Roundmin =Round[i], copy array Index[][] to
array Temp[][]

copy sets S′ to S and D′ to D, m++
migrate based on array Temp information

The goal of this workload classification is to easily find
source and destination CNs for AC migration as follows:
(1) all ACs on an under-utilized CN i should be migrated to
CNs with light workload; then, i can be switched to sleep
mode to save energy; (2) to prevent SLA violations, some
ACs on over-utilized CNs must be migrated to other CNs
(usually to CNs with light workloads); (3) ACs on lightly or
moderately loadedCNs are notmigrated to avoid unnecessary
migration cost [20], [40].

For over-utilized CNs, migrating some ACs is mandatory
to prevent SLA violation, even if this increases energy con-
sumption. In contrast, migration of ACs from under-utilized
CNs should be carried out only if it improves the energy
balance, i.e., the energy consumption of the migrations is less
than the energy reduction achieved.

Algorithm 6 shows the proposed AC migration mech-
anism for under-utilized CNs. In each time period, first,
all under-utilized CNs are put in a set S and potential
migration destinations are collected in a set D. These
are primarily the lightly-loaded CNs, but if there is no
such CN, we select moderately-loaded CNs that have the
capacity of receiving one AC without being over-utilized.
If there are neither lightly nor moderately-loaded CNs to
be included in D, we select a subset of the under-utilized
CNs (e.g., the 30% with lowest load) and move them
from S to D.

VOLUME 9, 2021 70203

E. Ahvar et al.: DECA for ECs

The AC Migration Module then selects an under-utilized
CN from S (CNi) and the first AC of it (ACq). We esti-
mate the energy needed for running ACq on each destination
CNi′ ∈ D (1 ≤ i′ ≤ |D|) (in case of migration) or on CNi
(no migration):

F(ACq,CNi′) =

E i
′

q + N
i′
q +Mq,(i,i′), if CNi′ 6= CNi

E i
′

q + N
i′
q , if CNi′ = CNi

(42)

Here, E i
′

q is the energy consumption of running ACq on
CNi′ (computed based on (7)) and Mq,(i,i′) is the energy
needed to migrate ACq from CNi to CNi′ , computed based
on (27). N i′

q is the energy needed for the communication
between ACq and related ACs, assuming that ACq is mapped
to CNi′ . Similar to (25), N i′

q is computed as:

N i′
q =

∑
CNi′′∈N

CNi′′ 6=CNi′

δ
q
i′,i′′∑
t=1

Hi′,i′′∑
φ=1

αti′,i′′,φ ·
∑

B∈λi′,i′′,φ

EBinc. (43)

where δqi′,i′′ is the number of exchanged packets between ACq
on CNi′ and its related ACs on CNi′′ . N is the set of CNs in
the EC.

δ
q
i′,i′′ =

∑
ACw∈CNi′′

trq,w. (44)

If ACw has no communication with ACq, then trq,w = 0;
hence, only ACs communicating with ACq are considered
in (44).

Using (42), the AC Migration Module determines two
values: (1) Stay value: value of the cost function when ACq
remains on CNi (i.e., F(ACq,CNi)); (2) Migrate value: mini-
mum value of cost function among all destination candidates
in D (denoted Fmin). In addition, the index of the CN with
minimum value is saved.

The AC Migration Module repeats the above procedure to
get F(ACq,CNi) and Fmin for each AC on CNi. Then, all Stay
values are summed to get Tstay and all Migrate values are
summed to get Tmgr , leading to:

Dmgr = (Tstay + E
CNi
idle)− Tmgr . (45)

where ECNiidle is the idle energy consumption of CNi.
If Dmgr > 0, then running the ACs of CNi on CNi consumes
more energy than migrating and running them on other CNs.
In this case, all ACs of CNi will be migrated to their already
detected optimal destination CNs andCNi is switched to sleep
mode. But if Dmgr ≤ 0, then migrating the ACs of CNi
would not save energy, so the ACMigration Module does not
migrate any of them.

The AC Migration Module repeats this procedure for all
under-utilized CNs (listed in set S) one by one. It should
be noted that the actions of choosing destinations for
underutilized CNs can affect each other (non-independent
events [6]). For example, a CN that has become fully occupied
by migrating ACs from underutilized CNs is not available

anymore as destination for other underutilized CNs. There-
fore, a different ordering of the source CNs may cause a
different set of feasible destinations for each AC. In addition,
the heterogeneity of ACs and of destination CN candidates
makes it difficult to find a good ordering of the ACs. To cope
with this issue, for a set S of under-utilized CNs, we make |S|
permutations with circle shifting their list by 1 to the left and
run the algorithm again. Finally, the permutation which leads
to the solution with the least energy consumption is selected.

Now we come to the handling of over-utilized CNs. Note
that our proposed AC allocation approach tries to avoid
over-utilized CNs in the first place. However, to cope with
applications with dynamically changing AC loads, the AC
Migration Module supports an over-utilization avoidance
mechanism.

First, the AC Migration Module puts all over-utilized CNs
in a set S (see Algorithm 7). Then, the set D of potential
destination CNs is built similarly as in the previous case.

Let CNi be an over-utilized CN in S. To select an AC
to migrate from CNi, memory size and CPU utilization of
ACs are both important: selecting ACs with low CPU load
increases the number of necessary migrations, and migrating
ACs with large memory size increases traffic and network
energy consumption. Therefore, it is important to consider
both metrics at the same time. To this end, we use a fuzzy
set-based technique and compute a membership value for
each ACq on CNi:

F ′(ACq,CNi) =
cq
cmax
·

(
1−

mq
mmax

)
. (46)

where cq and mq are the CPU utilization and memory size
of ACq, respectively, and cmax and mmax are the maximum
CPU utilization and maximum memory size, respectively.
We select the ACq with highest membership value, which we
denote as ACp.
To select a destination CN for the chosen ACp, we compute

a cost function for each candidate CNi′ ∈ D, similarly as
in (42):

F ′′(ACp,CNi′) = E i
′

p + N
i′
p +Mp,(i,i′). (47)

E i
′

p is the energy consumption of ACp if it is run on CNi′

(computed based on (7)) and Mp,(i,i′) estimates the energy
needed to migrate ACp from CNi to CNi′ , computed based
on (27). N i′

p is the energy of the communication between ACp
and its related ACs, assuming that ACp is migrated to CNi′

(computed based on (43)).
We select the CNd ∈ D for which F ′′(ACp,CNd) is

minimum. After migrating the selected ACp to CNd , if CNd
becomes full (i.e., migrating another AC to CNd would make
it over-utilized), then CNd is removed from D.

