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ABSTRACT This paper proposes definitions of implementation and adoption delays, arising from firm
and client behaviors, in the context of market share dynamics. Information delay refers to the existence of
lags in the information used for the advertising policy, while adoption delay refers to the existence of a lag
in the effect of the advertising policy. These are natural lags in the flow of information and have not been
considered in several models proposed in the literature. In this paper, these delays are introduced into recently
proposed extensions of the Vidale-Wolfe-Deal and Lanchester models of market share dynamics subjected
to affine advertising control policies. Conditions for stability of the equilibrium market share are derived.
In addition, it is shown that Hopf bifurcations leading to oscillatory behavior exist for certain parameter
values, and corresponding conditions for these are given. The main results are: the equilibriummarket shares
of the extended Vidale-Wolfe-Deal and Lanchester models are both robust to implementation delays, but,
in the case of adoption delays, for both models, numerical results show that there is a critical value such
that if the sum of the adoption delays exceeds this value, there is an onset of oscillations of market shares,
through a Hopf bifurcation.

INDEX TERMS Advertising, affine feedback control, bifurcations, delays, duopolies, market share
dynamics.

I. INTRODUCTION
Market share dynamics under advertising in duopolies have a
long history, starting with the classical Vidale-Wolfe [1] and
Arrow-Nerlove [2] models for monopolies, which have been
generalized and studied intensively over the last sixty years,
as can be seen in the survey [3]. A similar statement is true of
Lanchester type models, first proposed in [4], and extended
in [5], [6], for example. The focus has been on the derivation
of optimal advertising policies (controls) for these classes of
models (see, for example, [7]). We will refer to this class of
as market share dynamics models with controls.

Few papers have considered the effect of delays on market
share dynamics models with controls, even though there has
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been a considerable amount of research on Cournot and
Bertrand duopoly models with delays [8]–[12]. Cournot type
models generally consider the control variables to be the
quantities of a product produced and sold and make assump-
tions on the inverse demand functions which determine price
and, as a result, profit. In this sense, market share dynamics
models, with advertising effort as a control variable which
directly affects market share, are different from the Cournot
type models. There is also a considerable amount of work
on so-called ecologically inspired models of competitive
dynamics, with delays, but without control variables (see, for
example, [13]–[15]).

A salient feature of all existing market share dynamics
models with controls is that they assume instant access to
market information as well as an immediate effect of advertis-
ing. These are not realistic assumptions and consideration of
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delays in market behavior is necessary for a better description
and understanding of market dynamics [16]–[20]. However,
since delayed systems are infinite dimensional dynamical
systems, important changes in the dynamics of systems can be
produced, including oscillations, bifurcations, unstable and
chaotic behaviors [21]–[24].

The contribution of this paper is to define two types
of delays, named implementation and adoption delays, and
introduce them into the Vidale-Wolfe-Deal and extended
Lanchester models. Once this is done, as with all delay mod-
els, one of the central questions is to examine the effect of the
delays on the asymptotic behavior of the system. To this end,
the stability and bifurcation properties of the proposed delay
models are then analyzed with regard to the control parame-
ters and delay values. The main results can be summarized as
follows:
• for implementation delays, the Vidale-Wolfe-Deal and
extended Lanchester models have stable dynamics
regardless of delay values;

• for adoption delays, the Vidale-Wolfe-Deal model can
present Hopf bifurcations when the condition τ1+ τ2 >
2τc is satisfied. For the extended Lanchester model,
the existence of Hopf bifurcations seems to be possible
only when the condition τ1 = τ2 = τc is satisfied. τc
denotes a critical value of the delay, which is defined
in the sequel and τ1, τ2 are the adoption delays of firms
1 and 2.

The generality of the model proposed in this paper allows
the important conclusion that it is more important to reduce
the adoption delay than to get up-to-date information on
market share and this point is explained below.

The results in this paper were obtained in the PhD thesis
of the first author and are unpublished but, under university
policy, available on the university thesis archive server [25].

II. DELAYS IN MARKET SHARE DYNAMICS MODELS
Delays can be found in several systems in diverse areas such
as biology, economics, physics and the social sciences [26],
[27]. Delays in the economy may arise in many ways: for
example, a delay between the time an economic decision is
made and the time when it produces results. Another example
in which a delay crops up is in the estimation of an expected
value, because the calculation depends on the current and past
values of the variable in question [26].

For market share dynamics models, delays can arise in
two ways: from the clients and the firms. In the particular
case of a duopoly, it is often the case that clients and firms
require past and present information in their decision-making
processes [28]. In the consumer decision process, a time
lag between the recognition of the necessity of a product
and its purchase generally occurs. This lag or delay is gen-
erated as a result of many factors, internal or external to
the consumer, such as age, social level, availability of time,
information search, product prices or product quality [29].
On the other hand, the acquisition and processing of data,
required in the decision-making process of firms, is costly and

FIGURE 1. A timeline illustrating implementation delay: current time is t ,
at which (feedback) advertising effort u(·) will be applied. If the only
market share information available is that of past instant (t − τ ), this
means that the advertising effort applied at time t can be expressed as
u(x(t − τ )), abbreviated to uτ .

time-consuming, so it often happens that only delayed system
data is available at the instant that the strategic decision has to
be implemented [28]. Thus two types of delays are proposed
in the following sections. A general market share dynamics
model can be written as follows:

ẋ = f (x, u)− g(x) (1)

where f (x, u) is the term representing the growth of the mar-
ket share as a function of the market share x and advertising
effort u, and g(x) is the decay term, representing decrease or
loss of the market share over time. For example, the Vidale-
Wolfe-Deal model [30] is obtained by choosing x = (x1, x2),
f = ((1− x1 − x2)u1, (1− x1 − x2)u2), g = (λ1 x1, λ2 x2).
This general model (1) will be used to introduce the two

types of delays defined below.

A. IMPLEMENTATION DELAY IN ADVERTISING POLICY
In this section, inspired by the discussion in [9] (in the context
of a Cournot type model with gradient dynamics), we make
the following definition, assuming that the advertising effort
is defined as a function of the market share (i.e., in feedback
form):
Definition 1 (Implementation Delay): is said to occur

when the market share information utilized to define adver-
tising policy is lagged or delayed with respect to the instant
when the latter is applied.
The timeline diagram (Figure 1) clarifies the definition:

From the definition, denoting u (x(t − τ )) as uτ , it follows
that the following modification to (1):

ẋ = f (x, uτ )− g(x) (2)

represents a market share dynamics model with uniform
implementation delay, meaning that information on market
share of each firm becomes available with the same delay to
both firms. Nonuniform delays are possible (see sec. VI).

B. CONSUMER ADOPTION DELAY
Assuming that the effect of the advertising effort of a firm on
clients is not immediate, the following definition is natural:
Definition 2 (Adoption Delay): is said to occur when

advertising policy, put into effect at time t , only affects the
dynamics at time t + τ .
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FIGURE 2. A timeline illustrating adoption delay: market share x(T ) at
current time T = t + τ is affected by (feedback) advertising effort u(x(t))
is applied at time t = T − τ , based on the known market share x(t) at
time t .

The timeline diagram (Figure 2) clarifies the definition:
Defining time T = t + τ to be the current time instant,

the market share dynamics under adoption delay can be writ-
ten as:

ẋ(T ) = f (x(t), u(t))− g(x(T )) (3)

Since x(t) = x(T − τ ) = xτ and u(t) = u(T − τ ) = uτ ,
equation (3) can be rewritten as:

ẋ = f (xτ , uτ )− g(x) (4)

III. INSERTING IMPLEMENTATION AND ADOPTION
DELAYS INTO MARKET SHARE DYNAMICS
MODELS
The Vidale-Wolfe-Deal and extended Lanchester models
recently studied in [31] are chosen to illustrate the inser-
tion of implementation and adoption delays. For both mod-
els, the following notation is adopted: x1, x2 are the state
variables representing the market shares of firm 1 and firm
2 respectively, u1 and u2 are the actions of firm 1 and firm
2 representing advertising effort and are assumed to have
nonnegative values, λ1 and λ2 are the decay terms of firm
1 and firm 2. An affine feedback advertising policy is defined
by the expression ui = kixi+ ci, i = 1, 2, where kixi denotes
advertising effort proportional to the current market share,
with ki being the proportionality constant, and ci denotes a
constant advertising effort.

