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ABSTRACT Traditionally, process planning and scheduling were performed sequentially, where scheduling
depended on the result of process planning. Considering their complementarity, the two functions are more
tightly integrated to improve the performance of job shop flexible manufacturing environment. This study
proposes an adaptive multi-strategy artificial bee colony (AMSABC) algorithm to solve integrated process
planning and scheduling (IPPS) problem. In AMSABC, two search strategies with different characteristics
are introduced into employed bees and onlooker bees to take on the responsibility of both exploration and
exploitation. The selection probability of each search strategy is dynamically adjusted according to previous
experiences. To further improve the exploitation performance of the approach, a problem-specific multi-
objective local search has been embedded in the proposed algorithm. Furthermore, AMSABC algorithm
presents a unique solution representation where a food source is represented by three discrete vectors, and
a well-designed decoding scheme is developed. Next, the corresponding neighborhood structure is adopted
that it can directly generate feasible solutions in the search space. The proposed algorithm is tested on the
well-known benchmark instances and compared with the state-of-the-art algorithms. Through detail analysis
of experimental results, AMSABC algorithm is more beneficial in the quality and efficiency of solution.

INDEX TERMS Integrated process planning and scheduling, artificial bee colony algorithm, multi-objective
optimization, multi-strategy collaboration, strategy adaptation.

I. INTRODUCTION
Process planning and scheduling are implemented as two
sequential decision-making functions in product design and
manufacturing process. Process planning needs to coordinate
the precedence relationships between machines, operations,
and other parameters to generate feasible manufacturing
schemes. Scheduling will then attempt to optimize the
sequence of operation according to the constraints such as
makespan, critical machine workload, and machines total
workload. Traditionally, the researchers independent con-
sider the two separate systems. Due to recent advances in
manufacturing system and increase the number of process
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plans during product manufacturing. The integrated process
planning and scheduling (IPPS) problem [1] has received
more and more attentions by researchers and engineers.

The classical job shop scheduling problem (JSP) consists
of a set of jobs on a set of machines, each job having a
sequence of operations which must be processed on a prede-
fined machine. Meanwhile, JSP assumes only one operation
sequence (feasible process plan) for each job. The problem is
among the strongly NP-hard optimization problem [2]. The
IPPS is an extension of inheriting JSP characteristics that
allows an operation to be processed from among alternative
machines, and from among alternative process plans of a
job [3]. Obviously, the IPPS is more complicated than the
general scheduling problem. It includes three flexibilities:
sequencing flexible (SF), processing flexibility (PF), and
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operation flexibility (OF) [4]. The first flexibility is the
availability of alternative precedence relation for operations,
the second is the availability of alternative process plans
for each job, and the last is the availability of alternative
machines for each operation. Meanwhile, many models have
been proposed on the IPPS, as it is reviewed in the next
section.

The single-objective IPPS problem, generally to mini-
mize the makespan, has been extensively studied in the past
decades [4]–[7]. Kim et al. are among the pioneers who
study the single-objective IPPS problem, who devised a set
of representative benchmark instances [8]. Compared to the
single-objective IPPS, many real-world IPPS usually involve
simultaneous optimization of several objectives, that is, the
improvement in one objective will inevitably cause the dete-
rioration in some other objectives. Thus, the Pareto-based
multi-objective IPPS has shown a very good performance
for the realistic production environments. For example,
Y. W. Guo et al. [9] studied the particle swarm optimiza-
tion (PSO) algorithm, and a re-planning method had been
developed to address the conditions of machine breakdown
and new order arrival. Jin et al. [10] proposed a multi-
objective memetic algorithm (MOMA) with two local search
method. Mohapatra et al. [11] reported a controlled elitist
non-dominated sorting genetic algorithm (NSGA-II). Zhang
and Wong [12] introduced an ant colony optimization(ACO)
algorithm. Li et al. [13] studied the multi-objective problem
with the Nash equilibrium in game theory, and employed a
tabu search (TS) for improving the makespan criterion only.
However, the above research articles concentrate on small-
or medium-scale IPPS problem only, the optimum for large-
scale instances have not been report.

Due to the complexity of the IPPS, meta-heuristic meth-
ods have been proven to have superior features than other
traditional methods. The artificial bee colony (ABC) algo-
rithm is proposed by Karaboga [14] to optimize multivariable
and multimodal continuous functions in 2005. It has been
applied successful to solve the multi-objective scheduling
problem [15]–[17]. The ABC algorithm distributes informa-
tion on food location throughout the population of bees. This
characteristic makes ABC good at exploration but poor at
exploitation. Actually, in order to solve the drawback, some
attempts have already been made to improve its performance.
The improvements can be classified as follows roughly: new
search equation, hybrid algorithm, and multi-strategy adap-
tion. Karaboga et al. [18] proposed more detailed discussions
of the improvement research on ABC. Gao et al. [19], [20]
provided analysis on the research trend of meta-heuristics
and swarm intelligence algorithms for solving scheduling
problem. To the best of our knowledge, there is no literature
aimed at solving the IPPS problem by using ABC.

The multi-strategy adaption is designed to dynamic adjust
the selection probabilities of the search strategies during dif-
ferent evolution stages for further improving the performance
of ABC algorithm. Cui et al. [21] proposed ABC with depth-
first search framework and elite_guided search equation

(DFSABC_Elite) as low-level team cooperation, in which the
solution was selected only from the top% elite solution. In lit-
erature [22], the best-so-far solution, inertia weight and accel-
eration coefficients were introduced to modify the search
process of ABC. Inertia weight and acceleration coefficients
were defined as functions of the fitness. Xiang et al. [23]
proposed improved ABC algorithm, the individuals selected
based on the gravity model in the employed bee phase.
A random guiding search was introduced in the onlooker bee
phase, and the candidate individuals were generated by three
search equations with the different probabilities. ABCVSS
algorithm with five search strategies and counters to update
the solutions were proposed in [24]. At the initial stage,
the five search strategies were assigned with the equal oppor-
tunity. During the search process performed by the artificial
agents, these counters were used to determine the rule that
was selected by the bees. Therefore, one or more search
strategies were selected and were used during the iterations
according to the characteristics of the optimization problems.
Furthermore, the multi-species strategy had been adopted in
ABC algorithm [25], in which the dynamic segmentation of
the swarm and co-evolution strategy was designed. For serv-
ing the similar purpose, Li et al. [26] introduced discrete ABC
algorithm with self-adaptive strategy, which could produce
neighboring solutions in different promising regions.