If the CNi is still over-utilized, the AC with the second
highest membership value is selected, and this procedure
continues until the CN is not over-utilized anymore. After-
wards, the second over-utilized CN is selected and the above
procedure is repeated. This procedure continues until no
over-utilized CN remains in ECj.

70204 VOLUME 9, 2021

E. Ahvar et al.: DECA for ECs

Algorithm 7: AC Migration-Over-Utilized CNs(S,D)
Set S: over-utilized CNs, Set D: destination candidates
foreach CNi ∈ S do

while CNi is over-utilized do
select an AC with highest membership degree
(based on (46))
select a CN with lowest cost from D; called CNd

(based on (47))
after AC migration, if CNd becomes full, remove
it from D.

Our inter-EC AC migration algorithm is similar to the
above-mentioned AC migration algorithm for under-utilized
CNs with considering the following two minor additional
points: (1) sets S and D are from two different ECs. In order to
detect possible EC candidates for both source and destination
of AC migration, we use a simple threshold-based technique.
We consider a weight for each EC which shows its energy
cost and carbon emission effectiveness in comparison to
other ECs. Equation (48) computes the weight of an ECj.

Wj =
Pj
Pmax

+
Cj
Cmax

. (48)

where Pj, Cj, Pmax and Cmax are the energy price of ECj,
carbon emission rate of ECj, highest energy price of all ECs
and highest carbon rate of all ECs, respectively.

We then order all ECs based on their weights in a list.
We first compare weights of the EC with highest weight with
the EC with lowest weight, because AC migration between
them has the most important effect on cost and carbon effi-
ciency. In addition, we use a weight threshold. The aim of the
threshold is to avoid costly migrations with questionable ben-
efit. If the difference between weights of the highest-weight
and lowest-weight ECs is less than the threshold, there is no
need to do inter-EC AC migration. Otherwise, the inter-EC
ACmigration algorithm is called for the EC pair (the EC with
highest weight is source and the EC with lowest weight is
destination of migration). The AC migration continues until
either the algorithm detects that it is more energy efficient if
the ACs stay than if they migrate, or the capacity of the desti-
nation EC becomes exhausted. In the first situation, the high-
est weight EC is removed from the list of available ECs;
in the second case, the lowest weight EC is removed from
the list of candidates. After that, the comparison is repeated
between the ECswith highest and lowest weight. Again, if the
difference between their weights is higher than the threshold,
the inter-ECACmigration algorithm is called, and so on. This
module is carried out right before the migration module.

V. PERFORMANCE EVALUATION
To evaluate DECA, we considered a distributed EC sys-
tem with 10 ECs and implemented three different scenarios
using CloudSim [42], a simulator developed in Java [43].
Scenario I was designed for evaluating the AC placement

algorithm of DECA showing the obtained tradeoff between
carbon emission and energy cost while optimizing both at
the same time. Scenario II emphasizes on evaluating the
AC migration part of DECA for under-utilized CNs, and
Scenario III for the evaluation of the migration algorithm of
DECA for over-utilized CNs. Scenarios II and III validate the
DECA migration phase ability in still decreasing the energy
consumption after the initial placement.

Based on information from the US Energy Information
Administration [45, Table.5.6.A], we consider energy price
is in range [4, 20] cents/kWh and for each EC was ran-
domly selected between 4 and 20. For the inter-EC net-
work, the energy price was considered as the average
(12 cent/kWh). The PUE value was considered in the range
[1.56, 2.1] based on [16]. We considered six energy sources
with different carbon emission rates from [4] (Nuclear: 15,
Coal: 968, Gas: 440, Oil: 890, Hydro: 13.5 and Wind:
22.5 g/kWh), and assumed five different combinations with
an average of 100, 200, 300, 400 and 500 g/kWh, respectively.
We selected one of them randomly for each EC. We used
real energy models for routers, switches and servers (CNs)
from [37], [44]. The available capacity of each CN is between
10-15 slots. The trafficmatrix of the ACs generates randomly.
The randomly set parameters remain fixed across the runs of
all tested algorithms to ensure comparability of the results.

The experiments were conducted on an Intel Core
i9-9880H 2.30 GHz computer, with 32 GB of memory. Each
execution run simulated one hour of traffic and completed
in less than 1 minute for Scenario I, less than 6 minutes
for Scenario II and less than 2 minutes for Scenario III. For
each scenario, we also computed the average results of up to
ten executions, i.e., less than 100 minutes of total simulation
time (hence, validating the feasibility of our proposal, both in
terms of computational and time constraints).

A. SCENARIO I
For Scenario I, the free capacity of the distributed EC system
was chosen randomly, between 1,000 and 2,000 slots, in each
run. This total capacity was divided among the 10 ECs (the
free capacity of each EC was between 100 and 200 slots).
Three different sets of requests with 100, 200, and 300 ACs
were considered. Table 3 lists the details in Scenario I.
In order to simplify our implementation, similar to [11],
we describe our scenarios using the simplification of slots
(i.e., each basic vector resource unit is represented by one
slot). Nevertheless, our proposal can be implemented without
using slots, as well.

TABLE 3. Scenario I details.