In regard to the choice of controls in this paper, the affine
feedback advertising policies used in [31] are also used here.
There are two reasons for this: the first is that the affine
feedback advertising policy is intuitive, simple to implement
and can be used to approximate any nonlinear control to
first order and the second is that calculating optimal con-
trols for differential games is quite complex, even without
delays in the dynamics (see [7]). The Vidale-Wolfe-Deal and
extended Lanchester models under affine feedback adver-
tising from [31] are now recalled briefly, and followed
by the models with implementation and adoption delays
inserted.

Analysis and algebraic manipulation were performed in
Maple software and the code is available in: http://ieee-
dataport.org/4099

A. VIDALE-WOLFE-DEAL MODEL UNDER AFFINE
ADVERTISING CONTROL POLICY
Assuming that the total population size is constant and nor-
malized to 1 [32], Deal’s extension [30] of the classical
Vidale-Wolfe model to the case of a duopoly can be expressed
as follows:

ẋ1 = (1− x1 − x2)u1 − λ1x1
ẋ2 = (1− x1 − x2)u2 − λ2x2 (5)

Assuming that Vidale-Wolfe-Deal model is subject to
affine feedback advertising policies, as proposed in [31],
the model (5) becomes:

ẋ1 = −k1x21 − k1x1x2 + k1x1 − λx1 + c1 − c1x1 − c1x2
ẋ2 = −k2x22 − k2x1x2 + k2x2 − λx2 + c2 − c2x1 − c2x2 (6)

B. EXTENDED LANCHESTER MODEL UNDER AFFINE
ADVERTISING CONTROL POLICY
The classical Lanchester model [4], [33] can be understood
as a special case of the Vidale-Wolfe model with compet-
itive advertising in a saturated market [5]. This model was
extended, by considerations involving a third population of
undecided users and normalization of the total population,
and subjected to an affine advertising policy in [31] to yield
the following dynamics:

ẋ1 = −k1x21 − k2x1x2 − c1x1 − c2x1 + k1x1 − λx1 + c1
ẋ2 = −k1x1x2 − k2x22 − c1x2 − c2x2 + k2x2 − λx2 + c2 (7)

IV. VIDALE-WOLFE-DEAL MODEL WITH DELAYS UNDER
AFFINE ADVERTISING CONTROL POLICY
This section introduces the two types of delay into the first
model recapitulated in the previous section. Stability and
bifurcation results, as well as numerical examples illustrating
the results, follow each model. Note that in order to facilitate
analysis, equal delay values for both firms (τ1 = τ2 = τ)
were considered. However, the numerical examples pre-
sented relax this condition. All proofs of results are in
appendices A and B.

A. VIDALE-WOLFE-DEAL MODEL WITH
IMPLEMENTATION DELAY
Following Definition 1, the Vidale-Wolfe-Deal model with
uniform implementation delay τ , is expressed as follows:

ẋ1 = u1τ (1− x1 − x2)− λ1x1
ẋ2 = u2τ (1− x1 − x2)− λ2x2 (8)

where the implementation delays affect the advertising poli-
cies (now denoted uiτ , i = 1, 2) as follows:

u1τ = k1x1τ + c1 = k1x1 (t − τ)+ c1
u1τ = k2x2τ + c2 = k2x2 (t − τ)+ c2
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FIGURE 3. Evolution of market shares of firms x1 and x2 for
Vidale-Wolfe-Deal model: (a) without delay (τ = 0) and (b) with uniform
implementation delay τ1 = τ2 = τ = 10.

Substituting the above expressions, model (8) can be
expressed by:

ẋ1 = −k1x1x1τ − k1x2x1τ − k1x1τ − c1x1
− c1x2 − λx1 + c1

ẋ2 = −k2x1x2τ − k2x2x2τ − k2x2τ − c2x1
− c2x2 − λx2 + c2 (9)

Based on stability analysis [34] and the Hopf bifurcation
theorem [35] (detailed analysis and procedure are presented
in Appendix A), Proposition 1 and Corollaries 1, 2 are
obtained. Since the actual conditions referred to in the propo-
sition and corollaries involve complicated algebraic condi-
tions, they have been put in the appendix and are stated here
in words. Proposition 1 and Corollary 1 assert that if a certain
inequality, involving algebraic functions of the model param-
eters, holds then the delay freemodel has a stable equilibrium.
Corollary 2 says that if the classical characteristic equation
[36] has a positive solution and, in addition, a certain function
involving the model parameters and trigonometric functions
of the delay is nonzero, then the model with positive delay τ

FIGURE 4. Evolution of market shares of firms x1 and x2 for: (a) Vidale-
Wolfe-Deal model without delay (τ = 0) and (b) Vidale-Wolfe-Deal model
with adoption delay τ = 10. Note that the delay free (τ = 0) equilibrium
point maintains its stability, when the delay is increased to τ = 10.

has a Hopf bifurcation. The exact mathematical statements of
the propositions follow.
Proposition 1: The equilibrium point

(
x∗1 , x

∗

2

)
for model

(9) with delay value τ = 0 is a stable equilibrium point when
the conditions expressed in (31) hold.
Corollary 1: The equilibrium point

(
x∗1 , x

∗

2

)
with equal

parameter values for the affine advertising policies (i.e., k1 =
k2, c1 = c2) for model (9) with delay value τ = 0 is a stable
equilibrium point when the conditions expressed in (35) hold.
Corollary 2: The model (9) with equal parameter values

for the affine advertising policies (i.e., k1 = k2, c1 = c2) has
a Hopf bifurcation for delay value τ > 0 when the equation
(39) has a positive solution and condition (43) holds.
Remark 1: Similar formulations, in words, can be made

for all the subsequent propositions in the sequel, but will be
omitted for brevity. The numerical examples serve to show
that the conditions, derived in detail in the appendices, are
not empty, in the sense that there are reasonable sets of model
parameter values for which they are satisfied. In addition,
the conditions k1 = k2, c1 = c2 are also relaxed in the
numerical examples.
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FIGURE 5. Evolution of market shares of firms x1 and x2 for:
(a) Vidale-Wolfe model with adoption delay τc = 15.28. Note that this
value is the critical delay above which the bifurcation occurs.
(b) Vidale-Wolfe-Deal model with adoption delay τ = 40.

B. NUMERICAL EXAMPLES FOR VIDALE-WOLFE-DEAL
MODEL WITH IMPLEMENTATION DELAY
In this section, numerical examples that illustrate the Vidale-
Wolfe-Deal model with implementation delay are given. The
following parameter values are chosen: x1(0) = 0.2, x2(0) =
0.1, λ = 0.2, k1 = 0.4, c1 = 0.35, k2 = 0.17, c2 = 0.4.
For these parameters, the equilibrium point is given by: x∗1 =
0.44, x∗2 = 0.39. First, analyzing for τ = 0, substituting the
chosen parameter values into equation (30) yields:

Pvw(ψ, τ ) = Ψ 2
+ 1.2954Ψ + 0.174 (10)

Hence, by Proposition 1, the equilibrium point is stable. Next,
for the case when τ > 0, substituting the chosen parameter
values in equation (30), in which τ is permitted to be positive,
leads to the characteristic equation:

Pvw(ψ, τ ) = Ψ 2
+ 1.39Ψ − 0.09Ψ e−ψτ + 0.001e−2ψτ

− 0.06e−ψτ + 0.238 (11)

Setting λ = iω and solving, it turns out that the charac-
teristic equation has no positive root. Thus, the model has
no Hopf bifurcation. In Figure 3 numerical simulations for

FIGURE 6. Bifurcation diagram with respect delay for Vidale-Wolfe model
with adoption delay for: (a) market share of firm 1, (b) market share of
firm 2.

the Vidale-Wolfe-Deal model (9) are presented. Figure 3(a)
shows the dynamics of the model without implementation
delay (τ = 0). Figure 3(b) illustrates the dynamics of the
model for delay τ = 10. In this figure we can see that the
effect of implementation delay is harmless. Note that the
delay-free equilibrium point maintains its stability for this
value of delay.