When designing an ideal optimization algorithm, it is a key
for determining the performance of optimization algorithm to
how to dynamically adjust exploration and exploitation at dif-
ferent evolution stages. That is, good search strategies should
promote initial exploration, and allow individuals to use the
obtained information about the search space to improve and
adjust solutions later. Another noteworthy enhancement is
the introduction of multi-objective optimization. Objective-
specific intensification search methods need to be developed
to take every criterion in to account. Therefore, the opti-
mization algorithm must be designed to select suitable search
methods for exploiting the different objectives.

The motivation of this article is to overcome the two prob-
lems above. We adopt an adaptive multi-strategy artificial
bee colony algorithm to solve multi-objective IPPS problem,
namely AMSABC algorithm. The proposed AMSABC has
the following main contributions: 1) considering the prob-
lem features, a well-designed chromosome decoding scheme
and the corresponding neighborhood structure are developed;
2) two novel search strategies with different characteristics
are introduced into employed bees and onlooker bees to take
on the responsibility of both exploration and exploitation;
3) in order to dynamical balance the exploration and exploita-
tion abilities, an adaptive mechanism is proposed to adjust
the selection probabilities of the different search strategies
according to their success rates of generating solutions; 4) to
further improve the exploitation ability, a problem-specific
multi-objective local search is embedded in the proposed
algorithm.

The remainder of this article is organized as follows.
Section II provides the literature review of the IPPS.
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The formulation and illustration of the IPPS are presented
in Section III. Section IV develops the proposed AMSABC
algorithm. And will compare with other algorithms and eval-
uate the experimental results in Section V. Finally, the con-
clusion and future work are drawn in Section VI.

II. PROBLEM FORMULATION
Over the last two decades, researchers have used various
approaches to solve the IPPS problem. Many models have
been proposed on the IPPS, the models can be classified
as follows: nonlinear process planning (NLPP), closed loop
process planning (CLPP), and distributed process planning
(DPP).

A. NONLINEAR PROCESS PLANNING
NLPP is a basic model of the IPPS that is deployed by
Jain et al. [27]. All the potential process plans would be con-
sidered and archived. The methodology of NLPP is to make
the process with higher priority is always put into practice
when the job is required. If the prior priority plan is not suit-
able for the current objective function, the next priority will
be chosen. Because the problem is a case of combinatorial
explosive, most of the current research works on the integra-
tion model focus on the improvement and implementation of
the model. Later in Section III, the definition and formulation
of the model are presented.

Kim et al. [4] presented a symbiotic evolutionary algorithm
which adopted the strategies of localized interactions, steady-
state reproduction, and random symbiotic partner selec-
tion for the IPPS. Li et al. [28] developed an evolutionary
algorithm-based approach to solve this problem. Lihong and
Shengping [5] and Shao et al. [29] gave a modified genetic
algorithm (GA). Li and Mcmahon [30] used a simulated
annealing (SA)-based approach.

B. CLOSED LOOP PLANNING
The process plan in this kind of approach is produced regard-
ing the resources status and relying on the dynamic feedback
from the workshop. The process planning mechanism gener-
ates process plans based on available resources. Production
scheduling provides the information about which machines
are available on the shop floor for an incoming job to process
planning, so that every plan is feasible and respects to the
current availability of production facilities. This dynamic
simulation system can enhance the real-time, intuition and
manipulability of process planning system and also enhance
the utilization of alternative process plans. CLPP can also
be called as dynamic process planning or online process
planning.

Seethaler and Yellowley [31] presented a dynamic feed-
back system for finding the alternative process plans, and
Wang and Shen [32] found the alternative process plans with
the same method. Shrestha et al. [33] introduced a holonic
manufacturing system (HMS) using dynamic programming-
based method for the modification of process plans and
GA-based method to select a combination of process plans.

Zhao et al. [34] further discussed the architecture of HMS and
process planning for multi-objective IPPS.

C. DISTRIBUTED PROCESS PLANNING
The latest approach is the distributed process plan including
simultaneous process planning and scheduling. It divides
process planning and scheduling tasks into two phases.
In the initial planning phase, the characteristics of parts
and the relationship between the parts are recognized, and
then corresponding manufacturing processes and scheduling
plan are determined. The second phase is final planning,
which matches the required job operations with the operation
capabilities of available production resource. The result is
dynamic process planning and production scheduling con-
strained by real-time events. However, this approach requires
ad-hoc software capabilities accompanied by a reliable hard-
ware configuration. DPP can also be called as just-in-time
process planning, concurrent process planning, or collabora-
tive process planning.

Zhang et al. [35] developed imperialist competitive algo-
rithm (ICA) for the districted IPPS, and GA-based method
was adapted to maintain the robustness of the plan and
schedule. Wang et al. [36] presented a framework of col-
laborative process planning system supported by a real-time
monitoring system. Li et al. [13] presented a game theory-
based hybrid algorithm for solving multi-objective IPPS
problem.

Varela et al. [37] proposed more detailed discussions
of these approaches and their features, advant-
ages, and disadvantages. In this article, a mathematical
model of IPPS is proposed base on the methodology
of NLPP.

III. PROBLEM DESCRIPTION
The IPPS problem can be described as follows [38]: Given a
set of jobs which are to be processed on machines with oper-
ations including alternative manufacturing resources, select
suitable process plan, assign each operation to an eligible
machine, and sequence the operations so as to determine a
schedule in which the precedence relations among operations
of each job can be satisfied and the corresponding objectives
can be achieved.

In order to make the IPPS problem more understandable,
there is an example of the grinding process plan of V-belt
pulley, whose processing flexibility is typical in the gearing
manufacture industry, as shown in Table 1. Fig. 1 gives the
construction of V-belt pulley. The job is processed in eight
stages and involves fourteen operations. Each job has its own
route dynamically assigned according to the current device
state; that is, the process plan differs for different jobs. It does
not matter if the third stage is processed after the fourth,
so the processing sequence can be rearranged. The twelfth
and thirteen operations have the same situation. In addition,
there are two sets of operations from which you can choose
one and only one in the stage P4; the tenth operation can
be placed in any position between the first operation and the
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FIGURE 1. Construction of V-belt pulley.

TABLE 1. Processing information of V-belt pulley.

eleventh operation. Based on the above analysis of the gear
making system, we have four alternative process plans for the
V-belt pulley. Considering the alternative precedence relation
and machine selection of each operation, we can model this
scheduling as an IPPS problem. Specific formulation and
illustration are detailed below.