VOLUME 9, 2021 70205

E. Ahvar et al.: DECA for ECs

We compare the performance of DECA against
DECA-Cost, DECA-Carbon, Random and Greedy resource
allocation algorithms. DECA-Cost is a version of DECA
which only considers cost optimization and DECA-Carbon
only considers carbon footprint optimization. Comparing
DECA to these special versions can show how DECA
manages to find a trade-off between the two optimization
goals. The Random algorithm starts by selecting a vertex
(EC or CN) randomly and placing as many ACs as possible
in this vertex. If not all ACs could be allocated in the selected
vertex, then a further vertex is selected, again randomly,
to place the remaining ACs. This process is repeated until
all requested ACs are placed. The Greedy algorithm selects a
vertex with maximum free capacity and allocates as many
ACs from the request as possible in this vertex. If further
ACs are necessary, then it selects from the remaining vertices
again the one with maximum free capacity. This process
continues until all ACs are placed [10], [14].

Figures 4, 5 and 6 show the simulation results (each run
simulated 1 hour, i.e., that the energy cost and carbon emis-
sion values are for 1 hour). In particular, Figs. 4(a) and 5(a)
show howDECA could successfully make a joint cost-carbon
emission optimization. DECA outperforms the Random and
Greedy algorithms in both dimensions. It was clear that
DECA-Cost leads to the lowest cost. However, the carbon
emission of DECA-Cost is sometimes even worse than that
of Random or Greedy. Similarly, DECA-Carbon is the best
in carbon efficiency but performs poorly in cost efficiency.
In general, DECA improves 45-115% in carbon emissions on
DECA-Cost while incurring 20-60% higher costs. In compar-
ison to DECA-Carbon, DECA improved total cost by 40-60%
while increasing carbon emission only by 10-30%.

As shown in Fig. 6(a), Greedy always has the least number
of selected ECs. Together with Figs. 4(a)–(d), this shows
that only reducing the number of selected ECs (and CNs)
does not lead to total cost optimum. In Fig. 6(b), there is
no significant difference in energy consumption between the
methods. Since there are still big differences in costs and
carbon emissions, this shows the importance of taking into
account the different energy sources and resulting variety of
prices and emission rates of the ECs in a distributed cloud.

B. SCENARIO II
In Scenario II, we considered an ECwith three different sizes:
100, 200 and 300 CNs. Each CN has a capacity between
10-15 slots. The traffic matrix of the ACs was generated ran-
domly between 0 and 1,500 packets, where each packet has
a size of 2 KB. Three different CPU loads and memory sizes
are considered for the ACs (4, 8 and 12 GB). For migrations,
we assume a page dirtying ratio of 0.2. The path length for
each CN pair inside an EC was randomly chosen from 1 to
5 hops (switches).We used real energymodels for routers and
switches from [37] and for servers (CNs) from [44]. Table 4
lists the details associated to Scenario I.

Scenario II is designed to evaluate the performance of our
proposed AC migration algorithm for under-utilized CNs.

FIGURE 4. Simulation results for Scenario I-Part I (cost).

The thresholds TL , TM and TH are 0.2, 0.5 and 0.8, respec-
tively. We assume that in the current placement of ACs on
CNs, 30% of the CNs are under-utilized, 50% are lightly
and 20% moderately loaded. To evaluate the effect of our
approach accurately and individually, we assume now that
there are no over-utilized CNs (over-utilized CNs will be
considered in Scenario III).

70206 VOLUME 9, 2021

E. Ahvar et al.: DECA for ECs

FIGURE 5. Simulation results for Scenario I-Part II (Carbon emission).

Fig. 7(a) shows the effect of theACmigration algorithm for
under-utilized CNs within DECA, compared to the situation
without AC migrations. The results show that the AC migra-
tion algorithm of DECA for under-utilized CNs could reduce
energy consumption. We would like to stress that the perfor-
mance of our algorithm has a direct relation with the number
of under-utilized CNs. Therefore, the resulting energy saving

FIGURE 6. Simulation results for Scenario I-part III.

TABLE 4. Scenario II details.

can be even better if the number of under-utilized CNs is
higher.

Fig. 7(b) shows that DECA significantly reduces comput-
ing energy consumption in comparison to no migrations by
bringing under-utilized CNs to sleep mode. AC migration
consumes energy, but this energy is negligible (see Figs. 8(a)
and (b)) compared to the amount of energy saved by bringing
under-utilized CNs to sleep (Fig. 7(b)). Note that the scale of
Figs. 7(a)–(c) is Millions and Figs. 8(a)–(b) scale is x1000.
Fig. 8(a) shows that there is no visible difference in energy
consumption of inter-AC communication, i.e., DECA did not
increase inter-AC traffic.

Table 5 shows the energy saving of DECA for AC migra-
tion compared to the method of Zhou et al. [20] and Random
(i.e., selecting destinations randomly). Note that in contrast to
the diagrams, here higher numbers are better. Energy saving
is defined as Enbef − (Enaft +Enmgr), where Enbef and Enaft
are the total energy consumption of compute and network
resources without respectively with migrations, and Enmgr is
the energy consumption of the migrations. As Table 5 shows,
in all situations DECA saved more energy than the other

VOLUME 9, 2021 70207

E. Ahvar et al.: DECA for ECs

FIGURE 7. Scenario II, effect of migrations from under-utilized CNs-Part I.

TABLE 5. Energy saving [J] of different AC consolidation algorithms for
different EC sizes.

methods. Tables 6, 7 and 8 provide more insight into the
reasons.

Table 6 shows the energy consumption achieved with
DECA for AC migration compared to other methods. As the
objective of DECA is optimal energy saving, based on the
situation, it may increase AC migration energy consumption
so that it can reduce compute energy consumption more
(and vice versa).

Table 7 shows energy consumption of compute resources
achieved by the different methods. As can be seen, DECA has

FIGURE 8. Scenario II, effect of migrations from under-utilized CNs-Part II.

TABLE 6. Comparing energy consumption for AC migration of DECA with
other AC consolidation algorithms (Scenario II, under-utilized CNs).