C. VIDALE-WOLFE-DEAL MODEL WITH
ADOPTION DELAY
From Definition 2, the Vidale-Wolfe-Deal model with adop-
tion delay can be formulated as follows:

ẋ1 = u1τ (1− x1τ − x2τ )− λ1x1
ẋ2 = u2τ (1− x1τ − x2τ )− λ2x2 (12)

where:

u1τ = k1x1τ + c1 = k1x1 (t − τ1)+ c1
u2τ = k2x2τ + c2 = k2x2 (t − τ2)+ c2
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FIGURE 7. Evolution of market shares of firms x1 and x2 for: (a) extended
Lanchester model without delay

(
τ = 0

)
and (b) extended Lanchester

model with implementation delay τ = 10. In both figures, it can be seen
that the delay-free equilibrium points maintain their stability.

Substituting the above expressions into (12), the Vidale-
Wolfe-Deal model with adoption delay is as follows:

ẋ1 = −x21τ k1 − x1τ x2τ k1 − x1τ c1 + x1τ k1
− x2τ c1 − λx1 + c1

ẋ2 = −x1τ x2τ k2 − x22τ k2 − x1τ c2 − x2τ c2
+ x2τ k2 − λx2 + c2 (13)

Then, based on stability analysis [34] and the Hopf bifur-
cation theorem [35] (detailed analysis and procedure are
presented in Appendix B), the following propositions are
obtained:
Proposition 2: The equilibrium point

(
x∗1 , x

∗

2

)
for model

(13) with delay value τ = 0 is a stable equilibrium point
when the conditions expressed in (47) hold.
Corollary 3: The equilibrium point

(
x∗1 , x

∗

2

)
with equal

parameter values for the affine advertising policies (i.e., k1 =
k2, c1 = c2) of model (13) is a stable equilibrium point for
τ = 0 when the conditions expressed in (52) hold.
Corollary 4: The model (13) with equal parameter values

for the affine advertising policies (i.e., k1 = k2, c1 = c2)

FIGURE 8. Evolution of market shares of firms x1 and x2 for: (a) Extended
Lanchester model without delay τ = 0 and (b) Extended Lanchester
model with adoption delay τ = 10. For this case, it can be observed that
the model presents oscillations but manages to maintain the stability of
its equilibrium points.

has a Hopf bifurcation for delay value τ > 0 when the
equation (56) has a positive solution and condition (60) holds.

D. NUMERICAL RESULTS FOR VIDALE-WOLFE-DEAL
MODEL WITH ADOPTION DELAY
Some numerical results for the Vidale-Wolfe-Deal model
with adoption delay are now presented. The following param-
eter values are considered: x1(0) = 0.2, x2(0) = 0.1, λ =
0.25, k1 = 0.25, c1 = 0.15, k2 = 0.2 and c2 = 0.1. For these
parameters, the equilibrium point is given by: x∗1 = 0.383,
x∗2 = 0.226. Now, analyzing for τ = 0, we substitute the
parameter values in equation (46) and we get:

Pvw(ψ, τ ) = Ψ 2
+ 0.71Ψ + 0.09 (14)

Hence, from Proposition 2 it can be affirmed that equilibrium
point is stable. Then, for the case when τ > 0, substituting
the parameter values in equation (46), in which τ is permitted
to be positive, we obtain:

Pvw(ψ, τ ) = Ψ 2
+ 0.5Ψ + 0.21Ψ e−ψτ − 0.02e−2ψτ

+ 0.05e−ψτ + 0.06 (15)
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FIGURE 9. Evolution of market shares of firms x1 and x2 for: (a) Extended
Lanchester model with critical adoption delay τc = 14.98 and
(b) Extended Lanchester model with adoption delay τ = 40.

Solving the equation for λ = iω we have that one solution is
given by ω = 0.17 and τ = 15.28 and

( dλ
dτ

)
6= 0. Therefore,

according to Hopf bifuraction Theorem it can be stated that
the model has Hopf bifurcation. Figures 4 and 5 illustrate
the numerical results for the Vidale-Wolfe-Deal model with
adoption delay. Thus, in Figure 4(a) the dynamics of the
model without delay (τ = 0) is shown. Then, Figure 4(b)
shows the dynamics of the model for τ = 10, that is, an value
delay less than the critical value. Note that in this case,
the dynamics of themodel has oscillations but the equilibrium
point remains stable. Figure 5(a) illustrates the dynamics of
the model for τ = 15.28. This delay value is the critical
delay value (τc) that produces existence of Hopf bifurcation.
Finally, Figure 5(b) shows the dynamics of the model for
a delay value (τ = 40) greater than critical delay value.
Notice that the model for this delay value has oscillations of
increasing amplitude and the equilibrium point loses stability.

Figure 6 shows the bifurcation diagram with respect to the
variation of the delay value. Maximum and minimum values
of the market shares in the last 100 simulation steps in order
to analyze the change in their behavior. The figures 6(a) and
6(b) show the behavior of the equilibrium point of the market
shares for firm 1 and firm 2 respectively. In both figures it

FIGURE 10. Bifurcation diagram with respect to delay for extended
Lanchester model with adoption delay for: (a) market share of firm 1,
(b) market share of firm 2.

can be observed how the equilibrium point remains constant
up to the critical delay value where the bifurcation begins.

V. EXTENDED LANCHESTER MODEL WITH DELAYS
UNDER AFFINE ADVERTISING CONTROL POLICY
This section introduces the two types of delay into the
model of Section 3.2. Similar to the previous section, sta-
bility and bifurcation results, as well as numerical exam-
ples illustrating the results, follow each model. Once again,
in order to facilitate analysis, equal delay values for both firms
(τ1 = τ2 = τ) were considered. All proofs of results are in
appendices C and D.

A. EXTENDED LANCHESTER MODEL WITH
IMPLEMENTATION DELAY
From Definition 1, the extended Lanchester model with
implementation delay can written as:

ẋ1 = u1τ (1− x1)− u2τ x1 − λ1x1
ẋ2 = u2τ (1− x2)− u1τ x2 − λ2x2 (16)

where:

u1τ = k1x1τ + c1 = k1x1 (t − τ1)+ c1
u2τ = k2x2τ + c2 = k2x2 (t − τ2)+ c2
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FIGURE 11. Evolution of market shares of firms x1 and x2 for:
(a) Vidale-Wolfe-Deal model with implementation delay τ1 = 15, τ2 = 10
(b) Vidale-Wolfe-Deal model with implementation delay τ1 = 10 and
τ2 = 15. For this case, we can note that is no crossing in the time plots of
market shares.