A. PROBLEM FORMULATION
A multi-objective IPPS problem is considered in this
study. The detailed assumptions and notation are given as
follows:

1) ASSUMPTIONS
• All the machines are available at time zero.
• All the jobs can be started at time zero.
• Each machine can process only one operation at a time,
and each operation cannot be interrupted.

• The transportation time on different machines and the
setup time are negligible.

• There are no buffers and precedence constraints.

2) NOTATION
Indices and parameters
i, i′ : index of jobs
j, j′ : index of operations
k, k ′ : index of machines
l, l ′ : index of process paths
n : total number of jobs
N : set of jobs
M : set of machines
Oi,j,l : j−th operation of job i on

the job’s l-th process plan
Ti : set of process plans of job i
no : total number of process

paths
NOi,l : set of operations for l-th

process plan of job i
Ri,j,l : set of available machines

for Oi,j,l
pi,j,k,l : processing time of Oi,j,l on

machine k
A : a large positive integer
NP : total number of the

population

Decision variables
Cm : Makespan
Wm : Critical machine workload
Wt : Machines total workload
Xi,l : taking value 1, if l-th process

plan of job i is selected; 0,
otherwise

Zi,j,k,l : taking value 1, if Oi,j,l is
processed on machine k; 0,
otherwise

Yi,j,l,i′,j′,l′ : taking value 1, if Oi,j,l is
processed directly or
indirectly after Oi′,j′,l′ ; 0,
otherwise

Ci,j : completion time of j-th
operation of job i

The main mathematical model of the multi-objective IPPS
problem is given as follows:

min Cm (1)

min Wm = max

∑
i∈N

∑
l∈Ti

∑
j∈NOi,l

Zi,j,k,lpi,j,k,l

 (2)

min W t =
∑
i∈N

∑
l∈Ti

∑
j∈NOi,l

∑
k∈Ri,j,l

Zi,j,k,lpi,j,k,l (3)

subject to: ∑
l∈T

Xi,l = 1, ∀i ∈ N (4)

Zi,j,k,l +
(
1− Xi,l

)
= 1, ∀i ∈ N , l ∈ Ti, j ∈ NOi,l (5)

Ci,0 = 0, ∀i ∈ N (6)
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Ci,j ≥ Ci,j−1 + pi,j,k,lZi,j,k,l,

∀i ∈ N , l ∈ Ti, j ∈ NOi,l, j ≥ 1 (7)

Ci,j ≥ Ci′,j′ + pi,j,k,l − A
(
3− Yi,j,l,i′,j′,l′

−Zi,j,k,l − Zi′,j′,k ′,l′
)
, ∀i ∈ N ,

i < |N | , i′ > i, l ∈ Ti, l ′ ∈ Ti′ ,

j ∈ NOi,l, j′ ∈ NOi′,l′ ,

k ∈ Ri,j,l ∩ Ri′,j′,l′ (8)

Ci′,j′ ≥ Ci,j + pi′,j′,k ′,l′ − A
(
2+ Yi,j,l,i′,j′,l′

−Zi,j,k,l − Zi′,j′,k ′,l′
)
,

∀i ∈ N , i < |N | , i′ > i, l ∈ Ti, l ′ ∈ Ti′ ,

j ∈ NOi,l, j′ ∈ NOi′,l′ ,

k ∈ Ri,j,l ∩ Ri′,j′,l′ (9)

Cm ≥ Ci,j,∀i ∈ N , l ∈ Ti, j ∈ NOi,l (10)

The objectives are described by Eqs. (1-3). Eq. (1) gives
the first objective which is to minimize the maximum of
the finishing time (makespan) considering all the operations.
Eq. (2) gives the second objective which is to minimize the
maximum of the critical machine workload. Eq. (3) gives
the third objective which is to minimize the total workload.
Constraint (4) ensures that only one process plan is selected
for each job. Constraint (5) assigns operations to the corre-
sponding machine according to each selected operation of
job. Constraints (6) and (7) guarantee that an operation of
a job should be processed after its job predecessor is com-
pleted, and every job can only be processed at time 0 or later.
Constraints (8) and (9) ensure that the different operations on
the same machine follow a correct sequence by scheduling.
Constraint (10) calculates the makespan.

B. PROBLEM ILLUSTRATION
To aid comprehension of IPPS, we provide a more complex
example by network graphs as illustrated in Fig. 2. Table 2
gives the processing times of each operation on eachmachine.
There are three node types: starting node, intermediate node
and ending node. The starting node and ending node are
dummy ones, respectively, indicate the start and the comple-
tion of the manufacturing process of a job. An intermediate
node is operation node (marked with number), which con-
tains the alternative machines that can perform the operation
and processing time required for the operation according to
the machine. For example, the operation 1 is assigned to
machineM2 orM3 with processing times 9 or 12. The arrows
connecting the nodes imply the precedence between them.
OR relationships are used to describe processing flexibility
that the same manufacturing feature can be completed by
different process procedures. If the links following a node are
connected by an OR symbol, the only one of OR link paths
can be traversed. OR link path is an operation path that begins
at an OR symbol and ends as it merges with the other paths.
Of course, an OR link path can contain the other OR link
paths. For the links that are not connected by OR symbol, all

FIGURE 2. A sample IPPS instance networks.

of them must be visited. Ho and Moodie [39] proposed more
detailed discussions of the network representation on IPPS.

IV. PROPOSED ALGORITHM AMSABC
A. SEARCH STRATEGIES
One of the key issues when designing optimization algo-
rithms lies in the efficiency of search strategy. The search
strategies also bear the great influence on the speed and
quality of the solution in ABC algorithm.

In this section, different search strategies with different
characteristics are introduced in details. On one hand, more
randomly selected individuals can enhance exploration; on
the other hand, it is beneficial to exploitation by introducing
excellent individuals. The search process of individuals in the
population is an adaptive process. The selection probability of
strategies is dynamically adjusted to balance exploration and
exploitation according to success rate.

1) DE/rand-TO-best/1
Literature [40] proposed that the two-difference-vector-based
strategies are able to provide better perturbation than the one-
difference-vector-based strategies. The equation adopts cer-
tain randomness in the first item, the movement towards the
best-so-far solution to improve the exploitation in the second
item, and some information about direction to increase the
diversity in the third item, as shown in (11).