TABLE 7. Compute energy consumption [J] of different AC consolidation
algorithms for different EC sizes.

TABLE 8. Network energy consumption [J] for inter-AC communication of
different AC consolidation algorithms for different EC sizes.

an advantage here. Although Zhou always selects the CNwith
the least increase in power consumption due to AC allocation,
unlike DECA, it does not consider the order of selecting
under-utilized CNs. Concerning energy consumption of net-
work resources for inter-AC communication, Table 8 shows
only marginal differences between the methods.

70208 VOLUME 9, 2021

E. Ahvar et al.: DECA for ECs

As a consequence, DECA aims to minimize the total
energy consumption (i.e., compute, network and AC migra-
tion) rather than only minimizing compute energy consump-
tion. DECA intelligently selects a CN which is not the one
with the least increase in compute power consumption but
incurs less energy for migration and inter-AC communica-
tion. In addition, because of the heterogeneity of ACs and
destination CNs, DECA considers the order of selecting
under-utilized CNs. All of them together lead to the best
overall performance, as seen in Table 5.

C. SCENARIO III
We use the same configuration as in Scenario II, except for
the differences mentioned below. Scenario III is designed
to evaluate the performance of our proposed AC migra-
tion algorithm for over-utilized CNs. Now we assume that
the placement of ACs on CNs is such that 30% of CNs
are lightly-loaded, 50% moderately-loaded, and 20% over-
utilized. To accurately and individually evaluate the effect of
our algorithm for handling over-utilized CNs, we now assume
that there is no under-utilized CN.

We compare the migration algorithm of DECA with three
AC(VM)migration policies for over-utilized CNs: (1)MIMT,
(2) MAMT, and (3) RCT [20]. While MIMT chooses the
minimum number of ACs (i.e., selecting an AC with maxi-
mum CPU load) which must be migrated from a CN, MAMT
selects the maximum number of ACs (i.e., selecting an AC
with minimum CPU load) and RCT uses a random selection
of ACs to decrease the CN’s CPU utilization below a thresh-
old. In addition to these three policies, to evaluate both the
AC and CN selection parts of DECA accurately, we consider
eight different combinations of CN andAC selection policies.
Therefore, in total, we compare twelve policies:
• DECA: proposed CN selection / proposed AC selection
(Proposed / Proposed),

• MIMT: select a CN with the least increase of power
consumption / select an AC with maximum CPU load
(Min. Compute / Max. CPU),

• MAMT: select a CN with the least increase of power
consumption / select an AC with minimum CPU load
(Min. Compute / Min. CPU),

• RCT: select a CN with the least increase of power con-
sumption / a random selection of ACs (Min. Compute /
Random),

• DECA CN selection / MIMT AC selection (Proposed /
Max. CPU),

• DECA CN selection / MAMT AC selection
(Proposed / Min. CPU),

• DECA CN selection / RCT AC selection (Proposed /
Random),

• MIMT/MAMT/RTCCN selection / DECAAC selection
(Min. Compute / Proposed),

• Random CN selection / DECA AC selection (Random /
Proposed),

• Random CN selection / MIMT AC selection (Random /
Max. CPU),

• Random CN selection / RTC AC selection (Random /
Random),

• Random CN selection / MAMT AC selection
(Random / Min. CPU).

Recall that all three MIMT, MAMT, and RCTmigration poli-
cies use similar CN selection method (i.e., Min. Compute).

Figs. 9, 10 and 11 show energy consumption of the
algorithms for different EC sizes (i.e., 100, 200 and 300 CNs
respectively).

FIGURE 9. Energy consumption achieved by different algorithms for
intra-EC AC (VM) migration (over-utilized CNs) for 100 CNs (Scenario III).
The first parameter shows CN selection method and the second one is AC
selection (CN selection / AC selection).

FIGURE 10. Energy consumption achieved by different algorithms for
intra-EC AC (VM) migration (over-utilized CNs) for 200 CNs (Scenario III).
The first parameter shows CN selection method and the second one is AC
selection (CN selection / AC selection).

As these figures show, DECA outperforms all other meth-
ods for all 100, 200 and 300 CNs. "Min. Compute Proposed"
(i.e., combination of the Min. Compute CN selection method
with our proposed AC selection method) is the closest policy
to DECA. However, in all situations, DECA outperforms
the "Min. Compute Proposed" policy. Even for 300 CNs,
DECA’s performance (with 1102.79 J) is still better than
"Min. Compute Proposed" policy (with 1124.69 J).

VOLUME 9, 2021 70209

E. Ahvar et al.: DECA for ECs

FIGURE 11. Energy consumption achieved by different algorithms for
intra-EC AC (VM) migration (over-utilized CNs) for 300 CNs (Scenario III).
The first parameter shows CN selection method and the second one is AC
selection (CN selection / AC selection).

This is because both the CN selection and AC selection
parts of DECA are efficient. While our CN selection con-
siders energy efficiency in computing and network resources
at the same time, the policy used in MIMT, MAMT, RTC
(and many other methods, such as [22], [23]) only consider
compute resource energy consumption (i.e., Min. Compute
policy; choosing the CN with the least increase in power con-
sumption due to AC allocation). Considering only compute
energy consumption may lead to the selection of a destination
CN far from the source and thus to higher energy consump-
tion of AC migration.

Also, AC selection has a direct effect on energy consump-
tion of AC migration. Although MIMT (i.e., selecting an
AC with maximum CPU load) is a plausible method as it
minimizes the number of AC migrations, our results show
that MIMT may not be ideal if the memory sizes of ACs are
different. For example, suppose that the CPU load of AC 1 is
a bit higher than that of AC 2, while the memory size of AC 2
is much lower than that of AC 1. In this case, migrating
AC 2 consumes less energy. Unlike MIMT which does not
consider memory size of the ACs, our proposed AC selection
policy takes into account both memory size and CPU load in
selecting ACs.