Substituting the above expressions into model (16) we obtain:

ẋ1 = −k1x1x1τ − k2x1x2τ + k1x1τ − c1x1
− c2x1 − λx1 + c1

ẋ2 = −k1x2x1τ − k2x2x2τ + k2x2τ − c1x2
− c2x2 − λx2 + c2 (17)

Then, based on stability analysis [34] and the Hopf bifurca-
tion theorem [35] (detailed analysis and procedure are pre-
sented in Appendix C) we obtain the following propositions:

Proposition 3: The equilibrium point
(
x∗1 , x

∗

2

)
for model

(17) with delay value τ = 0 is a stable equilibrium point
when the conditions expressed in (64) hold.
Corollary 5: The equilibrium point

(
x∗1 , x

∗

2

)
with equal

parameter values for the affine advertising policies (i.e., k1 =
k2, c1 = c2) is a stable equilibrium point for delay value
τ = 0 when the conditions expressed in (69) hold.
Corollary 6: Model (17) with equal parameter values for

the affine advertising policies (i.e., k1 = k2, c1 = c2) has

FIGURE 12. Evolution of market shares of firms x1 and x2 for:
(a) Vidale-Wolfe-Deal model with adoption delay for τ1 = 18 and τ2 = 10
(b) Vidale-Wolfe-Deal model with adoption delay for τ1 = 10 and τ2 = 18.

Hopf bifurcation for delay value τ > 0 when equation (73)
has a positive solution and condition (77) holds.

B. NUMERICAL RESULTS FOR EXTENDED LANCHESTER
MODEL WITH IMPLEMENTATION DELAY
In this section, some numerical results for the extended
Lanchester model with implementation delay are presented.
The parameter values considered are similar to the Vidale-
Wolfe-Deal model, that is: x1(0) = 0.2, x2(0) = 0.1, λ = 0.2,
k1 = 0.4, c1 = 0.35, k2 = 0.17, c2 = 0.4. The equilibrium
point for these parameters results: x∗1 = 0.44, x∗2 = 0.39.
Now, analyzing for τ = 0, the parameter values in equation
(63) are substituted and it is obtained:

Pel(ψ, τ ) = Ψ 2
+ 2.0569Ψ + 1.042 (18)

Taking into account Proposition 3 it can be said that equi-
librium point is stable. Then, when τ > 0, substituting the
parameter values above into equation (63), in which τ is
permitted to be positive, we have:

Pel(ψ, τ ) = Ψ 2
+ 2.38Ψ − 0.32Ψ e−ψτ + 0.01e−2ψτ

− 0.39e−ψτ + 1.42 (19)
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FIGURE 13. Evolution of market shares of firms x1 and x2 for:
(a) Extended Lanchester model with implementation delay for τ1 = 15
and τ2 = 10 (b) Extended Lanchester model with implementation delay
for τ1 = 10 and τ2 = 15 For this case, we can note that market share
values do not cross each other.

Next, solving the equation for λ = iω we find that the
characteristic equation has no positive root. Therefore, it is
concluded that the model has no Hopf bifurcation. In fig-
ure 7 numerical simulations for the extended Lanchester
model with implementation delay are shown. Figure 7(a)
illustrates the dynamics of the model without delay (τ = 0).
Figure 7(b) shows the dynamics of the model for delay value
τ = 10. Notice that the equilibrium point maintains its
stability.

C. EXTENDED LANCHESTER MODEL WITH ADOPTION
DELAY
FromDefinition 2, the extended Lanchester model with adop-
tion delay can be written as follows:

ẋ1 = u1τ (1− x1τ )− u2τ x1τ − λ1x1
ẋ2 = u2τ (1− x2τ )− u1τ x2τ − λ2x2 (20)

where:

u1τ = k1x1τ + c1 = k1x1 (t − τ1)+ c1
u2τ = k2x2τ + c2 = k2x2 (t − τ2)+ c2

FIGURE 14. Evolution of market shares of firms x1 and x2 for:
(a) Extended Lanchester model with adoption delay for τ1 = 18 and
τ2 = 10 (b) Extended Lanchester model with adoption delay for τ1 = 10
and τ2 = 18. In both models the equilibrium points remain stable after
transients.

Substituting the above expressions, model (20) can be
expressed by:

ẋ1 = −x21τ k1 − x1τ x2τ k2 − x1τ c1
− x1τ c2 + x1τ k1 − λx1 + c1

ẋ2 = −x1τ x2τ k1 − x22τ k2 − x2τ c1
− x2τ c2 + x2τ k2 − λx2 + c2 (21)

Then, based on stability analysis [34] and the Hopf bifurca-
tion theorem [35] (detailed analysis and procedure are pre-
sented in Appendix D) we obtain the following propositions:
Proposition 4: The equilibrium point

(
x∗1 , x

∗

2

)
for model

(21) with delay value τ = 0 is a stable equilibrium point
when the conditions expressed in (81) hold.
Corollary 7: The equilibrium point

(
x∗1 , x

∗

2

)
with equal

parameter values for the affine advertising policies (i.e., k1 =
k2, c1 = c2) of model (21) is a stable equilibrium point for
delay value τ = 0when the conditions expressed in (86) hold.
Corollary 8: Model (21) with equal parameter values for

the affine advertising policies (i.e., k1 = k2, c1 = c2) has
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FIGURE 15. Existence of Hopf bifurcation for unequal adoption delay
values for x1 (τ1) and x2 (τ2) for: (a) Vidale-Wolfe-Deal model and
(a) Extended Lanchester model. The symbol × denotes non-existence
while the symbol + denotes existence of Hopf bifurcation.

Hopf bifurcation for delay value τ > 0 when equation (90)
has a positive solution and condition (94) holds.

D. NUMERICAL RESULTS FOR EXTENDED LANCHESTER
MODEL WITH ADOPTION DELAY
Once again, the parameter values chosen are similar to the
ones used for the Vidale-Wolfe-Deal model: x1(0) = 0.2,
x2(0) = 0.1, λ = 0.25, k1 = 0.25, c1 = 0.15, k2 = 0.2,
c2 = 0.1. For these parameters the equilibrium point is given
by: x∗1 = 0.383, x∗2 = 0.226. First, analyzing for τ = 0,
the chosen parameter values are substituted in equation (80)
to get:

Pvw(ψ, τ ) = Ψ 2
+ 0.97Ψ + 0.23. (22)

From Proposition 4 it follows that equilibrium point is stable.
Next, analyzing when τ > 0, substituting the parameter
values in equation (80), in which τ is permitted to be positive,
we have:

Pvw(ψ, τ ) = Ψ 2
+ 0.5Ψ − 0.47Ψ e−ψτ + 0.005e−2ψτ

− 0.11e−ψτ + 0.06 (23)

Then, solving equation (23) for λ = iω we have that one
solution is given by ω = 0.17 and τ = 14.98 and

( dλ
dτ

)
6= 0.

Therefore, it follows that the model has Hopf bifurcation.
Figures 8 and 9 illustrate the numerical results for the
extended Lanchester model with adoption delay. Figure 8(a)
shows the dynamics of the model without delay (τ = 0).

Figure 8(b) illustrates the dynamics of the model for τ = 10.
Notice that, despite the appearance of oscillations,the equilib-
rium point remains stable. Figure 9(a) shows the dynamics of
the model for τ = 14.98. This delay value is the critical delay
value (τc) which implies the existence of a Hopf bifurcation.
Figure 9(b) illustrates the dynamics of the model for τ = 40,
and it is confirmed that unbounded oscillations occur and the
equilibrium point becomes unstable.

Finally, Figure 10 shows the bifurcation diagram with
respect to delay variation, which is similar analysis to the
previous case shown in 6.

VI. VIDALE-WOLFE-DEAL MODEL AND EXTENDED
LANCHESTER MODEL WITH UNEQUAL DELAYS UNDER
AFFINE ADVERTISING CONTROL POLICY
In the previous sections, the Vidale-Wolfe-Deal and extended
Lanchester models were analyzed considering the existence
of two types of delays (implementation and adoption).
In order to facilitate analysis, equal delay values for both
firms (τ1 = τ2) were considered, however, this assumption
often does not hold in practice (and analysis is difficult).
Thus, in this section, some numerical simulations are shown,
with unequal delay values, i.e., (τ1 6= τ2).