X ′i,j = Xr1,j + φi,j ×
(
Xbest,j − Xr1,j

)
+ ϕi,j ×

(
Xr2,j − Xr3,j

)
(11)

where Xbest,j represents the jth element of the elite individual
in the current generation. r1, r2, r3 ∈ {1 · · ·FN }, and r1 6=
r2 6= r3 6= best .φi,j is a randomnumber generated uniformly
between [0, 1.0] and ϕi,j is also a random number generated
uniformly in the range [−1.0, 1.0].

2) CABC_ELITE
The above search strategy improves the exploitation abil-
ity to a certain extent in employed bee phase. However,
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TABLE 2. The processing times of each operation on each machine.

the exploitation ability needs to be further enhanced because
of the poor exploitation ability of ABC. To utilize the prop-
erties of ergodicity, irregularity and randomness, chaotic
mapping was used to replace the random numbers of the
search equation in ABC algorithm, and Chaotic ABC algo-
rithm (CABC) was proposed in [41]. In onlooker bee phase,
we adopt two newly designed search equations to generate
candidate solutions, namely CABC_Elite as shown in (12)
and (13). CABC_Elite limits the search range of the random
solution in CABC to the elite solutions of the population, and
provides enhanced exploitability. So the two formulas can
also be regarded as the variants of CABC.

X ′i,j = Xpbest,j + ϕi,j ×
(
Xpbest,j − Xr1,j

)
(12)

X ′i,j = Xpbest,j + ϕi,j ×
(
Xr1,j − Xr2,j

)
(13)

where Xpbest,j represents the elite individual in the top20%
population, and r1 6= r2 6= pbest . ϕi,j is a uniform random
number on [−1.0, 1.0].

In employed bee phase, the search efforts should be
focused exploration. To find better solutions, we use
‘‘DE/rand-to-best/1’’ that the individuals of population can
search more areas. In onlooker bee phase, CABC_Elite
can improve convergence speed efficiently by utilizing the
information of high-quality solutions. In the later stage of
evolution, the population falls into the local optimum. The
selection of two formulas of CABC_Elite strategy provides
different perturbation, which increases the possibility of
escaping from localization trap.

Literature [42] proposed the more detailed definition of
exploration and exploitation. Any search strategy has the abil-
ity to explore and exploit. The exploration process increases
searching ability far from the current nearest neighborhood,
while the exploitation process increases searching ability
around with the current nearest neighborhood. In AMSABC,
how to coordinate the proportion of exploration and exploita-
tion is very important to take full advantage of the different
search strategies. We introduce an adaptive mechanism to
combine each search equation in the next section.

B. ADAPTIVE MECHANISM
To achieve the most satisfactory optimization performance
by applying the above search strategies, it is common to
perform a trial-and-error method for the most appropriate
search strategy. Therefore, it may expend massive correla-
tion calculation. Experience shows that the different search
strategy can be more effective than single strategy in the dif-
ferent stages of evolution. Motivated by these observations,

the adaptive mechanism is described as follows, in which the
search strategies can be gradually self-adapted according to
their previous experiences of generating promising solutions.

In our proposed method, a strategy parameter pf ∈ (0, 1)
is used to control the selection of the strategy.

pf G = (1− c)× pf G + c× meanA
(
p1,G

)
(14)

where c is a positive constant in [0, 1], and meanA (·) is
the usual arithmetic mean operation. If c = 0, no adaptive
strategy takes place. If c = 1, only the mean value of p1,G
is active. Therefore, the value 0 < c < 1, both the previous
pf G and the mean value of p1,G are active, as detailed state
in Section V.B. Obviously, the previous strategy parameter
and the current successful strategy values affect the strategy
selection in the next generation.

The probability of applying the kth strategy at the gen-
eration G is pk,G, k = 1, 2, · · ·K , where K is the total
number of strategies in the strategy pool. To ensure that
the probabilities of choosing strategies are always summed
to 1, we further divide Sk,G by

∑K
k=1 Sk,G to calculate pk,G.

Obviously, the larger the success rate for the kth strategy,
the higher the probability to be selected to generate solution.
pk,G is updated in the following manner.

pk,G =
Sk,G∑K
k=1 Sk,G

(15)

Sk,G =
nsk

nsk + nf k
+ ε (16)

where Sk,G represents the success rate of candidate solutions
generated by the kth strategy; nsk and nf k are the respective
numbers of the offspring vectors generated by the kth strategy
that survive or fail in the selection operation; ε is a small con-
stant value to avoid the possible null success rates, the value
of ε is 0.01.

C. ENCODING AND DECODING
Literature [43] proposed a feasible solution representa-
tion for the IPPS which uses three discrete vectors X =
{Xors,Xos,Xms. The first vector is named OR sequence,
which is relevant to the process plan to decide which OR
link path is chosen, i.e., Xors = {0 1 0 1}. Based on Fig. 3,
Xors (4) = 1 corresponding to the operation 13 is selected.
These three OR link paths, from job 2, correspond to the
values 6 − 11 − 13 − 15 − 16 are selected in the oper-
ation sequence vector Xos. It’s different from the opera-
tion representation form in literature [43]. The operation
sequence vector contains non-repeated integer values, and
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FIGURE 3. Encoding of the sample IPPS instance.

FIGURE 4. The Gantt chart of the IPPS instance.
(Cm = 73, Wm = 34, Wt = 115)

its length equals the total number of operations, i.e., Xos =
{0 6 2 11 3 7 9 4 12 8 13 1 5 1 4 10 15 16. For example, the first
element in the operation sequence represents the first oper-
ation of the job 1 (see Fig. 2). Then, the following ele-
ment expresses the first operation of job 2, while the last
element is the last operation of job 2. The third vector is
the machine sequence, each element of which represents the
corresponding selected machine for the operation, i.e., Xms =
{0 0 1 0 0 0 2 1 0 0 0 0 1 0 0 1 0. Based on Fig. 3, Xms (6) = 0
considers using machine 1, for the thirteenth value in Xos,
i.e., Xos (13) = 5. The value 5 in Xos (13) represents the sixth
operation of job 1.

Because each element in Xos can be located in any posi-
tion, as any permutation-based representation, the opera-
tion sequence doesn’t must be feasible, the encoding is not
directly decoded. Meanwhile, the operations, together with
the corresponding machines, that belong to unselected OR
link paths, are first deleted. And then the order appear-
ing in the operation sequence is converted into unique
active scheduling. This procedure is an improved Giffler
and Thompson algorithm which was originally proposed to
generate active schedules for the JSP [44].