Putting all the pieces together, such as considering both
compute and network resources for CN selection and con-
sidering both CPU load and memory size for AC selection,
we end up to a highly effective algorithm for migrating ACs
from over-utilized CNs.

D. DECA OVERALL DISCUSSION
This part consolidates the results obtained in the three
scenarios.

Scenario I was designed for evaluating the AC placement
algorithm (i.e., the initial placement) of DECA. Its results
showed how DECA makes a tradeoff between carbon emis-
sion and energy cost while optimizing both at the same time.
DECA combines a variant of the A* search algorithm [6] with

a Fuzzy Sets technique [7]. Using powerful techniques (i.e.,
the A* search algorithm [6] with a Fuzzy Sets technique [7]),
DECA could perform more effective optimization than tradi-
tional greedy heuristics.

Scenario II and III demonstrated the DECA migration
phase ability in decreasing the energy consumption after the
initial placement.

Scenario II was considered to evaluate the performance
of our AC migration algorithm for under-utilized CNs. The
first part of its results showed that we could significantly
reduce computing energy consumption in comparison to no
migrations by bringing under-utilized CNs to sleep mode.
We found that AC migration energy consumption is negli-
gible compared to the amount of energy saved by bringing
under-utilized CNs to sleep. The second part of the Scenario
II compared the energy saving of our ACmigration algorithm
for under-utilized CNs with the method of Zhou et al. [20]
and Random (i.e., selecting destinations randomly). In all
situations, our AC migration algorithm saved more energy
than the other methods. Because our AC migration algorithm
aims tominimize the total energy consumption (i.e., compute,
network andACmigration) rather than onlyminimizing com-
pute energy consumption. It sometimes intelligently selects a
CN which is not the one with the least increase in compute
power consumption but incurs less energy for migration and
inter-AC communication.

Scenario III was defined to evaluate the performance of
our proposed AC migration algorithm for over-utilized CNs.
Considering both compute and network resources for CN
selection and also both CPU load and memory size for AC
selection, we end up to a highly effective algorithm for
migrating ACs from over-utilized CNs.

Putting all the pieces together, DECA showed promising
results for two main parts: (i) determining the initial place-
ment of newly deployed applications (i.e., Scenario I) and (ii)
re-optimization of the placement of applications to react to
workload changes (i.e., Scenarios II and III).

VI. CONCLUSION
We have presented a Dynamic Energy cost and Carbon
emission-efficient Application placement method (called
DECA) for distributed Edge Clouds (ECs). It considers
geographically varying energy prices and carbon emission
rates as well as optimizing both network and compute
resources at the same time. We showed that combining the
prediction-based A* algorithm with a Fuzzy Sets technique
can make an intelligent decision to optimize cost and carbon
emission. We have proposed two AC migration algorithms
and presented the effect of live AC migration algorithms
on energy consumption in ECs. Three different scenarios
have been considered to evaluate performance of DECA.
Based on our experiments, we have seen that considering
both compute and network resources for CN selection and
both CPU load and AC memory size for AC selection can
improve the energy cost and carbon efficiency. In this paper,
DECA was targeting batch applications and force them to

70210 VOLUME 9, 2021

E. Ahvar et al.: DECA for ECs

run at a cheaper time. As future work, we will deal with
DECA’s limitation for efficiently supporting more interactive
environments in which it is not possible to control that all
computing will happen within a slot of time. In addition,
effectiveness of a SDN-based orchestration framework for
managing live VM migration in order to minimize cost and
carbon emission will be studied.

APPENDIX. ILLUSTRATION OF THE A* ALGORITHM’s
BENEFIT
We show the benefit of the A* algorithm for application
placement in ECs compared to other heuristics on a simple
example. Fig. 12(a) shows a complete weighted graph on
seven nodes with different capacities. The task is to allocate
on the nodes a load of 40 units in total, with the objective
of minimizing the total weights of edges (distance) between
selected nodes. This example models a distributed EC envi-
ronment with 7 DCs in which 40 VMs of equal size should be
allocated. We consider three methods: allocating the VMs (1)
greedily based on node capacity, (2) greedily based on edge
weight, and (3) A* algorithm.

Node-based Greedy selects the nodes with largest available
capacity, Edge-based Greedy selects nodes with shortest dis-
tance (based on edge weights) from already selected nodes.
A* computes a cost value c(v) = g(v) + h(v) for each
candidate v, where g(v) is the total distance of candidate v to
already selected nodes and h(v) is an estimate of total distance
caused by adding the remaining nodes to allocate all 40 VMs.
Finally, A* selects the candidate with lowest c value. The
procedure of adding new nodes continues until all 40 VMs
allocated.

Fig. 12(b)-(d) show the results of running the three meth-
ods on the graph of Fig. 12(a) with starting node ST. The
Node-based Greedy method leads to the lowest number of
selected nodes, as Fig. 12(c) shows. However, it selects nodes
far from each other. In contrast, Edge-based Greedy selects
nodes that are located as close as possible to each other;
however, as it does not consider node capacity, it selects
more nodes of lower capacity compared to Node-based
Greedy (Fig. 12(d)). Therefore, as this example shows, both
Node-based and Edge-basedGreedymethods sometimes lead
to poor results.

Unlike the two heuristics mentioned above, the A* consid-
ers both node capacity and distance at the same time, leading
to better overall results (Fig. 12(b)). A* estimates for each
candidate the future costs of selecting it in terms of howmany
additional nodes and edges will be necessary, and it selects
the candidate with minimum total of already selected edge
weights and estimated further edge weights. For example,
if a low-capacity candidate is located in the proximity of the
already selected nodes but — because of its low capacity —
would lead to the selection of a higher number of nodes in the
future to accommodate all requested VMs, it may be better
to select a candidate that is farther away but offers higher
capacity.

FIGURE 12. An example of selecting subgraphs with different methods.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers
for their constructive and insightful remarks that helped in
improving this paper.