A. VIDALE-WOLFE-DEAL MODEL WITH UNEQUAL DELAY
VALUES UNDER AFFINE ADVERTISING CONTROL POLICY
Rewriting the equation (9) for the Vidale-Wolfe-Deal model
with unequal implementation delays and defining x1τ and x2τ
as follows:

x1τ = x1(t − τ1)

x2τ = x2(t − τ2)

we have:

ẋ1 = −k1x1x1τ − k1x2x1τ − k1x1τ − c1x1
− c1x2 − λx1 + c1

ẋ2 = −k2x1x2τ − k2x2x2τ − k2x2τ − c2x1
− c2x2 − λx2 + c2 (24)

Likewise, rewriting the equation (13) for the Vidale-
Wolfe-Deal model with unequal adoption delays we obtain:

ẋ1 = −x21τ k1 − x1τ x2τ k1 − x1τ c1 + x1τ k1
− x2τ c1 − λx1 + c1

ẋ2 = −x1τ x2τ k2 − x22τ k2 − x1τ c2 − x2τ c2
+ x2τ k2 − λx2 + c2 (25)

Assume the same parameters as in section IV and unequal
delay values (τ1 6= τ2). Figures 11 and 12 show the numerical
results for the Vidale-Wolfe-Deal model with implementation
and adoption delay respectively but with different delay val-
ues for each firm. Figure 11(a) illustrates the dynamics of
the model with implementation delay considering τ1 > τ2.
In figure 11(b) the dynamics of the model when τ1 < τ2
is presented. Note that in both cases the equilibrium point
remains stable and for τ1 > τ2 the dynamics has a crossing
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in time plots of market share trajectories. Figure 12(a) shows
the dynamics of the model with adoption delay when τ1 > τ2.
Finally, in figure 12(b) the dynamic of the model for τ1 < τ2
is ilustrated. Note that both models exhibit oscillations, but in
both cases, the equilibrium points remain stable.

B. EXTENDED LANCHESTER MODEL WITH UNEQUAL
DELAY VALUES UNDER AFFINE ADVERTISING CONTROL
POLICY
Similar to the previous subsection, equation (17) which rep-
resents the extended Lanchester model with implementation
delay is initially rewritten:

ẋ1 = −k1x1x1τ − k2x1x2τ + k1x1τ − c1x1 − c2
x1 − λx1 + c1

ẋ2 = −k1x2x1τ − k2x2x2τ + k2x2τ − c1x2 − c2
x2 − λx2 + c2 (26)

Likewise, equation (21) for extended Lanchester model with
adoption delay is rewritten:

ẋ1 = −x21τ k1 − x1τ x2τ k2 − x1τ c1 − x1τ c2
+ x1τ k1 − λx1 + c1

ẋ2 = −x1τ x2τ k1 − x22τ k2 − x2τ c1 − x2τ c2
+ x2τ k2 − λx2 + c2 (27)

Suppose that, for the numerical examples, the same parame-
ters as in section V and unequal delay values (τ1 6= τ2) are
chosen. Figures 13 and 14 illustrate the numerical results
for the extended Lanchester model with implementation and
adoption delay respectively for different delay values for each
firm. Figure 13(a) shows the dynamics of the model with
implementation delays such that τ1 > τ2. Then, in fig-
ure 13(b) we present the dynamics of the model assuming
τ1 < τ2. Notice that in both cases the equilibrium point
remains stable, but for τ1 > τ2, the dynamics present two
crossings between the trajectories. Figure 14(a) presents the
dynamics of the model with adoption delay for τ1 > τ2.
Finally, figure 14(b) shows the dynamics of the model when
τ1 < τ2. Note that both models present oscillations but,
in both cases, the equilibrium points remain stable. Finally,
figure 15 summarizes the results of numerical simulations
performed for different values of τ1 and τ2 and leads to
the formulation of conjectures about conditions for the exis-
tence of Hopf bifurcation in Vidale-Wolfe-Deal and extended
Lanchestermodels with unequal adoption delays. The conjec-
tures are as follows:

• for implementation delays, the Vidale-Wolfe-Deal and
extended Lanchester models have stable dynamics
regardless of delay values τ1 and τ2;

• for adoption delays, the Vidale-Wolfe-Deal model can
present Hopf bifurcations when the condition τ1+ τ2 >
2τc is satisfied. For extended Lanchester model, the exis-
tence of Hopf bifurcations seems to be possible only
when the condition τ1 = τ2 = τc is satisfied.

VII. CONCLUSION AND DISCUSSIONS
This paper defines the concept of implementation and adop-
tion delays of firms and clients in market share dynam-
ics. In particular, these two types of delays are introduced
into the Vidale-Wolfe-Deal and extended Lanchester models
recently studied by the authors [31], subject to affine feed-
back advertising policies. In the presence of implementation
delays, the Vidale-Wolfe-Deal and extended Lanchester mod-
els present stable dynamics regardless of the delay values.
On the other hand, for the case of identical adoption delays
for both firms, the behavior of the Vidale-Wolfe-Deal and
extended Lanchester models was analysed mathematically
and can be summarized as follows: for both models, there is
a critical value of delay τc for Hopf bifurcation; for τ < τc,
in both models, market shares may have an oscillatory tran-
sient, but eventually settle at an equilibrium. As τ becomes
progressively larger and eventually exceeds τc, bounded and
eventually unbounded oscillations of market share occur and
the equilibrium point becomes unstable. Finally, the case of
unequal delay values for each firm is very complex and was
therefore studied only through numerical simulations, leading
to the formulation of some conjectures which may be of
interest for future research.
From the viewpoint of a decision maker who might use

these models to guide advertising policies, the results of this
paper can be phrased as follows. Utilization of an old or
delayed value of market share to compute advertising effort
does not affect the equilibrium value of market share. How-
ever, it is critical to reduce the interval between advertising
and its effect, i.e., the adoption delay, since this could lead to
oscillations and even instability in market share. The impor-
tant implication of these results is that it is more important
to reduce the adoption delay than to obtain the most recent
information on market share, since the former can cause
instability and severe oscillation in market shares, but this
does not happen with implementation delays.
Finally, as possible future work, it could be of interest to

extend the analysis of stability and bifurcations with respect
to the parameters of the affine feedback advertising policy
(i.e., ki, ci, i = 1, 2).

APPENDIX A
STABILITY ANALYSIS FOR VIDALE-WOLFE-DEAL MODEL
WITH IMPLEMENTATION DELAY
Assuming that τ1 = τ2 = τ , the Jacobian matrix [34] with
respect to equilibrium point for model (9) is given by:

Jvw =

∣∣∣∣Avw Bvw
Cvw Dvw

∣∣∣∣ (28)

where:

Avw = −k1x1τ − c1 − λ+ e−ψτ (−k1x1 − k1x2 + k1)

Bvw = −k1x1τ − c1
Cvw = −k2x2τ − c2
Dvw = −k2x2τ − c2 − λ+ e−ψτ (−k2x1 − k2x2 + k2)
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At equilibrium:(
x∗1 (t), x

∗

2 (t)
)
=
(
x∗1 (t − τ ), x

∗

2 (t − τ )
)

(29)

Therefore, the stability of equilibrium points will be deter-
mined by the characteristic equation expressed by:

Pvw(ψ, τ ) = Ψ 2
+ P1vwΨ + P2vw + P3vwe−2ψτ

+P4vwΨ e−ψτ + P5vwe−ψτ (30)

where:

P1vw = k1x1 + k2x2 + c1 + c2 + 2λ

P2vw = k1λx1 + k2λx2 + c1λ+ c2λ+ λ2

P3vw = k1k2x21 + 2k1k2x1x2 + k1k2x22 − 2k1k2x1 − 2k1k2x2
+ k1k2

P4vw = k1x1 + k1x2 + k2× 1+ k2× 2− k1− k2

P5vw = k1k2x21 + 2k1k2x1x2 + k1k2x22 + c1k2x1 + c1k2x2

+ c2k1x1 + c2k1x2 − k1k2x1 − k1k2x2 + k1λx1

+ k1λx2 + k2λx1+k2λx2−c1k2−c2k1−k1λ−k2λ

STABILITY ANALYSIS OF THE CHARACTERISTIC
EQUATION FOR τ = 0
Based on the previous analysis we can establish that the
stability criteria [37] can be established when:

P1vw > 0

P2vw > 0 (31)

This completes the proof of Proposition 1.