The solution representation mentioned above, depicted
in Fig. 4. Based on Table 2, Numbers (in the form of [job,
operation]) outside the blocks are the operation associated
with the job.

D. POPULATION INITIALIZATION
In order to generate a feasible operation sequence and load
balance phenomenon between the machines in a process
plan. The initialization procedure by effective heuristics is as
follows:
Step 1: OR connection of each job, which represents OR

link paths, is initiated by randomly generating an integer for
each component of the job.

Algorithm 1 Improved Giffler and Thompson Algorithm
(1) The operations, together with the corresponding

machines, that belong to unselected OR link paths, are
first deleted from each chromosome.

(2) Set a set of the first operations of every jobs Q(t) =
{Oij|i = 1, . . . , n; j = 1, . . . ,m}.

(3) Set t = 1, and perform the following steps until t =
OperationNumber .

(4) Set O∗ is an operation based on c(O∗) =

min{c(Oij|Oij ∈ S(t))},m∗ is the machine that
performs the operation O∗, and making sure Oim∗
is an operation of set {Oim∗ ∈ S(t) according to the
precedence between operations of each job in Xos;
r(Oim∗ ) < c(O∗)}

(5) Each individual decides the next operation Q(t +
1) = Q(t)\{Oim∗} based on selection from the net-
work graph. Through removing the operation oim∗ and
appending the next operation of job i, can get a new set
S(t + 1).

(6) If Q(t + 1) is no empty, then let t = t + 1, and go to
STEP 4. Otherwise discard it.

Step 2: Set an initial available set of operations, which
includes the first operations of each jobs.
Step 3: Perform the following steps until the available set

is empty.
Step 4: Select an operation from the available set at ran-

dom, and randomly assign a machine in the set of machines.
Step 5: Update the available set by removing the selected

operation and appending the all immediate successor of the
operation if the immediate predecessors of the successor are
already selected. Go to Step 3.

E. NEIGHBORHOOD STRUCTURE
Considering the problem characteristics and the balance of
exploration and exploitation, we perform the neighborhood
structure to OR sequence, operation sequence and machine
sequence in simultaneously. The neighborhood structure is
given as follows.

x ′i,j,l = xa,j,l + ϕi,j,l ×
(
xb,j,l − xc,j,l

)
= xa,j,l ⊕ δi,j,l

=



mod
(
round

(
Xorsa,l + δ

ors
i,l + no

)
, no

)
OR sequence

mod
(
round

(
xosa,j + δ

os
i,j + n

)
, n
)

Operation sequence

mod
(
round

(
Xmsa,j + δ

ms
i,j + mac[j]

)
,mac[j]

)
Machine sequence

(17)

δi,j,l ⇔


δorsi,l = ϕi,j ×

(
Xorsb,l − X

ors
c,l

)
OR sequence

δosi,j = ϕi,j ×
(
xosb,j − x

os
c,j

)
Operation sequence

δmsi,j = ϕi,j ×
(
Xmsb,j − X

ms
c,j

)
Machine sequence

(18)
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FIGURE 5. Illustration of the neighborhood structure.

where mod is the remainder operator; round is the rounding
operator; mac[j] is the optional machine number of opera-
tion j. And then, by using mutation operation, data exchange
between xi,j and x ′i,j is implemented in three sequences.
Similarly,

x ′i,j,l = xa,j,l + φi,j,l ×
(
xb,j,l − xa,j,l

)
+ ϕi,j,l

×
(
xc,j,l − xd,j,l

)
= Xa,j,l ⊕ δ (1)i,j,l ⊕ δ (2)i,j,l

=



mod
(
round

(
Xorsa,l + δ (1)

ors
i,l + δ (2)

ors
i,l + 2× no

)
,

no)OR sequence

mod
(
round

(
xosa,j + δ (1)

os
i,j+ δ (2)

os
i,j + 2× n

)
, n
)

Operation sequence

mod
(
round

(
Xmsa,j + δ (1)

ms
i,j + δ (2)

ms
i,j + 2

×mac[j]) ,mac[j])Machine sequence
(19)

According to the formula described above, set j = 6, l = 3,
φi = 0.5, ϕi = −0.3, give individuals Xi,Xa,Xb,Xc and Xd
from Table 2, i.e.,

Xi = {0 1 0 1, 0 6 2 11 3 7 4 12 8 13 15 14 10 15 16,

0 0 1 0 0 0 2 1 0 0 0 0 1 0 0 1 0} ,

Xa = {1 0 0 1, 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16,

1 0 1 0 2 1 0 1 1 0 0 0 0 1 1 0 1} ,

Xb = {0 1 1 1, 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5,

0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0} ,

Xc = {0 0 0 1, 0 6 1 7 2 14 3 9 4 10 5 12 11 8 13 15 16,

1 0 1 0 1 1 2 0 1 0 0 0 1 1 1 1 1} ,

Xd = {1 1 1 0, 11 0 2 12 1 8 12 3 15 16 4 5 6 7 14 9

1 0, 1 0 1 0 1 0 2 0 1 0 0 0 1 1 1 1 1} .

The procedure of the mutation operator is as follows.

x ′i,6,3 = xa,6,3 + φi ×
(
xb,6,3 − xa,6,3

)
+ ϕi

×
(
xc,6,3 − xd,6,3

)
δ (1)orsi,3 = φi ×

(
Xorsb,3 − X

ors
a,3
)
= 0.5× (1− 0) = 0.5

δ (2)orsi,3 = ϕi × r
(
Xosc,3 − X

ors
d,3
)
= −0.3× (0− 1) = 0.3

xors
′

i,3 = mod
(
round

(
xorsa,3 + δ (1)

ors
i,3 +δ (2)

ors
i,3+ 2×4

)
, 4
)

= mod (round (0+ 0.5+ 0.3+ 2× 8) , 4) = 1

δ (1)osi,6 = φi ×
(
Xosb,6 − X

os
a,6
)
= 0.5× (11− 5) = 3

δ (2)osi,6 = ϕi ×
(
Xosc,6 − X

os
d,6
)
= −0.3× (14− 8) = −0.18

xos
′

i,6 = mod
(
round

(
xosa,6 + δ (1)

os
i,6 + δ (2)

os
i,6

+ 2× 17) , 17)

= mod (round (5+ 3− 0.18+ 2× 17) , 17) = 8

δ (1)mai,6 = φi ×
(
Xmab,6 − X

ma
a,6
)
= 0.5× (0− 1) = −0.5

δ (2)mai,6 = ϕi ×
(
Xmac,6 − X

ma
d,6
)
= −0.3× (1− 0) = −0.3

xma
′

i,6 = mod
(
round

(
xmaa,6 + δ (1)

ma
i,6 + δ (2)

os
i,6

+ 2× 17) , 17)

= mod (round (1− 0.5− 0.3+ 2× 2) , 2) = 0

The swap operation is implemented in operation sequence.
Fig. 5 gives an example of the neighborhood structure.