REFERENCES
[1] J. Pan and J. McElhannon, ‘‘Future edge cloud and edge computing for

Internet of Things applications,’’ IEEE Internet Things J., vol. 5, no. 1,
pp. 439–449, Feb. 2018.

[2] M. Chen, Y. Hao, L. Hu, M. S. Hossain, and A. Ghoneim, ‘‘Edge-CoCaCo:
Toward joint optimization of computation, caching, and communication on
edge cloud,’’ IEEEWireless Commun., vol. 25, no. 3, pp. 21–27, Jun. 2018.

[3] P. Xiang Gao, A. R. Curtis, B. Wong, and S. Keshav, ‘‘It’s not easy being
green,’’ in Proc. ACM SIGCOMM, Helsinki, Finland, 2012, pp. 211–222.

[4] Z. Zhou, F. Liu, Y. Xu, R. Zou, H. Xu, J. C. S. Lui, and H. Jin,
‘‘Carbon-aware load balancing for geo-distributed cloud services,’’ in
Proc. IEEE 21st Int. Symp. Model., Anal. Simul. Comput. Telecommun.
Syst., San Francisco, CA, USA, Aug. 2013, pp. 232–241.

VOLUME 9, 2021 70211

E. Ahvar et al.: DECA for ECs

[5] S. Gosselin, F. Saliou, F. Bourgart, E. Le Rouzic, S. L.Masson, andA. Gati,
‘‘Energy consumption of ICT infrastructures: An Operator’s viewpoint,’’
in Proc. Eur. Conf. Exhib. Opt. Commun., Amsterdam, The Netherlands,
2012, pp. 1–3.

[6] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Upper Saddle River, NJ, USA: Prentice-Hall, 2010.

[7] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353,
Jun. 1965.

[8] Z. Á.Mann andM. Szabó, ‘‘Which is the best algorithm for virtual machine
placement optimization?’’ Concurrency Comput., Pract. Exper., vol. 29,
no. 10, p. e4083, May 2017.

[9] Z. Á. Mann, ‘‘Allocation of virtual machines in cloud data centers—A
survey of problem models and optimization algorithms,’’ ACM Comput.
Surveys, vol. 48, no. 1, pp. 1–34, Sep. 2015.

[10] E. Ahvar, S. Ahvar, Z. A. Mann, N. Crespi, J. Garcia-Alfaro, and R. Glitho,
‘‘CACEV: A cost and carbon emission-efficient virtual machine placement
method for green distributed clouds,’’ in Proc. IEEE Int. Conf. Services
Comput. (SCC), San Francisco, CA, USA, Jun. 2016, pp. 275–282.

[11] X. Li, J.Wu, S. Tang, and S. Lu, ‘‘Let’s stay together: Towards traffic aware
virtual machine placement in data centers,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Toronto, ON, Canada, Apr. 2014, pp. 1842–1850.

[12] A. Pahlevan, X. Qu, M. Zapater, and D. Atienza, ‘‘Integrating heuristic and
machine-learning methods for efficient virtual machine allocation in data
centers,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 8, pp. 1667–1680, Aug. 2018.

[13] K. You, B. Tang, and F. Ding, ‘‘Near-optimal virtual machine placement
with product traffic pattern in data centers,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2013, pp. 3705–3709.

[14] M. Alicherry and T. V. Lakshman, ‘‘Network aware resource allocation in
distributed clouds,’’ in Proc. IEEE INFOCOM, Mar. 2012, pp. 963–971.

[15] E. Ahvar, S. Ahvar, N. Crespi, J. Garcia-Alfaro, and Z. A.Mann, ‘‘NACER:
A network-aware cost-efficient resource allocation method for processing-
intensive tasks in distributed clouds,’’ in Proc. IEEE 14th Int. Symp. Netw.
Comput. Appl., Cambridge, MA, USA, Sep. 2015, pp. 90–97.

[16] A. Beloglazov and R. Buyya, ‘‘Energy and carbon-efficient placement
of virtual machines in distributed cloud data centers,’’ in Euro-Par 2013
Parallel Processing. Berlin, Germany: Springer, May 2010, pp. 317–328.

[17] A. Khosravi, L. L. H. Andrew, and R. Buyya, ‘‘Dynamic VM placement
method for minimizing energy and carbon cost in geographically dis-
tributed cloud data centers,’’ IEEE Trans. Sustain. Comput., vol. 2, no. 2,
pp. 183–196, Apr. 2017.

[18] C. Gu, C. Liu, J. Zhang, H. Huang, and X. Jia, ‘‘Green scheduling for cloud
data centers using renewable resources,’’ in Proc. IEEE Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), Hong Kong, Apr. 2015,
pp. 354–359.

[19] N. Tziritas, C.-Z. Xu, T. Loukopoulos, S. U. Khan, and Z. Yu,
‘‘Application-aware workload consolidation to minimize both energy con-
sumption and network load in cloud environments,’’ in Proc. 42nd Int.
Conf. Parallel Process., Lyon, France, Oct. 2013, pp. 449–457.

[20] Z. Zhou, Z.-G. Hu, T. Song, and J.-Y. Yu, ‘‘A novel virtual machine deploy-
ment algorithm with energy efficiency in cloud computing,’’ J. Central
South Univ., vol. 22, no. 3, pp. 974–983, Mar. 2015.

[21] X. Zheng and Y. Cai, ‘‘Dynamic virtual machine placement for cloud
computing environments,’’ in Proc. 43rd Int. Conf. Parallel Process. Work-
shops, Minneapolis, MN, USA, Sep. 2014, pp. 121–128.

[22] A. Beloglazov and R. Buyya, ‘‘Energy efficient allocation of virtual
machines in cloud data centers,’’ in Proc. 10th IEEE/ACM Int. Conf.
Cluster, Cloud Grid Comput., Melbourne, VIC, Australia, May 2010,
pp. 577–578.