STABILITY ANALYSIS OF THE CHARACTERISTIC EQUATION
FOR τ = 0 (SPECIAL CASE: k1 = k2 = k AND c1 = c2 = c)
Considering the special case when: k1 = k2 = k and c1 =
c2 = c we have:

x∗1 = −
1
4

−2c− λ+ k +
√
Aapx

k
(32)

x∗2 = −
1
4

−2c− λ+ k +
√
Aapx

k
(33)

where: Aapx = c2 + 2c (c+ textlambda− k) + 8ck +
(c+ textlambda− k)2

In this case, the characteristic equation is given by:

Pvw(ψ, τ ) = Ψ 2
+ P1vwΨ + P2vw + P3vwe−2ψτ

+P4vwΨ e−ψτ + P5vwe−ψτ (34)

where:

P1vw = c+
3
2
λ+

1
2

√
Eapx +

k
2

P2vw =
1
2
kλ+ cλ+

1
2
λ2 +

1
2

√
Eapx

P3vw = 2c2 + 2cλ−
(
c−

1
2
λ−

1
2
k
) (√

Eapx
)
+

1
2
λ2

+
1
2
k2 + 2ck

P4vw =
√
Eapx − 2c− k − λ

P5vw = −cλ−
3
2
kλ−

1
2
λ2 +

1
2
λ
√
Eapx

where: Eapx = 4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

In this case, the characteristic equation is given by:

Pvw(ψ, τ ) = Ψ 2
+ P6vwΨ + P7vw

where:

P6vw = P1vw + P4vw
P7vw = P2vw + P3vw + P5vw

Then, the stability criteria [37] can be established when

P6vw > 0

P7vw > 0 (35)

This completes the proof of Corollary 1.

STABILITY ANALYSIS OF THE CHARACTERISTIC EQUATION
FOR τ > 0 (SPECIAL CASE: k1 = k2 = k AND c1 = c2 = c)
Returning to the analysis when τ > 0, in this case the charac-
teristic equation [36] is given by equation (34). Substituting
Ψ = iw in (34) yields:

Pvw(iω, τ ) = (iω)2 + P1vw (iω)+ P2vw + P3vwe−2(iω)τ

+P4vw(iω)e−(iω)τ + P5vwe−(iω)τ (36)

Then, separating the real and imaginary parts, we have:

P3vw cos (2ωτ)+ ωP4vw sin (ωτ) = ω2
− P2vw

−P5vw cos (ωτ) (37)

−P3vw sin (2ωτ)+ ωP4vw cos (ωτ) = −P1vwω

+P5vw sin (ωτ) (38)

Solving equations (37) and (38), we obtain:

0 = −P4vwω3
+ P24vw sin (ωτ) ω

2
+ P4vwP2vww

+P4vwP3vw cos (2ωτ)ω − P1vwP5vwω

+P25vw sin (ωτ)+ P3vwP5vw sin (2ωτ) (39)

Now, after rearrangement, the characteristic equation
becomes:

Pvw(ψ, τ ) = Ψ 2
+ P1vwΨ + P2vw
+ e−ψτ

(
P4vwΨ + P3vwe−ψτ + P5vw

)
(40)

Then, the second necessary condition for the existence of a
Hopf Bifurcation [36] is formulated as:

<

(
dλ
dτ

)
6= 0 (41)

Now, calculating
( dλ
dτ

)
from (40), we get:(

dλ
dτ

)
=

Evw + Fvwi
Gvw + Hvwi

(42)
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where:

Evw = −w
(
4P3vw cos2 (ωτ)+ P4vwω sin (ωτ)

+P5vw cos (ωτ)
)
+ 2ωP3vw

Fvw = −w (4P3vw cos (ωτ) sin (ωτ)− cos (ωτ)P4vwω)

−ωP5vw sin (ωτ)

Gvw = −4P3vwτ cos (ωτ) sin (ωτ)+ τP4vwω cos (ωτ)

− τP5vw sin (ωτ)+ P4vw sin (ωτ)− 2w

Hvw = 4P3vwτ cos2 (ωτ)+ P4vwτω sin (ωτ)

+P5vwτ cos (ωτ)− P4vw cos (ωτ)− 2P3vwτ − P1vw

Therefore:

<

(
dλ
dτ

)
=
EvwGvw + FvwHvw

G2
vw + H2

vw
6= 0 (43)

Thus, from the previous analysis, Corollary 2 is proved.

APPENDIX B
STABILITY ANALYSIS FOR VIDALE-WOLFE-DEAL MODEL
WITH ADOPTION DELAY
Assuming that τ1 = τ2 = τ , the Jacobian matrix with respect
to equilibrium point for model (13) is given by:

Jvw =
[
Avw Bvw
Cvw Dvw

]
(44)

where:

Avw = −λ+ e−ψτ (−2x1τ k1 − x2τ k1 − c1 + k1)

Bvw = e−ψτ (−x1τ k1 − c1)

Cvw = e−ψτ (−x2τ k2 − c2)

Dvw = −λ+ e−ψτ (−x1τ k2 − 2x2τ k2 − c2 + k2)

At equilibrium it must hold that:(
x∗1 (t), x

∗

2 (t)
)
=
(
x∗1 (t − τ ), x

∗

2 (t − τ )
)

(45)

Stability of equilibrium points is determined by the charac-
teristic equation [36]:

Pvw(ψ, τ ) = Ψ 2
+ P1vwΨ + P2vw + P3vwe−2ψτ

+P4vwΨ e−ψτ + P5vwe−ψτ (46)

where:

P1vw = 2λ2

P2vw = λ2

P3vw = 2k1k2x21 + 4k1k2x1x2 + 2k1k2x22 + c1k2x1 + c1k2x2
+ c2k1x1 + c2k1x2 − 3k1x2 − 3k1k2x2 − c1k2
− c2k1 + k1k2

P4vw = 2k1x1 + k1x2 + k2x1 + 2k2x2 + c1 + c2 − k1 − k2
P5vw = 2k1λx1 + k1λx2 + k2λx1 + 2k2λx2 + c1λ+ c2λ

− k1λ− k2λ

STABILITY ANALYSIS OF THE CHARACTERISTIC
EQUATION FOR τ = 0
Based on the previous analysis we can establish that the
stability criteria [37] can be established when:

P1vw > 0

P2vw > 0 (47)

This completes the proof of Proposition 2.