F. PROBLEM-SPECIFIC MULTI-OBJECTIVE LOCAL SEARCH
To further improve the searching ability of the proposed
algorithm, we develop a problem-specific multi-objective
local search method for the non-dominated solutions found
in the current iteration. It contains both the N5 neighborhood
structure [45] and the intensification search. The first one is
applied to optimize the makespan criterion. The second one
is then applied to improve the critical machine workload and
the total workload. The Local search tries to perform a slight
perturbation to the individual of optimal solution set. The two
methods are randomly executed one at a time when the local
search called for it.

The N5 neighborhood structure is defined by the inter-
change of two successive tasks, where either task is an oper-
ation in a block that belongs to a critical path. More precisely
we swap the first two (and last two) operations in every
block, each of which contains at least two operations. In the
first block only the last two operations are swapped, and via
symmetry in the last block, only the first two are swapped.
The illustration is given at the bottom of Fig. 6(a).

The intensification search tries to randomly remove an
operation to the processed by the machine whose workload is
largest to other available machines. As illustrated in Fig. 6(b),
the machine of the operation is changed from the alternative
ones at random. During the optimization process, the critical
machine workload and the total workload are perturbation at
the same time.

G. POPULATION SELECTION PROCEDURE
The selection process is hierarchical, following the prescrip-
tions captured in NSGA-II [46]. The individuals have to go
through two rounds of selection. In the first stage, the com-
bined population Rt (Rt = Pt ∪ Qt ), which Pt is the parent
population, andQt is the child population, is sorted in ascend-
ing order according to non-domination sorting algorithm. The
new population is formed by adding solution from the best
non-dominated set (F1) to subsequent non-dominated sets in
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Algorithm 2 Algorithm AMSABC
Step 1. Initialization phase

Initialize Parameters: limit, trail (i) , pf , FoodNumber (FN ) =
NP/2, MaximumCycleNumber(MCN), nsk , nf k .

Initial the population (see Section IV.D).
Evaluate the objective values of each solution. Record the non-

dominated solutions as the best solutions.
If the stopping criterion is satisfied, output the best solutions so

far. Otherwise, perform following steps.
for cn = 1 to MCN do
Step 2. Employed bee phase

for i = 1 to FN do
Randomly choose j from {1, 2, · · · ,NP} and l from

{1, 2, · · · ,NO}.
Randomly choose Xbest from the non-dominated set.
Randomly choose r1, r2, r3 from {1, 2, · · · ,FN } , r1 6=

r2 6= r3 6= best .
X ′i,j = Xr1,j + φi,j ×

(
Xbest,j − Xr1,j

)
+ ϕi,j ×

(
Xr2,j − Xr3,j

)
//φi,j ∈ [0, 1.0] , ϕi,j ∈ [−1.0, 1.0]

if f
(
X ′i
)
< f (Xi) do

Xi = X ′i ; trail (i) = 0;
else
trail (i) = trail (i)+ 1;

end if
end for

Update the best solution achieved so far.
Step 3. Onlooker bee phase
for i = 1 to FN do

Randomly choose j from {1, 2, · · · ,NP} and l from
{1, 2, · · · ,NO}.

Randomly choose Xi from top20%.
Randomly chooseXpbest as one of the top20% best solutions.
if rand (0, 1) < pf do
flag = 0
Randomly choose r1 from {1, 2, · · · ,FN } , r1 6= pbest .
X ′i,j = Xpbest,j + ϕi,j ×

(
Xpbest,j − Xr1,j

)
//ϕi,j ∈

[−1.0, 1.0]
else
flag = 1
Randomly choose r1, r2 from {1, 2, · · · ,FN } , r1 6= r2 6=

pbest .
X ′i,j = Xpbest,j+ϕi,j×

(
Xr1,j − Xr2,j

)
//ϕi,j ∈ [−1.0, 1.0]

end if
if f

(
X ′i
)
< f (Xi)

Xi = X ′i ; trail (i) = 0;
if flag = 0, ns1 ++; otherwise, ns2 ++.

else
trail (i) = trail (i)+ 1;
if flag = 0, nf 1 ++; otherwise, nf 2 ++.

end if
end for

Update pf with the strategy success rate (see Section IV.B).
Select solutions of the next generation (see Section IV.G).
Update the best solution achieved so far.
Step 4. Scout bee phase

Randomly choose trail(i) from the maximums of trail(·).
if trail (i) > limit do
Replace Xi with a new randomly produced solution.
trail (i) = 0

end if
Step 5. Local search phase

For each non-dominated solutions found in the current itera-
tion, perform the local search process (see Section IV.F).

Replace the worst solution with the best one of the newly
generated solutions randomly.
end for

FIGURE 6. Local search methods. (a) N5 (b) intensification search.

rank order (F2,F3, . . .). The procedure is continued until the
size exceeds NP. Thereafter, the solutions of the last non-
dominated set that reach the second stage are sorted according
to the crowding distance value. In order to use crowding
distance value sorting to choose the NP population members,
it is necessary to fill all population slots in descending order
of neighboring distance.

H. FRAMEWORK OF PROPOSED ALGORITHM
The corresponding pseudocode of the proposed AMSABC is
given as follows.

I. COMPLEXITY ANALYSIS OF AMSABC ALGORITHM
Compared with the original ABC, AMSABC has additional
computation burden on the selection process and the problem-
specific local search. First, the individuals in the population
are sorted and shared according to NSGA-II. The computa-
tional complexity of this process isO(m·NP2), wherem is the
number of objectives. Secondly, the problem-specific local
search contains both N5 and the intensification search. The
two methods are randomly executed every time. The com-
putational complexity of local search is O(D · NP2), where
D is the dimension of feasible solutions pace. Since the
complexity of the original ABC is O(D · NP), the overall
complexity of AMSABC is O(D · NP2).

It should be noted that the additional computational cost
by computing the pairwise distance between individual is
negligible for the IPPSwith costly evaluation [47]. Therefore,
the additional overhead caused by the introduced operations
is relatively small when the IPPS evaluation is costly.

V. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the superiority of the proposed AMSABC for
the IPPS problem, numerical experiments and discussion
are conducted here. The model and algorithm are coded
in C#. All the experiments are run on a computer with
Intel(R) CoreTMi5-6500 CPU @3.20GHz with 8GB RAM.
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TABLE 3. Characteristic of jobs.

TABLE 4. The proportion influence on the strategy parameter pf from the value of c .

All experimental instances, experimental settings, perfor-
mance metrics, results, and discussions are presented in the
following subsections.

A. EXPERIMENTAL SETTINGS
The experimental instances are adopted from Kim [8], which
is the most famous IPPS benchmark. Many researchers have
worked with it for several years, and the single-objective
(makespan) results have been pushed to the limit almost [43].
In this experiment, the 24 test-bed instances are constructed
with 18 jobs. In each instance, there are a total of 15 machines
to process the jobs. The number of operations of these
instances varies from 79 to 300. The characteristic of the
jobs is listed in Table 3. In this table, the total number of
operations (TO) is all possible operations of each job. HLM
means the job has high PF , low SF , and medium OF , and
other description of flexibility likes it.

B. EXPERIMENTAL PARAMETERS
Based on the existing literature [8] and our experimental
observation, the population size NP is 100, limt is 50, and the
food number FN is 50. Each implemented algorithm will be
terminated when the predefined maximum FEs of examined
solutions is exhausted. The FEs is set to 5.0E+04, 7.0E+04,
1.3E+0.5, 2.0E+05 and 2.5E+05 for the test-bed instances
1-9, 10-15, 16-21, 22-23 and 24, respectively. Each instance
is optimized over 30 independent runs. Moreover, we use the
same set of initial random populations to evaluate different
algorithms.

The value of c on the strategy parameter pf is used to con-
trol the proportion influence of historical experience. Obvi-
ously, a smaller value of c concentrates more on historical
experience, while a larger value more on recent experience.
It can be seen from Table 4, after the evolution of 15, 30 and
45 generations, when c = 0.05, the proportion influences
of pf are 46.33%, 21.46% and 9.94% respectively; when
c = 0.1, the influences are only 20.59%, 4.24% and 0.87%,
respectively. In order to minimize the impact of random

assignment on evolutionary process, a smaller value of c can
be accepted in this article, that is c = 0.05.

C. PERFORMANCE METRICS
Multi-objective optimization problem performance measures
are more complex than those of single-objective optimization
problems. We are interested in the quality of the obtained
Pareto fronts in terms of convergence to the Pareto optimal
set and maintenance of diversity in solutions on the obtained
Pareto front. The following performance metrics for multi-
objective optimization are used in this article to evaluate.

1) IVERTED GENERATIONAL DISTANCE (IGD)
Let P∗ be a set of uniformly distributed points along the true
Pareto front (PF). Let A be the approximation PF obtained
by the compared algorithm. The metric IGD is defined as

IGD
(
A,P∗

)
=

1
|P∗|

∑
x∈P∗

miny∈A d (x, y) (20)

where d (x, y) is the Euclidean distance (measured in objec-
tive space) between the points x and y. The IGD can well
reflect the diversity and convergence of A [48]. To have a
smaller value of IGD, A must be enough close to P∗.

Because the true Pareto front is unknown in the simulation
here, we adopt a reference Pareto front PF ref in performance
evaluation formulas. In this article, PF ref includes the non-
dominated solutions extracted from all results found by the
experimental methods in all dependent runs. In addition,
all objective vectors of the Pareto solutions are normalized,
which could be obtained by

f̃i (x) =

(
fi (x)− f mini

)(
f maxi − f mini

) (21)

where f maxi and f mini are the maximal and minimal values of
fi (x) among all non-dominated solutions obtained by gather-
ing all experimental methods.
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TABLE 5. Performance evaluation of the effect of local search using average IGD and C values.

2) C-METRIC (C)
Let A and B be approximates PF that are obtained by two
different algorithms. This indicator represents the percentage
of solutions in B that are dominated by at least one solution
in A. The value metric is to the interval [0, 1].

C (A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(22)

C (A,B) = 1 means that all solutions in B are dominated
by or equal to solutions inA. The opposite, C (A,B) = 0,
represents the situation when none of the solutions in B is
covered by the set A. Note that C (B,A) is not necessarily
equal to 1−C (A,B). If C (A,B) is larger than C (B,A), then
A is better than B in a sense.

D. EFFECTIVENESS OF LOCAL SEARCH STRATEGY
To investigate the impact of the problem-specific multi-
objective local search on the proposed AMSABC, the per-
formance comparison between AMSABC and AMSABCEL
is carried out in this section. Where AMSABCEL is a sim-
plified algorithm designed by eliminating local search from
AMSABC.

In Table 5, average IGD and C values over 30 independent
runs on all 24 test-bed instances are presented. The character-
istics of the instances are also provided. The second column
and third column show the number of jobs and the number of

operations for each instance, respectively; the fourth column
lists the level of the three types of flexibility. The Wilcoxon
signed-rank test [49] is further carried out on the sample data
of the two metrics obtained by the compared algorithms with
the significance of 0.05. For each instance, the result that is
significantly better than the others is marked in bold. (with
smaller IGD, and with greater C).

As can be seen from Table 5, AMSABC can obtain better
IGD results for 18 problems (the improvement is significant
for 7 problems). In contrast, AMSABCEL only achieves a
significantly better value on problem 16. In addition to the
refreshed solutions, the advantage of AMSABC is mainly
concentrated after problem 16, indicating that the problem-
specific local search method has obvious competence for
solving large-scale (problems 16-24) problems. As for the
metric C , AMSABC is significantly better than these 8
problems, whereas AMSABCEL obtained only one optimal
value. The main reason for this effect is that by applying the
local search heuristic, the proposed AMSABC enhances the
objective-specific exploitation ability.

To further verify the effectiveness of AMSABC, non-
parametric test was performed by using SPSS based
on the experimental results in Table 5. It can be seen
from Wilcoxon’s test results that the p_value is less
than 0.05, indicating that it is significantly different form
AMASABC.
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TABLE 6. Comparison of the different search strategies in onlooker bee using average IGD and C values.

E. EFFECTIVENESS OF MULTI-STRATEGY
To show the positive effect of the adoption of multi-
strategy collaboration, we replaced the CABC_Elite with
a single search equation (denoted as CABC_Elite1 and
CABC_Elite2). CABC_Elite1 is different fromCABC_Elite2
only in that it uses the Eq. (12) in onlooker bee instead of the
Eq. (13).