[23] A. Beloglazov and R. Buyya, ‘‘Energy efficient resource management in
virtualized cloud data centers,’’ in Proc. 10th IEEE/ACM Int. Conf. Cluster,
Cloud Grid Comput., Melbourne, VIC, Australia, May 2010, pp. 826–831.

[24] X.-F. Liu, Z.-H. Zhan, J. D. Deng, Y. Li, T. Gu, and J. Zhang, ‘‘An energy
efficient ant colony system for virtual machine placement in cloud comput-
ing,’’ IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 113–128, Feb. 2018.

[25] A. Forestiero, C. Mastroianni, M. Meo, G. Papuzzo, and
M. Sheikhalishahi, ‘‘Hierarchical approach for efficient workload
management in geo-distributed data centers,’’ IEEE Trans. Green
Commun. Netw., vol. 1, no. 1, pp. 97–111, Mar. 2017.

[26] X. Li, P. Garraghan, X. Jiang, Z. Wu, and J. Xu, ‘‘Holistic virtual machine
scheduling in cloud datacenters towards minimizing total energy,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 6, pp. 1317–1331, Jun. 2018.

[27] M. H. Kabir, G. C. Shoja, and S. Ganti, ‘‘VM placement algorithms for
hierarchical cloud infrastructure,’’ in Proc. IEEE 6th Int. Conf. Cloud
Comput. Technol. Sci., Singapore, Dec. 2014, pp. 656–659.

[28] A. Singla, C. Hong, L. Popa, and P. B. Godfrey, ‘‘Jellyfish: Networking
data centers randomly,’’ in Proc. 9th USENIX Conf. (NSDI), San Jose, CA,
USA, 2012, pp. 225–238.

[29] M. Rahnamay-Naeini, S. S. Baidya, E. Siavashi, and N. Ghani, ‘‘A traffic
and resource-aware energy-saving mechanism in software defined net-
works,’’ in Proc. Int. Conf. Comput., Netw. Commun. (ICNC), Kauai, HI,
USA, Feb. 2016, pp. 1–5.

[30] S. Mustafa, K. Sattar, J. Shuja, S. Sarwar, T. Maqsood, S. A. Madani,
and S. Guizani, ‘‘SLA-aware best fit decreasing techniques for workload
consolidation in clouds,’’ IEEE Access, vol. 7, pp. 135256–135267, 2019.

[31] C. Mobius, W. Dargie, and A. Schill, ‘‘Power consumption estimation
models for processors, virtual machines, and servers,’’ IEEE Trans. Par-
allel Distrib. Syst., vol. 25, no. 6, pp. 1600–1614, Jun. 2014.

[32] N. Vasić, P. Bhurat, D. Novaković, M. Canini, S. Shekhar, and D. Kostić,
‘‘Identifying and using energy-critical paths,’’ in Proc. 7th Conf. Emerg.
Netw. EXperiments Technol. (CoNEXT), Tokyo, Japan, 2011, pp. 1–12.

[33] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, ‘‘ElasticTree: Saving energy in data center
networks,’’ in Proc. NSDI, Palo Alto, CA, USA, 2010, pp. 249–264.

[34] Z. A. Mann, ‘‘Modeling the virtual machine allocation problem,’’ in Proc.
MMSSE Conf., 2015, pp. 102–106.

[35] Z. Xu and W. Liang, ‘‘Minimizing the operational cost of data centers via
geographical electricity price diversity,’’ inProc. IEEE 6th Int. Conf. Cloud
Comput., Santa Clara, CA, USA, Jun. 2013, pp. 99–106.

[36] I. S. Moreno and J. Xu, ‘‘Customer-aware resource overallocation to
improve energy efficiency in realtime cloud computing data centers,’’ in
Proc. IEEE Int. Conf. Service-Oriented Comput. Appl. (SOCA), Irvine, CA,
USA, Dec. 2011, pp. 1–8.

[37] A. Vishwanath, K. Hinton, R. W. A. Ayre, and R. S. Tucker, ‘‘Modeling
energy consumption in high-capacity routers and switches,’’ IEEE J. Sel.
Areas Commun., vol. 32, no. 8, pp. 1524–1532, Aug. 2014.

[38] M. Al-Fares, A. Loukissas, and A. Vahdat, ‘‘A scalable, commodity data
center network architecture,’’ in Proc. ACM SIGCOMM Conf. Data Com-
mun. (SIGCOMM), New York, NY, USA, 2008, pp. 63–74.

[39] G. Warkozek, E. Drayer, V. Debusschere, and S. Bacha, ‘‘A new approach
to model energy consumption of servers in data centers,’’ in Proc. IEEE
Int. Conf. Ind. Technol., Athens, Greece, Mar. 2012, pp. 211–216.

[40] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, ‘‘Cost of virtual
machine live migration in clouds: A performance evaluation,’’ in Proc. Int.
Conf. Cloud Comput., Beijing, China, Dec. 2009, pp. 254–265.

[41] W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong, ‘‘VMPlanner:
Optimizing virtual machine placement and traffic flow routing to reduce
network power costs in cloud data centers,’’ Comput. Netw., vol. 57, no. 1,
pp. 179–196, Jan. 2013.

[42] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exper., vol. 41, no. 1, pp. 23–50, Jan. 2011.

[43] Melbourne CLOUDS Lab. CloudSim: A Framework for Modeling and
Simulation of Cloud Computing Infrastructures and Services. University
of Melbourne, Melbourne, VIC, Australia. Accessed: Mar. 25, 2021.
[Online]. Available: http://www.cloudbus.org/cloudsim/

[44] X. Zhang, J. Lu, and X. Qin, ‘‘BFEPM: Best fit energy predictionmodeling
based on CPU utilization,’’ in Proc. IEEE 8th Int. Conf. Netw., Archit.
Storage, Jul. 2013, pp. 41–49.