STABILITY ANALYSIS OF THE CHARACTERISTIC EQUATION
FOR τ = 0 (SPECIAL CASE: k1 = k2 = k AND c1 = c2 = c)
Considering the special case when: k1 = k2 = k and c1 =
c2 = c, we obtain:

x∗1 = −
1
4

−2c− λ+ k +
√
Bapx

k
(48)

x∗2 = −
1
4

−2c− λ+ k +
√
Bapx

k
(49)

where: Bapx = c2 + 2c (c+ λ− k)+ 8ck + (c+ λ− k)2

Therefore, the characteristic equation is given by:

Pvw(ψ, τ ) = Ψ 2
+ P1vwΨ + P2vw + P3vwe−2ψτ

+P4vwΨ e−ψτ + P5vwe−ψτ (50)

where:

P1vw = 2λ2

P2vw = λ2

P3vw = −
(
c− λ−

1
2
k
) (√

Eapx
)
+ 2c2 + 3cλ+ λ2

−
1
2
kλ+

1
2
k2 + 2ck

P4vw = −c−
3
2
−

1
2
k +

3
2

√
Eapx

P5vw = −cλ−
3
2
λ2 −

1
2
kλ+

3
2
λ
√
Eapx

where: Eapx = 4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

In this case, the characteristic equation is given by:

Pvw(ψ, τ ) = Ψ 2
+ P6vwΨ + P7vw (51)

where:

P6vw = P1vw + P4vw
P7vw = P2vw + P3vw + P5vw

Stability conditions [36] are as follows:

P6vw > 0

P7vw > 0 (52)

Completing the proof of Corollary 3
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STABILITY ANALYSIS OF THE CHARACTERISTIC EQUATION
FOR τ > 0 (SPECIAL CASE: k1 = k2 = k AND c1 = c2 = c)
In this case, the characteristic equation is given by equa-
tion (50). Substituting Ψ = iw and in (50), we obtain:

Pvw(iω, τ ) = (iω)2 + P1vw (iω)+ P2vw + P3vwe−2(iω)τ

+P4vw(iω)e−(iω)τ + P5vwe−(iω)τ (53)

Then, separating the real and imaginary parts, we have:

P3vw cos (2ωτ)+ ωP4vw sin (ωτ) = ω2
− P2vw

−P5vw cos (ωτ) (54)

−P3vw sin (2ωτ)+ ωP4vw cos (ωτ) = −P1vwω

+P5vw sin (ωτ) (55)

Solving equations (54) and (55), we get:

0 = −P4vwω3
+ P24vw sin (ωτ) ω

2
+ P4vwP2vww

+P4vwP3vw cos (2ωτ)ω − P1vwP5vwω

+P25vw sin (ωτ)+ P3vwP5vw sin (2ωτ) (56)

After rearrangement, the characteristic equation becomes:

Pvw(ψ, τ ) = Ψ 2
+ P1vwΨ + P2vw
+ e−ψτ

(
P4vwΨ + P3vwe−ψτ + P5vw

)
(57)

The second necessary condition for Hopf Bifurcation exis-
tence [36] is:

<

(
dλ
dτ

)
6= 0 (58)

Now, calculating
( dλ
dτ

)
from (57) we obtain:(

dλ
dτ

)
=

Avw + Bvwi
Cvw + Dvwi

(59)

where:

Avw = −w
(
4P3vw cos2 (ωτ)+ P4vwω sin (ωτ)

+P5vw cos (ωτ)
)
+ 2ωP3vw

Bvw = −w (4P3vw cos (ωτ) sin (ωτ)− cos (ωτ)P4vwω)

+ωP5vw sin (ωτ)

Cvw = −4P3vwτ cos (ωτ) sin (ωτ)+ τP4vwω cos (ωτ)

− τP5vw sin (ωτ)+ P4vw sin (ωτ)− 2w

Dvw = 4P3vwτ cos2 (ωτ)+ P4vwτω sin (ωτ)

+P5vwτ cos (ωτ)− P4vw cos (ωτ)− 2P3vwτ − P1vw

Therefore:

<

(
dλ
dτ

)
=
AvwCvw + BvwDvw

C2
vw + D2

vw
6= 0 (60)

This establishes Corollary 4.

APPENDIX C
STABILITY ANALYSIS FOR EXTENDED LANCHESTER
MODEL WITH IMPLEMENTATION DELAY
Assuming that τ1 = τ2 = τ , the Jacobian matrix for model
(17) is given by:

Jel =
[
Ael Bel
Cel Del

]
(61)

where:

Ael = −k1x1τ − k2x2τ − c1 − c2 − λ+ e−ψτ (−k1x1 + k1)

Bel = −e−ψτ (k2x1)

Cel = −e−ψτ (k1x2)

Del = −k1x1τ − k2x2τ − c1 − c2 − λ+ e−ψτ (−k2x2 + k2)

At equilibrium:(
x∗1 (t), x

∗

2 (t)
)
=
(
x∗1 (t − τ ), x

∗

2 (t − τ )
)

(62)

Stability of equilibrium points is determined by the charac-
teristic equation:

Ψ 2
+ P1elΨ + P2el + P3ele−2ψτ

+P4elΨ e−ψτ + P5ele−ψτ (63)

where:

P1el = 2k1x1 + 2k2x2 + 2c1 + 2c2 + 2λ

P2el = k21x
2
1 + 2k1k2x1x2 + k22x

2
2 + 2c1k1x1 + 2c1k2x2

+ 2c2k1x1 + 2c2k2x2 + 2k1λx1 + 2k2λx2 + c21
+ 2c1c2 + 2c1λ+ c22 + 2c2λ+ λ2

P3el = −k1k2x1 − k1k2x2 + k1k2
P4el = k1x1 + k2x2 − k1 − k2
P5el = k1x21 + 2k1k2x1x2 + k2x22 + c1k1x1 + c1k2x2

+ c2k1x1 + c2k2x2 − k21x1 − k1k2x1 − k1k2x2
+ k1λx1 − k22x2 + k2λx2 − c1k1 − c1k2
− c2k1 − c2k2 − k1λ− k2λ

STABILITY ANALYSIS OF THE CHARACTERISTIC EQUATION
FOR τ = 0
Based on the previous analysis we can establish that the
stability criteria [37] can be established when:

P1el > 0

P2el > 0 (64)

This completes the proof of Proposition 3.

STABILITY ANALYSIS OF THE CHARACTERISTIC EQUATION
FOR τ = 0 (SPECIAL CASE: k1 = k2 = k AND c1 = c2 = c)
Considering the special case when: k1 = k2 = k and c1 =
c2 = c we have:

x∗1 = −
1
4

−2c− λ+ k +
√
Capx

k
(65)

x∗2 = −
1
4

−2c− λ+ k +
√
Capx

k
(66)
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where: Capx = c2 + 2c (c+ textlambda− k) + 8ck +
(c+ textlambda− k)2

In this case, the characteristic equation is given by:

Pel(ψ, τ ) = Ψ 2
+ P1elΨ + P2el + P3ele−2ψτ

+P4elΨ e−ψτ + P5ele−ψτ (67)

where:

P1el = 2c+ k + λ+
√
Eapx

P2el = 2cλ+
1
2
λ2 +

1
2
k2 + 2c2 + 2ck +

(
c+

1
2
λ+

1
2
k
)

(√
Eapx

)
P3el = ck +

1
2
kλ+

1
2
k2 −

1
2
k
√
Eapx

P4el = −c−
1
2
λ−

3
2
k +

1
2

√
Eapx

P5el = −
1
2
k2 − ck −

3
2
kλ−

1
2
k
√
Eapx

where: Eapx = 4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

In this case, the characteristic equation is given by:

Pel(ψ, τ ) = Ψ 2
+ P6elΨ + P7el (68)

where:

P6el = P1el + P4el
P7el = P2el + P3el + P5el

Thus, stability conditions are given by:

P6el > 0

P7el > 0 (69)

This completes the proof of Corollary 5

STABILITY ANALYSIS OF THE CHARACTERISTIC EQUATION
FOR τ > 0 (SPECIAL CASE: k1 = k2 = k AND c1 = c2 = c)
In this case, the characteristic equation is given by equa-
tion (67). Substituting Ψ = iw in (67), we obtain:

Pel(iω, τ ) = (iω)2 + Pel (iω)+ P2el + P3ele−2(iω)τ

+P4el(iω)e−(iω)τ + P5ele−(iω)τ (70)

Solving the equation and next separating the real and imagi-
nary parts, we get:

P3el cos (2ωτ)+ ωP4el sin (ωτ) = ω2
− P2el

−P5el cos (ωτ) (71)

−P3el sin (2ωτ)+ ωP4el cos (ωτ) = −P1elω

+P5el sin (ωτ) (72)

Solving equations (71) and (72), we have:

0 = −P4elω3
+ P24el sin (ωτ) ω

2
+ P4elP2elω

+P4elP3el cos (2ωτ)ω−P1elP5elω

+P25el sin (ωτ)+ P3elP5el sin (2ωτ) (73)

Rearranging the characteristic equation yields:

Pel(ψ, τ ) = Ψ 2
+ P1elΨ + P2el
+ e−ψτ

(
P4elΨ + P3ele−ψτ + P5el

)
(74)

The second necessary condition for Hopf Bifurcation exis-
tence [36] is:

<

(
dλ
dτ

)
6= 0 (75)

Now, calculating
( dλ
dτ

)
from (74) we get:(

dλ
dτ

)
=

Ael + Bel i
Cel + Del i

(76)

where:

Ael = −w
(
4P3el cos2 (ωτ)+ P4elω sin (ωτ)

+P5el cos (ωτ)
)
+ 2ωP3el

Bel = −w (4P3el cos (ωτ) sin (ωτ)− cos (ωτ)P4elω)

−ωP5el sin (ωτ)

Cel = −4P3elτ cos (ωτ) sin (ωτ)+ τP4elω cos (ωτ)

− τP5el sin (ωτ)+ P4el sin (ωτ)− 2w

Del = 4P3elτ cos2 (ωτ)+ P4elτω sin (ωτ)+ P5elτ cos (ωτ)

−P4el cos (ωτ)− 2P3elτ − P1el

Therefore:

<

(
dλ
dτ

)
=
AelCel + BelDel

C2
el + D

2
el

6= 0 (77)

This establishes Corollary 6.

APPENDIX D
STABILITY ANALYSIS FOR EXTENDED LANCHASTER
MODEL WITH ADOPTION DELAY
Once again, assuming that τ1 = τ2 = τ , the Jacobian matrix
for model (21) is given by:

Jel =
[
Ael Bel
Cel Del

]
(78)

where:

Ael = −λ+ e−ψτ (−2x1τ k1 − x2τ k2 − c1 − c2 + k1)

Bel = −e−ψτ x1τ k2
Cel = −e−ψτ x2τ k1
Del = −λ+ e−ψτ (2x1τ k1 − 2x2τ k2 − c1 − c2 + k2)

At equilibrium it must hold that:(
x∗1 (t), x

∗

2 (t)
)
=
(
x∗1 (t − τ ), x

∗

2 (t − τ )
)

(79)

Stability of equilibrium points is determined by the charac-
teristic equation:

Pel(ψ, τ ) = Ψ 2
+ P1elΨ + P2el + P3vwe−2ψτ + P4elΨ e−ψτ

+P5ele−ψτ (80)
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where:

P1el = 2λ
P2el = λ2

P3el = 2k21x
2
1 + 4k1k2x1x2 + 2k2x22 + 3c1k1x1 + 3c1k2x2

+ 3c2k1x1 + 3c2k2x2 − k21x1 − 2k1k2x1 − 2k1k2x2
− k22x2 + c

2
1 + 2c1c2 − c1k1 − c1k2 + c22 − c2k1

− c2k2 + k1k2
P4el = 3k1x1 + 3k2x2 + 2c1 + 2c2 − k1 − k2
P5el = 3k1λx1 + 3k2λx2 + 2c1λ+ 2c2λ− k1λ− k2λ

STABILITY ANALYSIS OF THE CHARACTERISTIC
EQUATION FOR τ = 0
Based on the previous analysis we can establish that the
stability criteria [37] can be established when:

P1el > 0
P2el > 0 (81)

This completes the proof of Proposition 4.

STABILITY ANALYSIS OF THE CHARACTERISTIC EQUATION
FOR τ = 0 (SPECIAL CASE: k1 = k2 = k AND c1 = c2 = c)
Considering the special case when: k1 = k2 = k and c1 =
c2 = c we obtain:

x∗1 = −
1
4

−2c− λ+ k +
√
Dapx

k
(82)

x∗2 = −
1
4

−2c− λ+ k +
√
Dapx

k
(83)

where: Dapx = c2 + 2c (c+ textlambda− k) + 8ck +
(c+ textlambda− k)2

In this case, the characteristic equation is given by:

Pel(ψ, τ ) = Ψ 2
+ P1elΨ + P2el + P3ele−2ψτ

+P4elΨ e−ψτ + P5ele−ψτ (84)

where:

P1el = 2λ
P2el = λ2

P3el = −
(
c− λ−

1
2
k
) (√

Eapx
)
+ 2c2 + cλ+ λ2

−
1
2
kλ+

1
2
k2 + 2ck

P4el = c−
3
2
λ−

1
2
k +

3
2

√
Eapx

P5el = cλ−
3
2
λ2 −

1
2
kλ+

3
2
λ
√
Eapx

where: Eapx = 4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

In this case, the characteristic equation is given by:

Pel(ψ, τ ) = Ψ 2
+ P6elΨ + P7el (85)

where:

P6el = P1el + P4el
P7el = P2el + P3el + P5el

Thus the stability is established when:

P6el > 0

P7el > 0 (86)

This completes the proof of Corollary 7

STABILITY ANALYSIS OF THE CHARACTERISTIC EQUATION
FOR τ > 0 (SPECIAL CASE: k1 = k2 = k AND c1 = c2 = c)
In this case, the characteristic equation is given by equation
(84). Substituting Ψ = iw in (84), we get:

Pel(iω, τ ) = (iω)2 + P1el (iω)+ P2el + P3ele−2(iω)τ

+P4el(iω)e−(iω)τ + P5ele−(iω)τ (87)

Then, separating the real and imaginary parts, we have:

P3el cos (2ωτ)+ ωP4el sin (ωτ) = ω2
− P2el

−P5el cos (ωτ) (88)

−P3el sin (2ωτ)+ ωP4el cos (ωτ) = −P1elω

+P5el sin (ωτ) (89)

Solving equations (88) and (89), we obtain:

0 = −P4elω3
+ P24el sin (ωτ) ω

2
+ P4elP2elω

+P4elP3el cos (2ωτ)ω − P1elP5elω + P25el sin (ωτ)

+P3elP5el sin (2ωτ) (90)

Now, rearranging the characteristic equation we get:

Pel(ψ, τ ) = Ψ 2
+ P1elΨ + P2el
+ e−ψτ

(
P4elΨ + P3ele−ψτ + P5el

)
(91)

The second necessary condition for the existence of a Hopf
bifurcation [36] is:

<

(
dλ
dτ

)
6= 0 (92)

Now, calculating
( dλ
dτ

)
from (91) we obtain:(

dλ
dτ

)
=

Ael + Bel i
Cel + Del i

(93)

where:

Ael = −w
(
4P3el cos2 (ωτ)+ P4elω sin (ωτ)

+P5el cos (ωτ)
)
+ 2ωP3el

Bel = −w (4P3el cos (ωτ) sin (ωτ)− cos (ωτ)P4elω

+P5el sin (ωτ) )

Cel = −4P3elτ cos (ωτ) sin (ωτ)+ τP4elω cos (ωτ)

− τP5el sin (ωτ)+ P4el sin (ωτ)− 2w

Del = 4P3elτ cos2 (ωτ)+ P4elτω sin (ωτ)+ P5elτ cos (ωτ)

−P4el cos (ωτ)− 2P3elτ − P1el

Therefore:

<

(
dλ
dτ

)
=
AelCel + BelDel

C2
el + D

2
el

6= 0 (94)

This concludes the proof of Corollary 8
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