It can be observed from Table 6 that the multi-strategy
collaboration in onlooker bee further improves the perfor-
mance of the proposed AMSABC. Specifically, for the metric
IGD, AMSABC is significantly better than CABC_Elite1 and
CABC_Elite2 on 10 problems, and are significantly outper-
formed by CABC_Elite1 and CABC_Elite2 on only prob-
lem 3 and problem 11, respectively.Meanwhile, most of theC
values of AMSABC take value 1 or the value very close to 1,
indicating that AMSABC effectively prevents the algorithm
from falling into local optimum by using two adaptive strate-
gies, and makes the calculation more efficient. The p_value is
close to zero; hence, there are significant differences between
the compared methods. It can be concluded that the adoption
of multi-strategy improves the exploration abilities.

In order to further prove the validity of the proposed adap-
tive mechanism, we select some instances to further test.
Fig. 7 is the varying situations of pf on instances 1, 15, 23 and
24. Data acquisition is performed every 10 generations (the
corresponding generation number of the instance 24 is 20) in
the figure. From the transformation curves in the graphs, the

variation trends of pf are significantly different for different
instances.

As can be seen from the above figure, when pf >

0.5, it means that CABC_Elite1 has more opportunities
to be used than CABC_Elite2, conversely, it means that
CABC_Elite1 has less opportunities to be chosen. For differ-
ent instances, the change trend of pf is different. For example,
we take instance 23 as an example to analyze how the two
strategies work. At first, pf decline is likely to fluctuate
around 0.35, indicating that CABC_Elite2 had 65% chances
to be selected. This is because the population is concentrated
on exploration. Then, as the population evolution, pf fluctu-
ated up and downwith 0.5. Finally, the pf tends to be near 0.6,
which indicates that AMSABC accelerates its convergence in
the late evolutionary stage.

F. COMPARISON WITH OTHER STATE-OF-THE-ART
ALGORITHMS
In this section, the proposed AMSABC is compared with
the existing state-of-the-art methods, which are called modi-
fied genetic algorithm (MGA) [43], multi-objective memetic
algorithm (MOMA) [10], CABC [41], hybrid genetic algo-
rithm and variable neighborhood search (GAVNS) [50],
and enhanced ACO (EACO) [51], respectively. To make
a fair comparison, CABC uses same parameter settings as
AMSABC, and other algorithms are the same as original
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FIGURE 7. Variation trends of parameter pf on four instances.

FIGURE 8. The Gantt chart for the solution of IPPS instance 1. (Cm = 427, Wm = 150, Wt = 1822).

literature. It should be pointed out that the two metrics are
computed after predefined runs rather than each run.

As for the metric IGD, it can be seen from Table 7 that
AMSABC yields the best results on 19 out of 24 instances,
and the second-best IGD values on 3 instances. CABC
performs best on 8 instances, MOMA performs best on
13 instances, MGA performs best on 17 instances, GAVNS
performs best on 9 instances, and EACO also performs
best on 9 instances. Obviously, only from the number of
instances that perform best, the performance of AMSABC

is significantly better than other algorithms except for
MGA slightly better and CABC worse. Therefore, based
on the experimental results of Table 7, SPSS is adopted
for non-parametric test, and the test results are listed in the
last two rows of Table 7. From the results of Wilcoxon
test, it can be seen that the p_value of algorithms are
less than 0.05 except MGA, which indicates that there
are a significant difference between the compared algo-
rithms and AMSABC, and AMSABC is far superior to
them.
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TABLE 7. Performance evaluation of the effect of AMSABC and other algorithms using IGD values.

TABLE 8. Performance evaluation of the effect of AMSABC and other algorithms using C values.

VOLUME 9, 2021 65635



Y. Cao, H. Shi: AMSABC Algorithm for IPPS

AMSABC is compared respectively with the other algo-
rithms in Table 8 using C values. When comparing with
CABC, AMSABC is worse than CBAC on problems
11, 12 and 14, but AMSABC is better than CABC on
15 instances. As for MOMA, it obtains the best C values on
problems 8, 13, 15 and 21, which has the same mechanism
to adaptive multi-method search. The refreshed solutions
of the AMSABC and MGA are mainly concentrated after
problem 16, indicating that two algorithms have obvious
competence for solving large-scale problems. Compared with
GAVNS and EACO, AMSABC is superior to them on major
instances.We believe that the high performance of AMSABC
stems from the adaptive multi-method search procedure and
the problem-specific multi-objective local search method,
because most of the non-dominated solutions obtained by
other algorithms are dominated by the ones obtained by
AMSABC.

Fig. 8 gives a Gantt chart for the best solution for
instance 1, where each operation is represented by a rectangle
labeled with the job number and the operation number. It can
be observed from Fig. 8 that the solution obtained by the
proposed algorithm is effective.

VI. CONCLUSION AND FUTURE WORK
In this article, we study the multi-objective IPPS problem
with makespan, total workload, and critical workload criteria,
which has a strong industrial background and is very close
to the real manufacturing situation. An AMSABC algorithm
is developed to solve the complex optimization problem.
In this algorithm, each solution is represented by using three
discrete vectors. Then, to decode each solution for feasible
scheduling, we designed an improved Giffler and Thompson
algorithm. Next, the corresponding neighborhood structure is
adopted, which realizes the information exchange and exploit
behavior of the individual in the process of optimization.
In each evolution, two novel search strategies with different
characteristics, and combines them through a new adaptive
mechanism, are used by both the employed bee and onlooker
bee procedures. It worth noting that the adaptive mechanism
can dynamical adjusts exploration and exploitation by select-
ing themost suitable strategy to generate solutions at different
stage of optimization. Finally, a problem-specific multi-
objective local search has been embedded in the proposed
algorithm to further improve the objective-specific exploita-
tion performance. To validate the accuracy and performance
of the proposed algorithm, 24 instances with different scales
are used for simulation tests. Five efficient algorithms are
selected for detailed comparisons. It can be obviously seen
from the comparisons that the proposed approach is more
effective at least equally.

In our future work, the self-adaptive selection of search
strategies [26] and how dynamically adjust exploration and
exploitation to the performance of ABC algorithm will need
to be further investigated. Moreover, it’s interesting to apply
AMSABC to handle realistic applications, such as fuzzy

production scheduling [52], [53], energy-efficient scheduling
[54], [55], crowd evacuation simulation [25] and so on.
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