[45] US Energy Information Administration. Accessed: Apr. 2021. [Online].
Available: https://www.eia.gov/electricity/monthly/epm_table_grapher.
cfm?t=epmt_5_6_a

[46] Eurostat Electricity Price Statistics. Accessed: Apr. 2021. [Online].
Available: https://ec.europa.eu/eurostat/statistics-explained/index.php/
Electricity_price_statistics

[47] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, ‘‘An application
placement technique for concurrent IoT applications in edge and fog
computing environments,’’ IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Apr. 2021.

[48] S. Pallewatta, V. Kostakos, and R. Buyya, ‘‘Microservices-based IoT
application placement within heterogeneous and resource constrained fog
computing environments,’’ in Proc. 12th IEEE/ACM Int. Conf. Utility
Cloud Comput., Dec. 2019, pp. 71–81.

70212 VOLUME 9, 2021

E. Ahvar et al.: DECA for ECs

[49] Y. Hu, C. de Laat, and Z. Zhao, ‘‘Optimizing service placement for
microservice architecture in clouds,’’ Appl. Sci., vol. 9, no. 21, p. 4663,
Nov. 2019.

[50] H. O. Hassan, S. Azizi, and M. Shojafar, ‘‘Priority, network and energy-
aware placement of IoT-based application services in fog-cloud environ-
ments,’’ IET Commun., vol. 14, no. 13, pp. 2117–2129, Aug. 2020.

[51] P. Kayal and J. Liebeherr, ‘‘Autonomic service placement in fog comput-
ing,’’ in Proc. IEEE 20th Int. Symp. World Wireless, Mobile Multimedia
Networks (WoWMoM), Jun. 2019, pp. 1–9.

[52] S. Omer, S. Azizi, M. Shojafar, and R. Tafazolli, ‘‘A priority, power and
traffic-aware virtual machine placement of IoT applications in cloud data
centers,’’ J. Syst. Archit., vol. 115, May 2021, Art. no. 101996.

[53] S. S. Nabavi, S. S. Gill, M. Xu, M. Masdari, and P. Garraghan, ‘‘TRAC-
TOR: Traffic-aware and power-efficient virtual machine placement in
edge-cloud data centers using artificial bee colony optimization,’’ Int.
J. Commun. Syst., p. e4747, 2021, doi: 10.1002/dac.4747.

[54] A. Ibrahim, M. Noshy, H. A. Ali, and M. Badawy, ‘‘PAPSO:
A power-aware VM placement technique based on particle swarm
optimization,’’ IEEE Access, vol. 8, pp. 81747–81764, 2020, doi:
10.1109/ACCESS.2020.2990828.

EHSAN AHVAR received the Ph.D. degree in
computer science and telecommunications from
the Telecom SudParis in co-accreditation with the
Sorbonne University Pierre and Marie Curie Uni-
versity (Paris 6). He is currently an Associate
Professor with the ESIEA Graduate Engineering
School, LDR research Laboratory, France. Prior
to joining ESIEA, he was a Postdoctoral Fellow
with the Inria-Bretagne Altlantique Research Cen-
tre and Inria-Paris Research Center. He has been

involved in several projects, both National and International and published
more than 30 articles in the domain of cloud computing, the Internet of
Things (IoT), and wireless sensor networks (WSNs), middleware, and smart
city.

SHOHREH AHVAR received the Ph.D. degree in
computer science and telecommunications from
the Institut Mines-Telecom, Telecom SudParis in
co-accreditation with the Sorbonne University,
Pierre and Marie Curie University (Paris 6). She
is currently an Associate Professor with the Engi-
neering School of ISEP, Paris, where she is also
the Head of software engineering. Prior to joining
ISEP, she was a Postdoctoral Fellow with Inria,
Paris.

ZOLTÁN ÁDÁM MANN received the M.Sc.
and Ph.D. degrees in computer science from
the Budapest University of Technology and Eco-
nomics, in 2001 and 2005, respectively. He is cur-
rently a Senior Researcher with the Paluno–The
Ruhr Institute for Software Technology, University
of Duisburg-Essen. His research interests include
optimization problems and algorithms in cloud
computing.

NOEL CRESPI (Senior Member, IEEE) received
the Ph.D. and Habilitation degrees from Paris.VI
University. He worked with CLIP, Bouygues Tele-
com, in 1993, France Telecom Research and
Development, in 1995, and Nortel Networks,
in 1999. He joined the Institut Mines-Telecom,
in 2002, where he is currently a Professor and the
Program Director. He is appointed as the Coordi-
nator for the standardization activities with ETSI
and 3GPP. He is the author/coauthor of more than

300 articles. His current research interests include service architectures, P2P
service overlays, future Internet, and Web-NGN convergence.

ROCH GLITHO (Senior Member, IEEE) is
currently a Full Professor of networking and
telecommunications with the Concordia Institute
of Information Systems Engineering-CIISE where
he holds the Ericsson/ENCQOR-5G Senior Indus-
trial Research Chair in cloud and edge comput-
ing for 5g and beyond. He also holds the Canada
Research Chair in End-User Services Engineer-
ing for Communications Networks and leads the
Telecommunications Service Engineering Labora-

tory. He is also an Adjunct Professor with the University of Western Cape,
South Africa, Telecoms SudParis, France, and the Institut de Mathématiques
et Sciences Physiques (IMSP), University of Abomey-Calavi, Republic of
Benin. He has been granted more than 20 patents and is the author of many
refereed journal articles/conference papers.

JOAQUIN GARCIA-ALFARO (Senior Member,
IEEE) is currently a Full Professor with the Net-
works and Telecommunication Services Depart-
ment of Télécom SudParis, Institut Polytechnique
de Paris, France and an Adjunct Research Profes-
sor with Carleton University, Ottawa, Canada. His
research interests include a wide range of informa-
tion security problems, with an emphasis on the
management of security policies, analysis of vul-
nerabilities, and enforcement of countermeasures.

VOLUME 9, 2021 70213

http://dx.doi.org/10.1002/dac.4747
http://dx.doi.org/10.1109/ACCESS.2020.2990828

